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An accurate power load prediction in smart grid plays an important role in maintaining the balance 
between power supply and demand and thus ensuring the safe and stable operation of power system. In 
this paper we develop a hybrid power load prediction method, which involves three main steps: data 
decomposition with the empirical mode decomposition method, data processes with the minimal 
redundancy maximal relevance method and the weighted gray relationship projection algorithm, and 
support vector machine prediction, whose parameters are optimized through the particle swarm 
optimization algorithm with a second-order oscillation and repulsive force factor. Moreover, we predict 
the power load with our hybrid forecasting method based on the real dataset from the electricity market 
in Singapore, and also compare our prediction results with those by using other forecasting methods. Our 
comparison results show that our novel hybrid method possesses a high accuracy in both the level and 
directional predictions. 

 

1. Introduction  

In recent years, people’s awareness of environmental protection has 
continued to increase, and their interest in designing more efficient energy 
usage patterns has also grown (Wang et al., 2021; Zhu et al., 2020). With the 
development of modern technology, the real-time exchange of energy 
information becomes possible, and the smart grid appears as a new type of 
grid that can improve energy efficiency (Milchram et al., 2020). Through 
demand response, smart grid helps the power system reduce peak loads, 
achieve a balance between energy supply and demand, and encourage the 
users to consume more cautiously and rationally (Tang et al., 2019). Therefore, 
the accurate prediction of power load in smart grid plays an important role in 
maintaining the balance between power supply and demand, so as to ensure 
the safe and stable operation of power system (Yang et al., 2019). 

As renewable energy tends to be increasingly popular in the global power 
grid, there is a large scale of renewable energy connected to the grid and a 
large influx of new load terminals such as electric vehicles, which has 
imposed a severe test on the balance of power system supply and demand and 
increased the difficulty of power load forecasting (Yuan et al., 2021). As a 
result, more advanced forecasting techniques begin to emerge for improving 
the accuracy of forecasting (Hong et al., 2020). But, the prediction results 
from traditional forecasting models——each usually involving a single 
prediction method——are inaccurate. It behooves us to find a novel hybrid 
forecasting model for the more accurate prediction of power load.     

For many forecasting problems in power systems, we need to process the 
data decomposition (Bessec and Fouquau, 2018; Angelopoulos et al., 2019), 
feature selection (Ding et al., 2020; Yang et al., 2019; Niu et al., 2020), 
parameter optimization of forecasting model (Zhu et al., 2017; Jiang et al., 
2020), and others. At present, the hybrid load forecasting models are mostly 
based on artificial intelligence methods. For example, support vector machine 
(SVM) (Li et al., 2021) and artificial neural network (ANN) (Yang et al., 2019; 
du Jardin, 2021) are used in many applications. However, when we deal with 
time series problems, we cannot obtain stable results due to the historical 
dependence and overfitting of ANN while SVM can effectively overcome the 
limitations of ANN because the SVM minimizes training and generalization 
errors by using empirical risk and structural risk minimization principles 
(Hafeez et al., 2021). In particular, SVM, capable of solving nonlinear 
problems and locating the global optimal solution, is widely used in power 
load forecasting (Ahmad and Chen, 2019). For example, Singh and 
Mohapatra (2021) used a hybrid forecasting model—based on wavelet 
transform (WT) and SVM—for power load forecasting which effectively 
improved the accuracy of load forecasting. Barman and Choudhury (2020) 
used the gray wolf optimizer (GWO) algorithm to optimize the parameters of 
SVM, which effectively improved the load forecasting accuracy, and the 
comparison results indicate that the prediction effects of SVM before and 
after optimization are better than that of ANN. Therefore, as an excellent 
prediction method, SVM has been adopted by many relevant researchers. 

1.1. Data decomposition 

 
 
The empirical mode decomposition (EMD) (Zhang et al., 2019; Xie et al., 

2020; Liu et al., 2021) method is one of data decomposition methods most 
commonly used suitable for nonlinear and non-stationary time series, which 
can be decomposed into several intrinsic mode functions (IMFs) and a 
residual (Thomas et al., 2020). For example, Yaslan and Bican (2017) 
predicted the direction movement of power load demand based on EMD-SVR 
(support vector regression), and evaluates the performance of three load data 
sets. The results compared with a single SVR exposed that the EMD-SVR 
method is superior to a single SVR in directional measurement. Liu et al. 
(2018) proposed a short-term load forecasting model based on hybrid fuzzy 
combination weights-EMD and Kalman filtering-bat algorithm-SVM, and the 
simulation proved that the forecasting accuracy was effectively improved. A 
hybrid forecasting model based on ICEEMDAN (improved complete 
ensemble empirical mode decomposition with adaptive noise)-PSO-SVR in 
Al-Musaylh et al. (2018) was developed, where ICEEMDAN is an improved 
version of EMD with adaptive noise. The above researches apply the EMD 
method to the SVM power load forecasting from different aspects, and obtain 
more accurate prediction value than when EMD is not applied. In practical 
applications, EMD can be appropriately adjusted for different power markets, 
and also be applied in this paper.  

1.2. Feature selection 

The selection of features has a significant impact on the accuracy of 
power load forecasting. Most of existing feature selection methods are linear 
feature analysis methods; but, the prediction variables are non-linear mapping 
functions of their input variables. Therefore, one more advanced feature 
analysis method based on mutual information (MI) is proposed (Sharmin et 
al., 2019). Among the MI methods, the minimal redundancy maximal 
relevance (mRMR) proposed by Abedinia et al. (2016) involves the 
interactive modeling of feature selection, in addition to the correlation and 
redundancy based on information theory standards. The mRMR method has 
been widely used by, e.g., Che et al. (2017), Xiao et al. (2019), and Liang et al. 
(2019). 

In addition, when we carry out the feature selection of load forecasting, it 
is not only necessary to select an appropriate feature selection method but 
also to select an appropriate method for the distinction between holidays and 
non-holidays (Arora and Taylor, 2018). Existing researches often select data 
of similar holidays as their historical data; however, using the same historical 
data for both holidays and non-holidays is not conducive to improving the 
prediction accuracy. To solve this problem, Wu et al. (2015) proposed a 
combination method for the short-term load forecasting, according to a gray 
projection-improved random forest algorithm. The set of similar days to be 
predicted was selected through the weighted gray relationship projection 
(WGRP) algorithm. The above combination method was also compared with 
the random forest algorithm without gray projection. The results show that the 
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WGRP algorithm can effectively improve the accuracy of load forecasting.  

1.3. Parameter optimization 

The common optimization algorithms for forecasting models include the 
genetic algorithm (GA), ant colony algorithms, particle swarm optimization 
(PSO) algorithm, artificial fish swarm algorithm, etc., among which the PSO 
approach and its improved versions have been the most widely used by, e.g., 
Zhu et al. (2018), Jiang et al. (2020), Kouziokas (2020), and Xie et al. (2020). 
However, the basic PSO algorithm is easy to fall into the local optimum 
during the particle search process, and there are shortcomings such as (i) the 
fast convergence speed in the initial search of the algorithm and a slower 
convergence speed in the later search periods, and (ii) the randomness of 
parameter selection (Ding et al., 2019). Hence, some researchers (e.g., 
Masoumi et al., 2020) have improved the PSO algorithm based on the 
characteristics of the power load data. 

Furthermore, we note that a key to the SVM model-based prediction 
method is about the parameter selection of the SVM model and its kernel 
function. Therefore, when SVM is used for power load forecasting, we 
usually need to combine some optimization algorithms to find the optimal 
parameters and the kernel function. The improvements for the PSO method 
combined with SVM were made by, e.g., Zeng et al. (2018) and Jiang et al. 
(2020). Especially, Sun et al. (2017) proposed an improved PSO algorithm 
with a second-order oscillation and repulsive force factor (SecRPSO), and 
experimentally verified that the SVM prediction method based on this 
algorithm is more stable and accurate than those that are based on the network 
optimization and basic PSO optimization.  

Through the summary of the above literatures, the mixed prediction 
model has better prediction effect than the single prediction model. Therefore, 
we develop a novel hybrid power load forecasting method. First, in order to 
reduce the complexity of prediction, we decompose the original load data to 
obtain time series that are simpler and easier to predict than the original load 
data. Secondly, for the IMFs and residual decomposed by EMD, the mRMR is 
used to select features that are highly correlated with the power load and have 
no redundancy. Then, the weighted gray relationship projection algorithm is 
applied to select the historical load sequence of the holiday for prediction, so 
that the historical data of the holiday is more general. Finally, the PSO with a 
second-order oscillation and repulsive force factor algorithm is used to 
optimize the parameters of SVM model to further improve the prediction 
accuracy of developed model.  

We apply our method to the prediction of power load in Singapore, using 
an electricity market dataset in Singapore (Mendeley Data 2020). According 
to our calculation of the prediction accuracy for the method, we conclude that 
our method is significantly effective to forecasting. The main contributions of 
this paper are listed as follows:  

(1) We propose a novel hybrid forecasting method for power load, 
combining the EMD, mRMR, WGRP, and SVM prediction models with the 
optimized PSO algorithm. 

(2) We use the EMD method to decompose the original load data. The 
mRMR and WGRP algorithms are used to extract features from original data 
and process holiday load, respectively.  

(3) The parameters of SVM prediction model are optimized by the PSO 
algorithm with a second-order oscillation and repulsive force factor. 

(4) We measure the accuracy of the level prediction and direction 
prediction to demonstrate the effectiveness of our hybrid prediction method. 

The rest of this paper is organized as follows: Section 2 introduces the 
methods involved in the model and describes the detailed process of power 
load forecasting in the proposed model. Section 3 verifies the prediction 
accuracy of the model through case experiments. Finally conclusions are 
drawn and future research direction is pointed out in Section 4. 

2. Methodology 

In this section, the proposed hybrid forecasting method for power load is 
introduced. Section 2.1 briefly describes the EMD data decomposition 
approach. Then, the basic knowledge of mRMR for feature selection is 
provided in Section 2.2. Section 2.3 gives the process of the weighted gray 
relationship projection algorithm for finding out the historical sample set 
similar to the holiday sample to be predicted. Section 2.4 introduces the 
knowledge of the original SVM forecasting model in this paper. Finally, the 
developed second-order oscillation and repulsive force factor algorithm is 
introduced to improve the diversity of the particle population and avoid 

premature stagnation. 

2.1. The empirical mode decomposition (EMD) method 

The EMD is an adaptive data analysis method that can effectively obtain 
valid information of nonlinear and non-stationary time series and decompose 
the time series into several intrinsic mode functions (IMFs) and a residual 
(Thomas et al., 2020). IMF is a function that satisfies the following two 
conditions. First, in the entire dataset, the number of extreme points and the 
number of zero points are identical or differ by at most 1. Second, at any point, 
the mean of the envelope defined by the local maximum and local minimum 
is zero (Thomas et al., 2020). Given a time series, the specific decomposition 
process of EMD involves the following steps: 
(1) Determine the maximum and minimum points of the original sequence

( )x t , and use the cubic spline function to generate the upper and lower 
envelopes of ( )x t . 
(2) Compute the average of these two envelopes to obtain the average 
envelope 1( )m t . 

(3) Subtract 1( )m t  from the original sequence ( )x t  to find a new sequence 

1 1( ) ( ) ( )h t x t m t= − . 

(4) Check the character of 1( )h t : if 1( )h t  is an IMF, then 1( )h t  is the first 

IMF. Otherwise, if 1( )h t  is not an IMF, then repeat (1)-(3) until there is no 

extreme value in ( )kh t  after k  iterations. That is, 1( ) ( ) ( )k k kh t h t m t−= −  
is the first IMF. 
(5) Subtract the first IMF from the original sequence ( )x t , and repeat steps 
(1)-(4) for the remaining sequence until the sequence obtained after multiple 
decompositions is a monotonic function or the amplitude of remaining 
sequence is less than preset value. After all IMFs are removed from the 
original sequence, the remaining residual value represents the overall trend of 
the original sequence. This indicates that the decomposition of the EMD 
algorithm is completed, and original sequence ( )x t  is decomposed into a 
superposition of several IMFs and a residual.  

The EMD method has been widely used in practice. To enhance the 
predictive accuracy of tourism demand forecasting, Xie et al. (2020) 
developed a decomposition-ensemble approach based on the 
complete/ensemble EMD with adaptive noise, data characteristic analysis, 
and the Elman’s neural network model. The empirical results of Hong Kong 
tourism demand showed that the proposed model outperformed other models 
in both point and interval forecasts for different prediction horizons. Liu et al. 
(2021) proposed a wind speed prediction model combining EMD with some 
novel recurrent neural networks (RNN) and the autoregressive integrated 
moving average (ARIMA). In the model, the EMD was used to decompose 
the wind speed sequence to reduce the complexity and non-stationary of the 
series. The prediction results indicate that the EMD method combined with 
long short-term memory network (LSTM) can improve the wind speed 
prediction performance. The hybrid forecasting model by Al-Musaylh et al. 
(2018) is based on ICEEMDAN-PSO-SVR, where ICEEMDAN is the 
abbreviation of improved complete ensemble empirical mode decomposition 
with adaptive noise, and it is an improved version of EMD with adaptive 
noise. The above indicates that with the EMD method, we can obtain a more 
accurate prediction than when EMD is not used. 

2.2. The minimal redundancy maximal relevance (mRMR) method 

The selection of features has a significant impact on the forecasting 
accuracy. Many researchers have used some selection methods to choose 
features. When the prediction variable is a non-linear mapping function of 
input variables, the mutual information-based methods are mostly used. The 
mutual information refers to the intersection of two or more random variables 
which reflect the information contained between the variables. That is, the 
mutual information can characterize the degree of correlation between two 
random variables x and y, which can be computed as 

( , )( , ) ( , ) log
( ) ( )
p x yI x y p x y dxdy

p x p y
= ∫∫                      (1) 

where x  and y  are random variables, ( )p x  and ( )p y  are marginal 

probability density functions, and ( , )p x y  is joint probability density 
function. Using the mutual information, Abedinia et al. (2016) proposed the 
minimal redundancy maximal relevance (mRMR) method, which involves the 
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interactive modeling of feature selection, in addition to the correlation and 
redundancy based on information theory standards. As the mRMR method 
can capture the linear and non-linear relationship between two variables 
during prediction, it has been widely used in practice. For example, Liang et 
al. (2019) applied the mRMR method for the feature selection of short-term 
power load forecasting, and obtained accurate prediction results. 

2.2.1. The maximal relevance 
The maximal relevance in mRMR requires the largest mean of MI 

between the selected feature and the target variable, i.e., 
 

1max  = ( , )
i

i
x F

D I x y
F ∈

∑                                (2) 

 
where D  means the mean of MI, | |F  represents the number of features in 

the feature set F , y is the target variable, and ix  ( 1,2, ,i F= 
) 

represents the -i th  feature in F . 

2.2.2. The minimal redundancy 
The features selected only by maximal relevance may contain duplicate 

information, which means that there is a certain degree of redundancy. This 
increases the prediction error and the calculation complexity. Therefore, the 
mRMR method introduces a minimum redundancy to the selected features 
such that the correlation between features ix  and jx  ( , 1,2, ,i j F= 

) is 

the smallest, i.e.,  

2
,

1min  = ( , )
i j

i j
x x F

R I x x
F ∈

∑                                       (3) 

 
where R  represents the dependency between ix  and jx . 

Integrating (2) and (3) and transforming them, we obtain the objective 
function of mRMR as 

 

1 1

1:  max ( , ) ( , )
1j

i

j j i
m n n

mRMR I x y I x x
x J F n x F−

−

 
 −

∈ − − ∈ 
∑                  (4) 

 
where mJ  represents the candidate feature set, and m  is the number of 

features in mJ .The objective function in (4) can be solved by using the 
incremental search, in which we can select the features that maximize it from 
the candidate sample feature set mJ  one by one. That is, if n  features need 

to be selected, then 1nF −  is the set of -1n  features that are selected from 

mJ , and then the -n th feature is the feature jx  that maximizes the objective 

function (4) in set 1{ }m nJ F −− . 

2.3. The weighted hray telationship projection (WGRP) algorithm 

For the power load forecasting, the generality of historical data has a great 
impact on prediction results. Using the same historical data selection method 
for both holidays and non-holidays is not conducive to improving the 
prediction accuracy.  

The WGRP algorithm introduces the concept of weighting and projection 
based on gray correlation coefficient. Through appropriate weighting methods, 
the WGRP algorithm finds the key factors with the greatest influence. Then, 
this algorithm obtains the correlation between the historical samples and the 
samples to be predicted, by combining the projection of historical samples on 
the samples to be predicted. This helps find a historical sample set similar to 
the samples to be predicted (Dai and Zhao, 2020). Such approach not only 
ensures the data generality but also reduces the time to select the training 
data. 
We describe the WGRP algorithm below.  
(1) The feature vector of the sample to be predicted is 0Y . Select historical 

data of 1n  samples before the sample to be predicted, and the feature vector 

of the i - th  sample is iY . 
 

10 01 02 0[ , , , ]mY y y y=                                 (5) 

11 2 1[ , , , ],    1, 2, ,i i i imY y y y i n= =                                (6) 

 
where 1m  means the number of influencing factors. 

(2) Treating 0Y  as the parent sequence and iY  as the subsequence, we 

calculate the correlation coefficient between iY  and 0Y , and construct a 

gray correlation matrix as follows: 
 

1

1 1 1

01 0

1

          

               
         

m

n n m

G G

G
G G

 
 

=  
 
 



  



                              (7) 

 
where jkG  ( 10,1, ,j n= 

and 11,2, ,k m= 
) represents the gray 

correlation coefficient of the -k th  factor in the -j th  sample. 
(3) We calculate the weight of each influencing factor using the entropy 
method, obtain the weight vector γ ,  
 

11 2[ , , , ]mγ γ γ γ=                                   (8) 

 
and then weight the gray correlation matrix as 

1

1 1 1 1

1
T

1 1 

                 

'                    
        

m

n m n m

G G
G G

γ γ

γ
γ γ

 
 

= =  
 
 



  



                            (9) 

 
(4) We regard each row in 'G  as a row vector. The first row is the row 

vector of the sample to be predicted, denoted as '
0G , and other historical 

sample row vector are denoted as '
iG , for 11,2, ,i n=  . The angle between 

each '
iG  and '

0G  is viewed as the gray projection angle of the sample, 

denoted as iθ . We then have 

 
1

1 1

1

2 2

1 1

cos

( )

m

j ij j
j

i m m

j ij j
j j

G

G

γ γ

θ

γ γ

=

= =

=

∑

∑ ∑
                          (10) 

 
Hence, the weighted gray correlation projection value between each historical 
sample and the sample to be predicted is calculated as   
 

1

1

1

2

1

m

j ij j
j

i m

j
j

G

D

γ γ

γ

=

=

=

∑

∑
                                  (11) 

 
(5) We sort the weighted gray correlation projection values of each historical 
vector from the largest to the smallest. A number of samples with the largest 
projection value are selected to form a similar sample set. 

2.4. The support vector machine (SVM) method 

The SVM method can be used to solve the classification and regression 
problems in machine learning with optimization methods (Li et al., 2021). A 
key to the SVM model-based prediction is about the parameter selection of 
the SVM model and its kernel function. Therefore, when we use the SVM 
model for prediction, we usually combine some optimization algorithms to 
find optimal parameters. 

Solving regression problems such as a load forecasting is to find the 
function ( ) Ty f x x bω= = +  for the purpose of inferring the value of y  
corresponding to any x , where ω  is the weight and b  is the deviation. 
When the SVM method solves regression problems, the objective function is 
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( )
min     

s.t.         1, ,T
i ix b y i l

ε

ε ω ε− < + − < = 

                 (12) 

 
As for nonlinear regression problems, nonlinear mapping is usually used 

to map the input space into a linear and separable Hilbert space. Then, we can 
transform the minimization problem in (12) to a binary classification problem. 
Suppose that after nonlinear mapping, the prediction model is 

 

( ) ( )Tf x x bω φ= +                                (13) 
 

In order to avoid complex operations in a high-dimensional space, the 
kernel function is introduced, and the prediction model (13) can be 
transformed into 

( ) ( )*

1
( ) ,

l

i i i
i

y f x K x x bα α
=

= = − +∑                       (14) 

 
where iα  and *

iα  denote Lagrange multipliers which are used to solve the 

binary classification problem converted from (12) and obtain the optimal 
solution iα  and *

iα . 

The radial basis kernel function is a widely-used kernel function with 
calculation convenience and strong stability to solve nonlinear problems. The 
expression is 

( )
2

2, exp
2

x y
K x y

σ

 −
 = −
 
 

                              (15) 

 
where σ  denotes a width coefficient. The function in (15) can transform the 
prediction model (13) to (14).  

2.5. The particle swarm optimization (PSO) algorithm with a second-order 

oscillation and repulsive force factor  

The common optimization algorithms include the GA, ant colony 
algorithms, PSO algorithm, artificial fish swarm algorithm, etc., among which 
the PSO approach and its improved versions have been the most widely used 
(Xie et al., 2020). However, the basic PSO algorithm is easy to fall into the 
local optimum during the particle search process, and there are shortcomings 
such as (i) the fast convergence speed in the initial search of the algorithm and 
a slower convergence speed in the later search periods, and (ii) the 
randomness of parameter selection (Ding et al., 2019).  

Hence, in the power load prediction, some researchers have improved the 
PSO algorithm based on the characteristics of the power load data. For 
example, Zhao et al. (2020) improved the PSO algorithm from both 
cognitive/social coefficients and additional recovery operators to enhance its 
search ability. Masoumi et al. (2020) used a weighted, improved PSO 
algorithm to solve an optimization problem in the renewable energy load 
forecasting. 

Hence, a second-order oscillating and repulsion factor on the basis of the 
basic PSO algorithm is developed to improve the diversity of particle 
population and avoid premature stagnation and local optimization. In the M  
dimensional search space, we generate a population of n  particles randomly. 

Letting V  and U  denote the speed and position of particles in the search 
space, respectively, we can calculate the corresponding fitness value by 
solving an objective function. 1 2( , , , )i i i iMP p p p=   and 

1 2( , , , )g g g gMP p p p=   mean the individual and global extremes, 

respectively. In the iteration process, the particle speed depends on the 
position information of the current particle and the particle in the previous 
iteration. We develop the equation for particle speed as follows: 

 
1 1

1 1 1 1
1

2 2 2 2

( (1 ) )

             ( (1 ) )

k k k k k
im im im im im

k k k
gm im im

V wV c r P U U

c r P U U

β β

β β

+ −

−

= + − + +

+ − + +
               (16) 

 
where 1,2, ,m M=  ; 1, 2, ,i n=  ; k  is the current number of iteration;

1c , 2 0c >  are acceleration factors; 1r , 2r  are random numbers between 0 and 

1; and 2 1 /j j jc cβ < −  in the early period and 2 1 /j j jc cβ ≥ −  in the 

later period. Moreover, in (16), w  denotes the inertia weight coefficient, 
which decreases non-linearly with the number of iterations, and it is 
computed by 
 

2
max( )( / )ini ini endw w w w k k= − −                                  (17) 

 
where iniw  and endw  represent the initial value and the termination value 

of w , respectively. The particle updates its position by  
 

1

, 11

1

, 1

2 , || ||

+ ,           || ||

n
k k k k k k
im im im jm

i j jk
im n

k k k k k
im im im jm

i j j

U V d u u d

U

U V u u d

+

≠ =+

+

≠ =


 + + − <
= 


− ≥


∑

∑
             (18) 

 

where 2
max( )( / )k

ini ini endd d d d k k= − −  is the allowed minimum distance 

between particles; and, inid  and endd  represent the initial and termination 

value of kd , respectively. 

2.6. The proposed power load forecasting method 

In this subsection, the framework of the proposed hybrid forecasting 
model for power load is presented. The proposed power load prediction 
method shown in Figure 1 is divided into four stages.

 
 
 



5 

 

Feature selection

Selection of the 
historical load 

sequence

Parameter 
optimization 

Training

Data decomposition

Prediction

original power load sequence

IMF1 IMF2 ... IMFn residual

EMD

candidate  feature 
set

hour 

real-time price

holiday typehistorical load sequence

day type

mRMR

non-holiday mRMR

holiday WGRP algorithm

feature set

Input training sample (x,y), where x is feature vector and y is the 
corresponding dependent variable

initial C

initial σ  
Optimized by improved

PSO

best C

best σ   

Prediction result1 ...Prediction result2 Prediction resultn Prediction resultn+1 

The sum of the prediction values of IMFs and residual 
obtained by EMD is the final prediction result of power load

 
Fig. 1. The process of load forecasting based on the proposed model. 

 

2.6.1. Data preprocess  

To simplify the feature selection and reduce the difficulty in solving the 
prediction model, we consider three time attributes: (1) day attribute set 

{ }1,2,3,4,5,6,7W = , where the values correspond to 7 days in one week; (2) 

holiday attribute set { }0,1H = , where 0 means non-holiday and 1 means 

holiday; (3) hour attribute set { }1,2, , 24h =  , where the values represent 24 
hours in one day. 

In view of the fact that the historical data of holidays is not general, we 
use the WGRP algorithm to process the holiday data, so as to eliminate the 
impact of holidays on load forecasting.  

2.6.2. Prediction steps 

Stage l: Data decomposition. The original power load time series is 
decomposed by the EMD technique into several IMFs and residual with 
different frequencies. The number of modes for the power load sequence can 
be adjusted based on experimental evidence.  

Stage 2: Component identification. The original power load sequence is 
decomposed into different data characteristics. To distinguish these 
components, the mRMR algorithm is used to selected features and apply the 
WGRP algorithm to process the holiday data. 

(1) The mRMR method is applied to select the features that are highly 
correlated with the prediction variable for the IMFs and residual decomposed 
by the EMD method, which results in no redundancy. Then the features that 
contain rich information from two aspects of relevance and redundancy are 
selected.  

(2) The WGRP algorithm is used to process the holiday data, mainly by 
selecting the similar sample set to be predicted, and the load data of similar 
samples constitute the historical load sequence of the holiday, which is made 
more general.  

Stage 3: Component prediction. The abovementioned components could 
be determined by the SVM model. The SVM model is applicable to 
forecasting nonlinear sequences, so the component can be determined by the 
SVM model. We train the SVM model by using the historical data, and also 

optimize the parameters of the SVM model by using the PSO algorithm with 
second-order oscillating and repulsion factor. 

Stage 4: Aggregating the prediction results. Each component is predicted 
based on the identified data characteristics. Then, the prediction results of all 
components are aggregated to obtain the final forecasting result. Finally, the 
power load forecasting is carried out via the proposed prediction method. We 
plot Figure 1 to depict the specific process for the forecasting method. 

2.6.3. Model evaluation 

To decide on whether our forecasting model can accurately predict the 
power load or not, we comprehensively evaluates the prediction accuracy of 
developed the model from directional prediction and level prediction. Mean 
absolute percent error (MAPE) and mean absolute error (MAE) are used as 
evaluation criteria for model level prediction, directional prediction statistic 
(Dstate) is used as the evaluation criterion for direction prediction. Specifically, 

 

1

ˆ1MAPE
n i i

i i

Y Y

n Y=

−
= ∑                                         (19) 

 

1

1 ˆMAE=
n

i i
i

Y Y
n =

−∑                                            (20) 

( )( )1 1

1

ˆ1,  01D = ,   
0,  

n
i i i i

state i i
i

if Y Y Y Y
a a

n otherwise
− −

=

 − − ≥= 


∑                     (21) 

 

where iY  means the real value of power load, and îY  represents the 
predicted value.  

In addition, we compare the prediction performances of different 
models from the perspective of statistics. The Diebold-Mariano (DM) test 
(Diebold and Mariano, 1995) is used to further analyze the prediction 
performance. In the DM test, the null hypothesis is that the prediction 
accuracy of the two models is equal. Furthermore, we use the mean square 
prediction error (MSPE) as the loss function. The DM test is defined as 
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Among them, ,ˆte ty  and ,ˆre ty  represent the predicted values calculated 

according to ty  at time t by the test model (TE) and the reference model 

(RE), respectively. ĝV  is the consistent estimation usually defined as the 

progressive long-term variance. In the DM test, if the absolute value of DMZ  
is less than 1.96 or the significance level is less than 5%, then the null 
hypothesis is accepted. Otherwise, the hypothesis is rejected. 

We also use the rate test (RT) and the Pesaran-Timmermann test (PT) to 
test the accuracy of the direction test. The RT test is 

~ (0,1),      
(1 ) (1 )

te re
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te te re re
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d d d d

T T

−
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− −
+

                 (23) 

 
where ted  and red  represent the direction prediction accuracy of RE and 
TE, respectively. The null hypothesis of the RT test is that the direction 
prediction accuracy of TE and RE is equal. Using the two-sided test, the null 
hypothesis was accepted at the 5% significance level when the absolute value 
of RTZ  is below 1.96. 
The PT test is 
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In the PT test, the null hypothesis is the assumption that the predicted and 
actual directions of the model are independent of each other. For a two-sided 
test, the null hypothesis is accepted if the absolute value of PTZ  is below 
1.96 or the corresponding p-value is below 5%. 

3. Case study 

In this section, the case study using the time series of power load is 
described. To perform the illustration and verification, the prediction results 
and the comparison analysis are also presented. 

We use an electricity market dataset in Singapore (from the Mendeley 
Data 2020) for our prediction, with an aim to illustrate the accuracy of our 
model. The dataset contains the power load, real-time electricity price, legal 
holiday time, and other data of the Singapore power market from January 1, 
2017 to March 31, 2018. The data from January 1 to December 31 in the year 
of 2017 is used for model training, and the data from January 1 to March 31 
in the year of 2018 is used for model verification. Next, we use our 
forecasting model to predict the power load of Singapore in the time interval 
from March 25, 2018 to March 31, 2018, during which March 31, 2018 is a 
legal holiday in Singapore. It is worth noting that we consider an one-step 
ahead forecasting, which is good to the short-term prediction.  

3.1. Data  

We first use the EMD method to decompose the original power load data, 
and obtains 10 IMFs and a residual as shown in Figure 2. We learn from 
Figure 2 that as a result of using the EMD method, the complex time series 
become simple and features become obvious. This thereby reduces the 
difficulty and complexity for prediction. We then perform the feature 
selection on the 11 sequences that follows the EMD-based decomposition. 
Based on previous relevant researches and the actual situation in Singapore 
(Dai and Zhao, 2020), we choose historical load, real-time price, and time 
attributes as candidate features, as described in Table 1. 

 
Fig. 2. Decomposition result of original load data based on EMD. 

 
 
For the purpose of reducing the complexity of algorithm, this paper takes 

1 hour as the time interval, and the time interval of real-time price sampling 
value in Singapore is 0.5 hour, so the first value of the hourly sampling value 

is selected as the real-time electricity price at that moment, namely, 

2 -1t tP p=                                        (22) 
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where tP  represents the price at time t , and 2 -1tp  is the sample value. 

For the 11 time series after decomposition, we perform the feature 
selection separately through mRMR, and show our final results as in Table 2. 
We learn from Table 2 that the feature sets of each sequence obtained after 
the power load data decomposition are mostly composed of historical load 
sequences and real-time prices. When the time series is simpler, the number 
of features becomes fewer. Furthermore, the time series after the sixth IMF 
has only one feature (i.e., the load data in the hour before prediction). For 

each hour of the holiday to be predicted, the historical load sequence selected 
by mRMR is not general. Therefore, we apply the WGRP algorithm to select 
the same number of similar samples in the above-mentioned feature set to 
form the historical load sequence. For example, the number of historical load 
data in the feature set of IMF5 is 5. Then, we select five similar samples in 
the hour to be predicted to form the historical load sequence in the prediction 
hour. 

 
 
Table 1  
Candidate features. 

Symbol Description 

, 1,2, ,168iL i =   Power load at each hour of the 7 days before the hour to be predicted 

, 1,2, ,168iH H i =、   Holiday type of the hour to be predicted and holiday type of the 7 days before it 

, 1,2, ,168iW W i =、   Day type of the hour to be predicted and day type of the 7 days before it 

, 1,2, ,168iP P i =、   Real-time price of the hour to be predicted and real-time price of the 7 days before it 

, 1,2, ,168ih h i =、   The hour to be predicted and hour of the 7 days before it 

 
 
 
Table 2  
Features of each IMF and residual. 

Time series Feature set 
IMF1 168 7 166 25 1 163 10 145 127 97 165 19 112 161 88, , , , , , , , , , , , , ,L P L L L L L L L L H L L L L  
IMF2 163 100 73 155 152 109 165 157 11 101 164 128 121 168, , , , , , , , , , , , ,L P L L H L L L L L L L L L  
IMF3 51 11 17 147 127 157 161 80 110 158 13 77 124 164, , , , , , , , , , , , ,L P L L L L L L L L L L L L  
IMF4 168 25 148 102 167 144 137 17 34 166 94 157 121, , , , , , , , , , , ,L P L L L L L L L L L L L  
IMF5 168 90 165 88 167 128, , , , ,L P L L L L  
IMF6 168 69 166 81 167 128 34, , , , , ,L P L L L L L  

IMF7- IMF10 168L  
residual 168L  

 
 

 

 
 

3.2 Results comparison and error analysis 

To further verify our forecasting model, we compare the prediction results 
by using our hybrid forecasting method (which can be viewed as the “base” 
Model for our comparisons) with those by using the five forecasting models 
as described as follows: (a) Model 1 (Dai and Zhao, 2020) that uses the 
mRMR-WGRP and SecRPSO-SVM methods; (b) Model 2 that contains the 
EMD and mRMR-WGRP-BPNN methods; (c) Model 3 that involves the 
mRMR-WGRP-BPNN method in which BPNN is the abbreviation of the 
term “back propagation neural network”; (d) Model 4 that applies the 

mRMR-WGRP and GA-SVM methods; and (e) Model 5 that consists of the 
EMD, mRMR-WGRP, and GA-SVM methods.  

We depict our prediction results in Figure 3 to present the difference 
between the results by our hybrid forecasting model and those by Models 1-5. 
Moreover, we evaluated the prediction performance of different models from 
both level and directional prediction perspectives, as given in Table 3. Tables 
4-6 are the calculation results of RT test, DM test and PT test for different 
models. 

 

 

 
Fig. 3. The prediction results by using our base Model and Models 1-5. 
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Table 3 

Predictive performance evaluation of different models. 

                Error 
Model MAE MAPE Dstate 

Model 1 468.0968 0.0412 0.6310 
Model 2 462.2923 0.0425 0.6845 
Model 3 484.0083 0.0446 0.5774 
Model 4 541.9373 0.0475 0.5893 
Model 5 516.4112 0.0454 0.6964 

The Proposed Hybrid Model 403.4315 0.0351 0.7917 
 

Table 4 

RT test results for different models. 
Reference model Test model     

 
Model Model 1 Model 2 Model 3 Model 4 

Model 1 3.3028(0.0012) 
    

Model 2 2.2502(0.0257) -1.0365(0.3015) 
   

Model 3 4.3433(0.0000) 1.0055(0.3161) 2.0477(0.0422) 
  

Model 4 4.1120(0.0000) 0.7837(0.4343) 1.8241(0.0700) -0.2213(0.8251) 
 

Model 5 2.0122(0.0458) -1.2733(0.2047) -0.2360(0.8137) -2.2865(0.0235) -2.0623(0.0407) 

Note： RTZ (p-value) 

 

Table 5 

DM test results for different models. 
Reference model Test model     

 
Model Model 1 Model 2 Model 3 Model 4 

Model 1 2.2408(0.0264) 
    

Model 2 2.2479(0.0259) 0.0412(0.9672) 
   

Model 3 2.9163(0.0040) 1.4447(0.1504) 1.9697(0.0505) 
  

Model 4 4.0758(0.0000) 2.2342(0.0268) 2.0697(0.0400) 0.4919(0.6234) 
 

Model 5 3.6586(0.0003) 1.0697(0.2863) 0.9443(0.3464) -0.6050(0.5460) -2.8829(0.0045) 

Note: DMZ  (p-value) 

 

Table 6 

PT test results for different models.  
Model Model 1 Model 2 Model 3 Model 4 Mode 5 

PTZ  7.3051 3.0614 4.5016 1.6465 2.4175 4.5559 

p-value 0.0000 0.0026 0.000 0.1015 0.0167 0.0000 

 
 

 

We learn from Figure 3 that in terms of changing trends, the prediction 
values generated by each model are roughly identical to the real values. In the 
early period and the middle to end periods, our prediction values given by our 
proposed method (i.e., the proposed hybrid forecasting method) are 

significantly close to real values. Especially, according to the prediction 
results on March 31, 2018, depicted in Figure 4, we find that the prediction 
values by our proposed model are the closest to the real data. 
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Fig. 4. The prediction results generated by using base Model and Models 1-5 on March 31, 2018. 

 
 
In addition, we plot Figure 5 to visually show the prediction results on 

March 30, 2018 (which is the holiday during our forecasting period). 
Observing the predictions, we reveal that the prediction results by our 

proposed model in holidays are, by and large, more accurate than other 
models. It is thus concluded that the model proposed in this paper dominates 
Models 1-5 in predicting power load in holidays.  

 

 
Fig. 5. The prediction results generated by using the base Model and Models 1-5 on March 30, 2018 (which is a holiday). 

 
 
In spite of the above observations, the differences between the prediction 

and real values differ for the forecasting models. Specifically, the difference 
between the prediction and real values by the proposed hybrid forecasting 
model is slightly larger than that by other models from the early to middle 
periods. Thus, it would be difficult to use our observations only to confirm 
which model has a higher prediction accuracy. According to the level 
forecasting demonstrated by MAPE and MAE and direction forecasting 
demonstrated by Dstate, we find that, if the EMD method is used to decompose 
the original load data, we can obtain more accurate prediction values than 
when we do not use the EMD method for decomposition. According to the 
comparison between the results from Models 1 and 4 as well as the 
comparison between our hybrid forecasting model and Model 5, we conclude 
that the improved PSO algorithm is better than the GA algorithm in the 
parameter optimization. Moreover, by comparing the results by Models 1 and 
3 as well as those by Model 2 and our hybrid forecasting model, we reveal 
that when the same data decomposition and feature selection methods are 
adopted, the prediction accuracy from the SVM method is higher than that 
from the BPNN method. In addition, Dai and Zhao (2020) had shown the 
superiority of the mRMR-WGRP method in feature selection and holiday data 
processing.  

From the DM test results shown in Table 5, the following conclusions can 
be obtained. First, when the proposed hybrid method is used as the test target, 
the p-values are all less than 5%, which indicates that the statistical 
performance of proposed hybrid method is better than other models. Secondly, 
when the EMD method is introduced based on original model, it outperforms 

the original model at the 5% significance level, which indicates that the 
prediction performance can be improved by data decomposition. Similarly, 
Table 6 shows the calculation results of the PT test for each model. It is not 
difficult to find that except for model 3, PTZ  of other models is all greater 

than 1.96. The proposed method with the largest PTZ  achieves better 

directional prediction accuracy compared with other models. In addition, 
according to the RT test results of each model given in Table 4, we can obtain 
the conclusions similar to those in the DM test. First, since the obtained 
p-values are less than 5%, the proposed method has the best directional 
prediction accuracy compared with other models. Meanwhile, compared with 
the model without EMD, we find that the EMD method improves the 
directional prediction accuracy.  

Therefore, the above observations and discussions indicate that the 
proposed method has a higher level prediction accuracy and direction 
prediction accuracy compared to other forecasting models. 

We also present a boxplot as in Figure 6 to show the degree of dispersion 
of the absolute prediction error ˆ| |i iY Y− . It can be noticed that, if we 

consider the factors such as the number of outliers and the value of the 
quartile, the model proposed in this paper outperforms other models with 
respect to the statistic ˆ| |i iY Y− . 
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Fig. 6. The boxplot of the absolute forecast errors by our base Model and Models 1-5. 

 
 
 

4. Conclusion 

Precise and timely short-term power load forecasting is critical for 
accurate decision making by most power industry practitioners, researchers 
and policy makers. Numerous power load prediction models have been 
extensively developed in recent years. However, the unexpected COVID-19 
outbreak caused unprecedented economic and social disruptions, which 
produced negative effects on the uncertainty of electricity consumption. Then 
more novel durable forecasting methods are being explored. Generally, the 
prediction accuracy is closely related to the quality of the datasets and 
forecasting model. In this paper, we develop a novel hybrid forecasting 
method which are effective approaches to data decomposition, feature 
selection, holiday historical load sequence selection, and parameter 
optimization. We aim to develop a combined hybrid forecasting method for 
power load. To improve the forecasting performance, we use the EMD 
method to decompose original power load data and apply the mRMR method 
to select the features that are highly correlated with the prediction variable for 
the IMFs and residual decomposed by the EMD method, which results in no 
redundancy. Then, we select the historical data sequence of a holiday on 
which we process through the WGRP algorithm. Finally, we use the PSO 
algorithm with second-order oscillating and repulsion factor to optimize the 
parameters of SVM prediction model for a further improving the prediction 
accuracy. The results of forecasting the power load using a real electricity 
market dataset in Singapore are compared with the mRMR-WGRP- 
SecRPSO-SVM model, the mRMR-WGRP-BPNN model, the 
EMD-mRMR-WGRP-BPNN model, the mRMR-WGRP-GA-SVM model, 
and the EMD-mRMR-WGRP-GA-SVM methods.  

The following conclusions are obtained via the practical verification of 
Singapore electricity market. First, the prediction after decomposing the 
original data with the EMD method can reduce the computational complexity 
and also improve the prediction accuracy. Accordingly, the proposed hybrid 
method has the potential to conduct power load forecasting. Secondly, ceteris 
paribus, the prediction result from the optimized SVM model is more accurate 
than that from the BPNN. In particular, parameter optimization and setting the 
key parameter values are the first steps to investigate and enhance the 
prediction performance. Thirdly, ceteris paribus, the prediction error 
generated by the SVM model with the improved PSO algorithm is smaller 
than that by the SVM model with the GA algorithm. Fourthly, the proposed 
hybrid forecasting method is superior to other forecasting methods according 
to their level and direction prediction accuracies. In conclusion, the proposed 
hybrid forecasting method is accurate, effective, and feasible prediction 
method.   

According to the above conclusions, it can be seen that the proposed 
hybrid power load forecasting method with intelligent data process and 
parameter optimization is accurate and effective, and has practical application 

value and operability. However, when we use the improved PSO algorithm 
for the SVM parameter optimization, the computation time would be long. 
Therefore, in the future, we will continue to improve the PSO algorithm to 
reduce the calculation time. Moreover, the EMD method is improved to 
enhance the accuracy of data decomposition, so as to further improve the 
accuracy of load prediction. In addition, the inclusion of carbon emission as 
an impact factor in the future electricity load forecasting studies could be 
considered, which may make the load forecasting more relevant to the current 
social changes. 
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