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Abstract

We investigate an on-demand ridesharing system consisting of a ridesharing platform, multiple drivers,

and multiple passengers. We begin by analyzing a choice problem for a passenger who chooses either

a ridesharing or taxi service and also studying a choice problem for a driver who decides on whether or

not to serve. Then, we obtain the ridesharing platform’s optimal service price charged to passengers

and its optimal wage paid to drivers. We perform sensitivity analysis to draw a number of managerial

implications. An increase in the number of potential passengers (drivers) usually results in an increase

(a decrease) in both the price and wage. We also find that the platform is better off when both the

number of passengers and the number of drivers are higher, and an increase in the passengers’mental

costs for the taxi service can help increase the platform’s profit. Moreover, the dynamic pricing

strategy can not only improve the platform’s profit but also generate larger surpluses to passengers

and drivers.
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1 Introduction

In practice, many persons need delivery services (e.g., food delivery and passenger transport) but

cannot confirm an exact start time point for the services in advance. As a result, these persons

expect to obtain instant services which are available immediately when they need. Such demands

cannot be satisfied by extant online booking platforms where customers have to make appointments

with service providers prior to obtaining delivery services. To meet the increasing demands for instant

delivery services, a number of online platforms have appeared in recent years to provide on-demand

services that allow service demand and supply to quickly match one another. As Taylor (2018)

summarized, popular on-demand services include restaurant food delivery (e.g., Caviar, DoorDash,

and Meituan), consumer goods delivery (e.g., UberRush and Go-Mart), and taxi-style transportation

(e.g., Lyft, Uber, and Didi). Since more and more on-demand platforms serve customers with a

need for immediate services, one may observe the emergence of the “on-demand economy”in today’s

society (Williams 2015).

In this paper, we consider an on-demand ridesharing platform that provides passengers with

instant transport service. Hereafter, we simply call the platform a “ridesharing platform,”which, as

in practice, does not employ any staff to provide driving services but instead allows qualified drivers

to register at the platform and deliver services only at times when they are willing to serve (Chan and

Shaheen 2012). Since the registered drivers can independently decide on whether and when to work,

the business model operated by the platform is viewed as a “sharing” one. This is different from

traditional business models in which a firm can schedule employees’work times and determine salary

payments to employees (Taylor 2018). The ridesharing platform provides an App that is available

for ridesharing drivers to download. Every ridesharing driver uses his or her own vehicle to serve

passengers. If a driver decides to serve at a time point, then the driver turns on the App to indicate

his or her availability. Otherwise, the driver turns off the App and joins another activity that could be

more important to the driver than the on-demand transport service. Since the ridesharing platform

does not enforce any job assignment to any registered driver but operates in a very flexible mode, each

driver can treat the ridesharing service as a “part-time”job that does not influence the driver’s other

business activities. This operational model provides qualified drivers with a new way to improve the

utilization of their times and vehicle resources, thereby having attracted many drivers to register at

ridesharing platforms and serve a large number of passengers. For instance, in 2017, the number of

daily ridesharing transactions completed at the Didi Express had been 25 millions in China; for more

information, see the Didi Chuxing Corporate Citizenship Report (2017).

In the ridesharing model, the platform needs to pay a wage to each registered driver who has

completed a ridesharing service, and passengers make their payments for ridesharing services to the

platform rather than the drivers. The wage is based on the trip length of passenger(s) served by

the driver and the unit wage. That is, the platform usually calculates the wage as a unit (per

kilometer) wage times the trip length completed in the ridesharing service. Naturally, the platform

should make a decision on the unit wage. When the unit wage increases, more registered drivers

may have an incentive to deliver transport service, more passengers can enjoy the services, and the
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platform may achieve a higher revenue. However, increasing the platform’s payments to drivers

reduces the platform’s unit profit. When the unit wage decreases, less drivers are willing to serve

and some passengers’requests may be lost, which may reduce the platform’s revenue although the

platform bears a lower wage payment. Since the unit wage plays an important role in the platform’s

ridesharing model, it behooves us to find an optimal unit wage for the platform.

Since the platform incurs an operational cost and makes wage payments to drivers, it should charge

the ridesharing price to passengers for profitability. A higher price can increase the platform’s per

transaction revenue but is likely to discourage passengers from requesting ridesharing services (due

to the competition of traditional taxi services), whereas a lower price can entice passengers to take

ridesharing services but reduces the platform’s per transaction revenue. Therefore, it is important for

the platform to charge an optimal price. In this paper, we jointly investigate the platform’s optimal

decisions on both the unit wage and the service price. In practice, each passenger can choose either a

ridesharing service or a taxi service, and each ridesharing driver can decide to either serve passengers

or indicate his or her unavailability. Accordingly, we begin by analyzing a passenger’s and a driver’s

choice models to find the expected number of passengers for ridesharing services and the expected

number of ridesharing drivers available for a passenger’s request, respectively. Using the analytic

results derived from our choice models, we construct the platform’s profit function and maximize it

to obtain its optimal unit wage and price. In addition, we compute the optimal payout ratio, which

is defined as the ratio of the wage to the price and can be used to measure the platform’s capability

of profiting from the ridesharing service.

Since March 2016, the Didi Express platform has adopted a new operational model (i.e., an

order-assigning model), under which, for a new transport request, the platform assigns the order to

the nearest driver whose status on the App is “available.” The driver should not reject the order

assignment; otherwise, the platform lowers the driver’s service score, which then reduces the driver’s

chance to obtain new orders in future. Nonetheless, a driver may be assigned to serve a passenger in

a location far away from the driver, if there is no other driver closer to the passenger. This induces

the driver to necessarily estimate his expected financial benefit prior to deciding to turn its App

on or off. Therefore, the driver’s decision on whether or not to serve is important and thus worth

investigating. Accordingly, we perform a choice analysis for ridesharing drivers to provide an one-time

ridesharing service, which is different from Taylor (2018) and Bai et al. (2019) but somewhat similar

to Cachon, Daniels, and Lobel (2017). In this regard, the driver’s waiting time only influences his

chance to obtain financial benefits from other sources and thus, it can be viewed as a part of the

driver’s opportunity cost.

Different cities differ in urban size, petrol price, taxi service price, population density, residents’

average income as well as their information technology qualifications and habits, etc. Therefore, the

ridesharing platform may set different prices and wages when it serves different cities. An inter-

esting question is about how the factors characterizing different service environments influence the

platform’s optimal decisions and payout ratio as well as its maximum profit. Therefore, we perform

sensitivity analysis to explore the impact of some important parameters on the ridesharing platform.

These important parameters include passengers’average trip distance, ridesharing drivers’unit (per
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kilometer) running cost, passengers’mental cost from taking a taxi, unit (per kilometer) distance

fare for the taxi service, the parameters for ridesharing drivers’ opportunity gains when they are

unavailable for ridesharing service, the number of total potential passengers, and the number of total

potential drivers. From our sensitivity analysis we draw a number of managerial implications.

In a city, the number of potential passengers and unit running cost of ridesharing drivers usually

vary from non-peak times to peak times. Thus, should the ridesharing platform adopt a dynamic

pricing strategy (by setting a higher price and wage in peak times) or use a static pricing strategy (by

setting a price and wage that do not differ in non-peak and peak times)? Most ridesharing platforms

prefer to adopt the dynamic pricing strategy, whereas some consumer protection organizations have

argued that increasing the service price may decrease consumers’interests in the ridesharing service.

Accordingly, we perform numerical experiments and reveal that the dynamic pricing strategy not only

results in a higher profit to the ridesharing platform but also generates higher surpluses to passengers

and drivers. That is, the dynamic pricing strategy is basically better than the static pricing strategy

for all the stakeholders.

The remainder of this paper is organized as follows. In Section 2, we review the existing relevant

papers. In Section 3, we conduct choice analyses for passengers and drivers. In Section 4, we construct

the ridesharing platform’s profit function, and maximize it to find optimal decisions. We also calculate

the optimal payout ratio and maximum profit for the platform. In Section 5 we perform sensitivity

analysis to expose managerial implications. Section 6 presents numerical experiments to address the

question of whether or not the dynamic pricing strategy is better than the static one. This paper ends

with a summary of managerial insights in Section 7. In addition, we relegate the proofs of a lemma

and all theorems to Appendix A, where the proofs are given in order that they appear in the main

body of our paper.

2 Literature Review

Our paper belongs to a rapidly growing research stream that is concerned with online ridesharing

platforms’operational issues arising in the on-demand economy. Chan and Shaheen (2012) reviewed

the history of ridesharing-related operations, found that mobile phone and Internet technology had

greatly promoted ridesharing, and also revealed that relevant research activities are needed to better

understand the impact of ridesharing on infrastructure, congestion, and energy/emissions. Furuhata

et al. (2013) presented a framework that can help identify key challenges in the widespread use

of ridesharing and can thus foster the development of effective ridesharing mechanisms that would

overcome those challenges and promote massification.

2.1 Ridesharing Operations with No On-Demand (Scheduled Demand) Mode

We review some representative publications regarding ridesharing operations that do not use the on-

demand mode but instead the scheduled demand mode. Agatz et al. (2011) developed optimization-

based approaches to find a match between drivers and passengers, which can minimize the system-wide

vehicle miles incurred by system users. The authors also performed a simulation study based on the

3



2008 travel demand data obtained from the metropolitan Atlanta, and showed that the use of sophis-

ticated optimization methods instead of simple greedy matching rules can substantially improve the

performance of ridesharing systems. Zha, Yin, and Yang (2016) analyzed a ride-sourcing market using

an aggregate model where the match between passengers and drivers are captured by an exogenous

matching function. They found that without any regulatory intervention, a monopoly ride-sourcing

platform can maximize the profit jointly achieved together with its drivers. Stiglic et al. (2016)

conducted an extensive computational study to quantify the impact of different types of participants’

flexibility on the performance of a single-driver, single-rider ridesharing system. They showed that

small increases in flexibility, e.g., in terms of desired departure time or maximum detour time, can

significantly increase the expected matching rate, especially when the number of trip announcements

in the system is small. Stiglic et al. (2016) provided a basis for the design of information campaigns

and incentives schemes, with an aim to increase the performance and success of ridesharing systems.

In the above publications, the ridesharing platform does not implement any on-demand mode but a

scheduled demand mode. As a result, passengers and drivers put up their itineraries, and the platform

should immediately assign a driver to each passenger. The passengers who cannot immediately obtain

a driver’s service will choose other transport tools such as taxi and bus. Because the platform cannot

modify the service price and the wage for a special moment with ex-ante observing the unbalance

between demand and supply, the pricing analysis in the on-demand mode is more complex than that

in the scheduled demand mode.

2.2 On-Demand Ridesharing Operations with No Pricing Decisions

Recent developments of various on-demand service platforms such as Uber and DoorDash (Kokalitcheva

2015) have motivated researchers to explore various ridesharing operational issues in the on-demand

mode. We first review several empirical study-related publications. Cramer and Krueger (2016) ex-

amined the effi ciency of ridesharing services vis-à-vis taxis by comparing the capacity utilization rate

of UberX drivers with that of traditional taxi drivers in five cities. The authors found that UberX

drivers had spent a significantly higher fraction of their times, and had driven a substantially higher

share of miles with passenger(s) in their cars than what taxi drivers did. Four factors that were

likely to contribute to the higher capacity utilization rate of UberX drivers were identified as follows:

(i) UberX’s more effi cient driver-passenger matching technology, (ii) the larger scale of UberX than

taxi companies, (iii) ineffi cient taxi regulations, and (iv) UberX’s flexible labor supply model and

surge pricing model that can better match supply with demand throughout the day. To address

the debates on social justice, equity, and improvements of taxi service, Leng et al. (2016) collected

37-day trip data of over 9000 taxis in Beijing to study the influence of the promotion battle between

Didi and Kuaidadi, which are two leading ridesharing platforms in China. The paper quantitatively

demonstrated how several important service indices (e.g., travelling distances and idle time lengths)

of taxi drivers had been changed.

In a publication that delivers analytic results for on-demand, ridesharing operations, Gabel (2016)

studied the persistence of market power in the taxi industry, and found that despite large scale entry

and low barriers to entry, monopoly power persists, which illustrates that new technologies may not
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quickly eviscerate monopoly power, and Uber experiences a few risks in his entry into the taxi industry.

Shi and Lian (2016) developed a doubled queueing model to study a passenger—taxi problem, analyzed

the strategic behavior of passengers in both observable and unobservable cases, and investigated the

problem of how a government controls the number of taxis by subsidizing taxi or levying a tax on

taxi. Shi and Lian (2016) have contributed to the literature by maximizing the social welfare and

optimizing the allocation of taxi market resources.

The publications reviewed above have addressed various operational problems for on-demand

ridesharing platform. However, none of them investigates the ridesharing platform’s decision-making

problems for the service price and the unit wage, although Shi and Lian(2016) have investigated a

government’s optimal decision. Different with them, we focus on the optimal pricing policy for a

platform, which is important as mentioned in Section 1.

2.3 On-Demand Ridesharing Operations with Pricing Decisions

Banerjee, Riquelme, and Johari (2015) and Cachon, Daniels, and Lobel (2017) compared the impact

of static versus dynamic prices and wages. Assuming that the potential demand is constant, the real

demand depends on the service price, the availability of drivers is independent of wages, Banerjee,

Riquelme, and Johari (2015) revealed that the platform’s revenue under the static pricing strategy is

not inferior than that under the dynamic pricing strategy (under which the service price varies with

the number of available drivers), and the payout ratio is constant. Cachon, Daniels, and Lobel (2017)

assumed that the potential demand has two possible status (i.e., high and low), and the number of

potential drivers are constant. They showed that a surging price can bring a higher profit than a static

price (which is a constant price whenever the potential demand is high or low). The two publications

above did not provide any closed-form price function but mainly used numerical approaches to obtain

optimal decisions.

Zha, Yin, and Du (2017) proposed a time-expanded network to delineate possible work schedules

for drivers. Based on the proposed network, they provided formulations and algorithms for both

neoclassical and income targeting hypotheses to characterize the labor supply. The authors also built

a bi-level programming framework, and proved that the dynamic pricing policy can generate a higher

revenue to the platform and drivers than the static pricing policy. Taylor (2018) investigated the

impact of uncertainty and time-delay sensitiveness on the service price and the unit wage, and drew

the following insights. First, the delay sensitivity increases the optimal price when passenger valuation

uncertainty is moderate. Secondly, the delay sensitivity decreases the optimal unit wage when the

uncertainty in drivers’ opportunity cost is high and their expected opportunity cost is moderate.

Thirdly, when drivers’opportunity cost is uncertain, the independence among drivers decreases the

service price. Fourthly, under passenger valuation uncertainty, the independence increases the service

price if and only if the valuation uncertainty is suffi ciently high. Although Zha, Yin, and Du (2017)

and Taylor (2018) considered the impact of waiting time on the real request of passengers, they could

not find any closed-form price. In fact, they mainly aimed to prove that surging pricing strategy is

better than static pricing strategy.

Yu et al. (2017) developed a two-period dynamic game that captures the strategic interactions of
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multiple stakeholders, and found that the on-demand ride service platform can make the traditional

taxi industry out of the market if there is no government regulation. Besbes et al.(2018) and Afeche et

al.(2018) studied a spatial price problem, and they derived a price function in quasi-closed form. Bes-

bes et al.(2018) showed that the platform should set differential prices to induce drivers’movements

to a region where is beneficial to the platform; and Afeche et al.(2018) exposed that strategically

rejecting a demand in a low-demand location may be optimal, because drivers usually aim at serving

a high demand location. Although the above three publications have presented optimal prices, they

did not show how the price, wage, and payout-ratio change with the outer environment (e.g., average

trip distance and taxi service price).

Another recent publication related to our paper was proposed by Bai et al. (2019), who analyzed

the on-demand service platform by using a queueing model with endogenous supply and endogenous

demand. To coordinate endogenous demand with endogenous supply, they used the steady state

performance in equilibrium to characterize the optimal service price, optimal unit wage, and optimal

payout ratio. The authors found that the increment of potential passenger demand can raise the

optimal prices. Our paper differs from Bai et al. (2019) because of the following facts. First, similar

to the difference between ours and Taylor (2018), Bai et al. (2019) considered a queueing system

to study the decision problem in a time period, whereas we investigated the decision problem when

passengers’orders can be assigned in a short time, as mentioned in Section 1. Secondly, Bai et al.

(2019) did not consider the competition from the taxi service, whereas our paper includes a passenger’s

choice model to character the competition between taxi and on-demand ridesharing services. Thirdly,

Bai et al. (2019) did not involve ridesharing drivers’running costs but only involved their opportunity

costs. Different with them, we consider both running costs and opportunity costs. As a result of the

second and third differences, we can perform sensitivity for some parameters to study their impacts

on optimal decisions.

Among all relevant publications, Bai et al. (2019) and Taylor (2018) constructed queueing models

to find the optimal price and the optimal wage, and computed the optimal payout ratio. Different

from these two papers, we do not use queueing theory but investigate the choice models for both

passengers and drivers. We justify our approach as follows: on a number of occasions, when there is

no nearby driver immediately available to serve a passenger who requests the ridesharing service, the

passenger is unlikely to stick to the ridesharing service any longer but makes his option open to any

other transportation tool. That is, if another transportation tool (e.g., a transient taxi) appears prior

to a ridesharing vehicle, then the passenger does not insist on waiting for the ridesharing service but

chooses to take the available transportation tool. For these occasions, the passenger does not stay on

any queue for the ridesharing service but accepts another transportation choice, which means that

the choice model is suitable for some cases. In fact, the taxi service providers are still playing an

important role in any local transport system, and are thus competing with the ridesharing platform

for passengers. This indicates the importance of the choice analysis for passengers.
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3 The Choice Models for Passengers and Drivers

An online platform with nd registered drivers is serving a certain area in which there are np potential

passengers. When a passenger needs a driving service, he or she may call for an on-demand ride-

sharing service at the online platform or may request a taxi service. The number of potential passen-

gers for the platform is dependent on the popularity of electronic business and the service promotion

of the platform in this area. If the residents are more likely to choose online service and/or the

platform increases its promotion effort to attract passengers, then the value of np is larger; otherwise,

the value of np is smaller. In a busy time period, there is usually a large number of passengers who

need a trip service, whereas in other time periods, there are less potential passengers.

A paradigm best serving to illustrate the platform is the Didi, which has been providing passengers

with the Didi Express service. As in practice, the platform needs to determine base fare pr0 and

distance fare pr1. Base fare pr0 denotes the fare that a passenger pays to the platform when his/her

trip distance is no longer than base distance L0, and distance fare pr1 represents the fare that a

passenger pays to the platform for each extra kilometer service beyond base distance L0. The platform

also needs to determine base wage w0 and distance wage w1. Base wage w0 means the payment that

the platform makes to a registered driver who successfully completes a ride-sharing service with a

trip distance no longer than base distance L0, and distance wage w1 is the per kilometer payment

that the platform makes to the driver for an extra distance longer than base distance L0. In addition,

a number of taxi drivers compete with the platform for passengers, and they also charge passengers

base fare pt0 when a trip distance is no longer than base distance L0; and when distance is longer

than base distance L0, they will charge distance fare pt1 for each extra kilometer. We note that taxi

providers and ridesharing platforms usually set an identical base distance, for example, L0 = 3km, in

Hangzhou, China. We consider a single platform, similar to Banerjee, Riquelme, and Johari (2015),

Cachon, Daniels, and Lobel (2017), and Taylor (2018). In addition to the express service above,

the Didi platform also provides the Special Car and Carpooling services. However, we note that the

actual demands for those services are significantly small as against that for the Didi Express service.

Accordingly, in this paper we do not consider the competition between the express service and any

other service by the Didi.

To simplify the on-demand ridesharing analysis, Banerjee, Riquelme, and Johari (2015), Cachon,

Daniels, and Lobel (2017) and Taylor (2018) set a distance-independent price; that is, they assumed

that all trip distances are equal to 1. Moreover, Bai et al. (2019) supposed that all passengers demand

an identical trip distance. Similar to extant relevant publications, we denote each passenger’s trip

distance by L. Intuitively, the value of L is greater in a larger city, whereas the value of L is less in

a smaller city.

3.1 The Choice Model for a Passenger

When a passenger plans to request a driving service for a trip of distance L, the passenger needs

to decide on whether to call for a ridesharing service at the platform or to look for a taxi. The

passenger’s choice model is thus with respect to the comparison between his or her expense for the

7



platform ridesharing service and that for the taxi service. We can analyze the choice model to derive

the condition under which the passenger prefers the platform’s ridesharing service to the taxi service.

When the passenger takes the ridesharing service from the platform, he or she incurs the total cost

Cr ≡ pr0 + pr1 × (L− L0), where pr0 and pr1 are base fare and distance fare, respectively, as defined

previously.

Prior to computing the passenger’s expense for the taxi service, we discuss the advantages of

the platform service as against the taxi service. Because the platform can provide passengers with

the information regarding exact positions of available cars, it can largely reduce the uncertainty of

passengers’waiting times. Moreover, when a registered driver at the platform finishes a ridesharing

service for a passenger, the passenger can comment on the driver’s performance, which helps maintain

and improve the service quality of registered drivers. This is also a major reason why the registered

drivers usually appear to be patient and friendly when they serve passengers. When a passenger plans

to take a taxi, he or she has no knowledge about when an available taxi appears and may spend a

long time for looking for a taxi. Moreover, a taxi driver may somehow refuse to serve a passenger or

may make a detour to increase the passenger’s expense (see, http://cq.people.com.cn/n2/2017/

1229/c365405-31086483.html). Therefore, the passenger may have some unhappiness from taking

the taxi, which is called a “mental cost”θ (Burstein 2018).

However, a number of passengers may dislike the ridesharing service but prefer to take the taxi

service, mainly because there are several sexual assault news about the Didi and the Uber, and some

past passengers have reported their diffi culties in using the Didi’s App. Accordingly, mental cost θ can

be either positive or negative. A passenger’s negative mental cost means the passenger’s happiness

with the taxi service. For an application of the mental cost in the operations management literature,

see, for example, Feng and Zhang’s publication (2017). We can obtain the value/distribution of the

mental cost by conducting a survey of passengers, in which each passenger indicates the monetary

value of his or her utility of taking a taxi.

Since passengers may differ in their sensitivity to waiting time and preference on the taxi service,

they may possess different values of mental cost θ, which is consistent with Moreno and Terwiesch’s

argument (2013) that buyers are usually heterogeneous in a bid market. Similar to Bai et al. (2019)

who assumed that customers’valuations on a service are uniformly distributed in the range [0, 1], we

consider mental cost θ as an uniformly-distributed variable in the range [θ, θ], where θ and θ denote

the minimum and maximum mental costs incurred by a passenger from the taxi service, respectively.

Since some passengers may prefer the ridesharing service to the taxi service, the value of θ should be

positive, i.e., θ > 0. However, the other passengers may prefer to choose the traditional taxi service,

which implies that the value of θ should be negative, i.e., θ < 0. As a result, the mean of θ is (θ+θ)/2,

which may not be equal to 0. In this paper, we do not simply assume that θ = 1 and θ = −1, because

we expect to examine the impacts of θ and θ on the platform’s decisions and performance, thereby

learning how the platform responds to different types of passenger valuations on the taxi service.

Except for the mental cost, the passenger should pay the service fare pt0 + pt1(L−L0) to the taxi

driver. We thus calculate his/her total cost as Ct ≡ pt0 + pt1 × (L − L0) + θ, where pt0 and pt1 are

base and distance fares for taxi service. If Cr ≤ Ct, then the passenger should choose the platform’s
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ridesharing service; otherwise, if Cr > Ct, then the passenger prefers to take a taxi. Therefore, the

ridesharing is a preferable choice when mental cost θ satisfies the following condition:

θ ≥ (pr0 − pt0) + (pr1 − pt1)× (L− L0). (1)

Since there are np potential passengers, we can compute the expected number of passengers who

intend to choose the platform’s ridesharing service as

Qp = np

∫ θ

(pr0−pt0)+(pr1−pt1)×(L−L0)
g(θ)dθ =

np[θ − (pr0 − pt0)− (pr1 − pt1)× (L− L0)]

θ − θ
. (2)

Naturally, Qp is no greater than np. Accordingly, the distance fare pr1 should be determined such

that pr1 ≥ pt1 + [θ − (pr0 − pt0)] /(L− L0).

3.2 The Choice Model for a Ridesharing Driver

In the area where the platform provides its ridesharing service, there are nd registered drivers who are

free to turn on the platform’s App to indicate their availability or turn off the App to be unavailable

for the ridesharing service. As in practice, the platform cannot “force” any driver to provide a

ridesharing service. That is, a driver may be available in a certain time but may be unavailable

in another time. Since a driver’s unavailability usually occurs when the driver is more interested

in another business matter than the ridesharing service, we use parameter γ to denote the driver’s

opportunity gain resulting from his or her unavailability to serve any ridesharing passenger. Hereafter,

we simply call γ the driver’s “opportunity gain from unavailability.”If the value of γ is small, i.e., the

driver cannot enjoy a satisfactory gain from any other business, then the driver has a high incentive

to deliver the ridesharing service. Otherwise, if the value of γ is large, then the driver has a low

incentive to serve passengers with the ridesharing service. This implies that the driver’s opportunity

gain from unavailability may vary in different times.

The driver’s opportunity cost is irrelevant with any service request, similar to Cachon, Daniels,

and Lobel (2017) who argued that all drivers are homogenous, and their opportunity gains satisfy

an identical probability distribution. Bai et al. (2019) assumed that the drivers’reservation rates

are uniformly distributed in [0, 1]. In our analysis, we treat parameter γ as a uniformly-distributed

variable in the range [γ1−γ2, γ1 +γ2], where γ1 is the mean of the driver’s opportunity gains, and γ2

is the difference between the mean and the maximum (or, the minimum) value. Therefore, γ1 + γ2

and γ1 − γ2 represent the maximum and minimum of the driver’s opportunity gains, respectively.

Since γ1 − γ2 > 0, γ1 and γ2 are given such that γ1 > γ2. The probability distribution function

(p.d.f.) of parameter γ is ϕ(γ) = 1/(2γ2).

When the driver turns on the platform’s app to indicate his or her availability, there is neither

an income nor a cost if the platform does not assign any order to the driver. For this case, there is

no difference between the driver’s availability and unavailability. However, if the driver receives an

order, then he or she has an income Id = w0 + w1(L − L0) and incurs a running cost CTd = CvdL,

where Cvd denotes the unit (per kilometer) running cost including oil consumption, car depreciation,
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and others. Apparently, for each taxi or ridesharing driver, the service fare charged to a passenger

should be greater than the unit running cost incurred by the driver, i.e., pr1, pt1 > Cvd . We compute

the ridesharing driver’s net income as Īd ≡ Id − CTd = w0 + w1(L − L0) − CvdL. If net income Īd is
smaller than a driver’s opportunity gain (i.e., γ), then the driver turns off the app to indicate his

or her unavailability. Therefore, the driver is willing to deliver the ridesharing service if and only

if γ ≤ Īd. This means that, in a certain time, the probability for the driver to willingly serve is

Pr(γ ≤ Īd) =
∫ Īd
γ1−γ2

ϕ(γ)dγ = [w0 + w1(L− L0)− CvdL− (γ1 − γ2)]/(2γ2).

Since all registered drivers are homogenous in their opportunity gains from unavailability, we can

view Pr(γ ≤ Īd) as the percentage of registered drivers who are available to deliver the ridesharing

service when a passenger request arrives. In a certain time, the expected number of available drivers

at the platform is

Qd = nd Pr(γ ≤ Īd) =
nd[w0 + w1(L− L0)− CvdL− (γ1 − γ2)]

2γ2

(3)

As Qd is naturally no greater than nd, wage w should be determined such that w0 + w1(L − L0) ≤
γ1 + γ2 + CvdL.

Lemma 1 If and only if each passenger’s maximum mental cost for taxi service θ is no less than

θ1 ≡ (γ1 − γ2 + CvdL)− [pt0 + pt1(L− L0)], the platform can obtain a profit and has its incentive to

operate the ridesharing service.

We learn from Lemma 1 that if inhabitants in a city are more likely to take the taxi service (i.e., θ

is smaller) and the ridesharing drivers are more likely to take break in their free times rather than to

earn money by providing services (i.e., γ1−γ2 is larger), then the chance for the ridesharing platform

to obtain a profit in such a city is smaller.

4 The Platform’s Optimal Pricing Decisions

In this section, we compute the platform’s optimal pricing decisions that maximize its profit. The

platform’s profit π(pr0, pr1, w0, w1) is calculated as the service fare paid by passengers to the platform

minus total wages that the platform pays to all registered drivers. A service delivery is successful

if and only if there is an available driver and a passenger requesting the ridesharing service. That

is, the number of successful services is the minimum of the number of available drivers and the

number of passengers. Recalling from Section 3 that there are Qp passengers and Qd drivers, we

obtain the platform’s profit as π(pr0, pr1, w0, w1) = min(Qp, Qd)[(pr0 − w0) + (pr1 − w1) (L− L0)].

In order to find optimal decisions p∗r0, p
∗
r1, w

∗
0 and w

∗
1, we need to solve the following constrained

optimization problem: maxπ(pr0, pr1, w0, w1), subject to pr1 ≥ pt1 + [θ − (pr0 − pt0)] / (L− L0) and

w0 + w1(L− L0) ≤ γ1 + γ2 + CvdL, where the two constraints are discussed in Section 3.
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Theorem 1 The platform’s optimal base fare and base wage are

p∗r0 =
nd
(
θ − θ

) [(
θ + pt0

)
+ (γ1 − γ2 + CvdL0)

]
+ 4npγ2

(
θ + pt0

)
2nd

(
θ − θ

)
+ 4npγ2

, (4)

and

w∗0 = (γ1 − γ2 + CvdL0) +
npγ2

[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

]
nd
(
θ − θ

)
+ 2npγ2

, (5)

respectively, and optimal distance fare and wage are obtained as follows:

1. If L ≤ L̂, where

L̂ = L0 +
2[nd

(
θ − θ

)
+ 2npγ2]

max(np, nd)
(
pt1 − Cvd

) − (θ + pt0
)
− (γ1 − γ2 + CvdL0)

pt1 − Cvd
, (6)

then

p∗r1 = p̃r1 ≡
4npγ2pt1 + nd

(
θ − θ

)
(pt1 + Cvd )

2nd
(
θ − θ

)
+ 4npγ2

and w∗1 = w̃1 ≡ Cvd +
npγ2 (pt1 − Cvd )

nd
(
θ − θ

)
+ 2npγ2

. (7)

2. If L > L̂, then
p∗r1 ≡ pt1 +

[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

]
nd
(
θ − θ

)[
2nd

(
θ − θ

)
+ 4npγ2

]
(L− L0)

−
min(np, nd)

(
θ − θ

)
np (L− L0)

,

w∗1 ≡ Cvd −
npγ2

[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

]
[nd
(
θ − θ

)
+ 2npγ2](L− L0)

+
2 min(np, nd)γ2

nd (L− L0)
.

(8)

In the above theorem, we find that when trip distance L is suffi ciently small such that L ≤ L̂,

p∗r1 = p̃r1 and w∗1 = w̃1. However, when L > L̂, p̃r1 < pt1 +[θ − (pr0 − pt0)] / (L− L0) (while np ≤ nd)
or w0 + w1(L− L0) > γ1 + γ2 + CvdL (while np > nd), which means that the decision (p̃r1, w̃1) does

not satisfy the constraints pr1 ≥ pt1 +[θ − (pr0 − pt0)] / (L− L0) or w0 +w1(L−L0) ≤ γ1 +γ2 +CvdL.

Therefore, when trip distance L is greater than cutoff level L̂, we can derive the results for p∗r1 and

w∗1 as shown in (8). Since the platform receives pr0 +pr1 (L− L0) for each successful service but pays

w0 +w1 (L− L0) to each driver, we can view pr0 +pr1 (L− L0) and w0 +w1 (L− L0) as the platform’s

cash “inflow”and “outflow,”respectively. Defining payout ratio r as the ratio of w0 +w1 (L− L0) to

pr0 + pr1 (L− L0), we obtain the optimal payout ratio as r∗ ≡ [w∗0 +w∗1(L−L0)]/[p∗r0 + p∗r1(L−L0)],

which reflects the platform’s capability of profiting from the ridesharing service. A smaller value of r∗

implies that the platform is capable of achieving a higher profit. Moreover, the platform’s maximum

profit is π∗ ≡ π(p∗r0, p
∗
r1, w

∗
0, w

∗
1). Using Theorem 1, we compute r∗ and π∗ as shown below.

1. If L ≤ L̂, then


r∗ ≡
2nd

(
θ − θ

)
(γ1 − γ2 + CvdL) + 2npγ2

[(
θ + pt0

)
+ pt1 (L− L0) + (γ1 − γ2 + CvdL)

]
nd
(
θ − θ

) [(
θ + pt0

)
+ pt1 (L− L0) +

(
γ1 − γ2 + CvdL

)]
+ 4npγ2

[(
θ + pt0

)
+ pt1 (L− L0)

] ,
π∗ ≡

npnd
[(
θ + pt0

)
+ pt1 (L− L0)− (γ1 − γ2 + CvdL)

]2
4[nd

(
θ − θ

)
+ 2npγ2]

.

(9)
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2. If L > L̂, then


r∗ ≡ npnd [(γ1 − γ2) + CvdL] + 2npγ2min(np, nd)

npnd
[(
θ + pt0

)
+ pt1(L− L0)

]
−min(np, nd)nd

(
θ − θ

) ,
π∗ ≡ min(np, nd)

[(
θ + pt0

)
+ pt1(L− L0)− (γ1 − γ2 + CvdL)−

nd
(
θ − θ

)
+ 2npγ2

max(np, nd)

]
.

(10)

5 Sensitivity Analyses with Managerial Implications

We perform sensitivity analyses to investigate the impacts of some parameters on the ridesharing

platform’s optimal decisions p∗r1 and w
∗
1 as well as the platform’s maximum profit π∗ and optimal

payout ratio r∗. In our sensitivity analyses, the parameters include passengers’average trip distance

(i.e., L), ridesharing drivers’unit (per kilometer) running cost (i.e., Cvd ), the upper and lower bounds

of passengers’mental costs for taking the taxi service (i.e., θ and θ), distance fare for the taxi service

(i.e., pt1), the mean and dispersion of ridesharing drivers’opportunity gains when they are unavailable

for ridesharing service (i.e., γ1 and γ2), and the number of total potential passengers and drivers (i.e.,

np and nd).

5.1 Sensitivity Analysis of Trip Distance L

We begin by studying the influences of trip distance L on p∗r1, w
∗
1, r
∗, and π∗.

Theorem 2 We summarize the impacts of L on p∗r1, w
∗
1, r

∗ and π∗ as in Table 1, in which
θ2 ≡ θ +

2npγ2

nd
−
[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

]
max(np, nd)

2nd
,

C1 ≡
(γ1 − γ2 + CvdL0) pt1

θ + pt0
.

(11)

Conditions L ≤ L̂ L > L̂

p∗r1 −
{
↓ if θ ≤ θ2,
↑ if θ > θ2.

w∗1 −
{
↑ if θ ≤ θ2,
↓ if θ > θ2.

r∗
{
↓ if Cvd ≤ C1,
↑ if Cvd > C1.

↓

π∗ ↑ ↑

Table 1: The impacts of L on p∗r1, w
∗
1, r

∗, and π∗. Note that the marks “↑”, “−”and “↓”indicate
that optimal decisions p∗r1 and w

∗
1, optimal payout ratio r

∗, and maximum profit π∗ are “increasing
in,”“independent of,”and “decreasing in”passengers’trip distance L, respectively.

We learn from Theorem 2 that passengers’trip distance L has a small influence on the platform’s

distance fare. When L ≤ L̂, L has no influence on the distance fare because passengers’mental cost
θ and drivers’opportunity gain γ only affect base fare pr0 and wage w0. However, payout ratio r

and profit π depend on not only price (pr0, pr1) and wage (w0, w1) but also the number of served

passengers (Qp = Qd). Since both Qp and Qd are influenced by trip distance L, r∗ and π∗ are all
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dependent on L. Profit π∗ is increasing in L, i.e. when a city is larger, passengers’ trip distance

becomes longer and the ridesharing platform can obtain a higher profit. The impact of L on payout

ratio r∗ depends on drivers’running cost Cvd .

However, when L > L̂, trip distance L influences distance fare pr1 and wage w1, and such influences

depend on the lower bound of mental cost (i.e., θ). When passengers are less (more) likely to take

the taxi service, i.e. θ > θ2(θ ≤ θ2), then optimal distance fare p∗r1 is increasing (decreasing) in L but

wage w∗1 is decreasing (increasing) in L. For the case that L > L̂, a longer trip distance decreases

payout ratio r∗ but increases the platform’s profit π∗.

5.2 Sensitivity Analysis of Unit Running Cost Cv
d

We perform sensitivity analysis of ridesharing drivers’unit running cost Cvd to investigate its impacts

on optimal decisions p∗r1 and w
∗
1, optimal payout ratio r

∗, and the platform’s maximum profit π∗.

Theorem 3 The platform’s optimal distance wage w∗1 and optimal payout ratio r
∗ are both increasing

in Cvd , and the platform’s maximum profit π∗ is decreasing in Cvd . However, the impact of C
v
d on

the platform’s optimal distance fare p∗r1 depends on passengers’ trip distance L. Specifically, if L is

suffi ciently small such that L ≤ L̂, then p∗r1 is increasing in Cvd ; otherwise, if L > L̂, p∗r1 is decreasing

in Cvd .

We learn from Theorem 3 that the running cost plays a role in the platform’s optimal decisions.

Usually, in the area served by the platform, if the running cost is increased because, for example,

the gas oil is more costly or there is a traffi c jam, then the platform should increase the price and

wage simultaneously. Moreover, the optimal payout ratio becomes greater, which implies that the

increment of w∗1 is larger than that of p
∗
r1, viz., an increase in the running cost can always reduce the

platform’s profit. However, in a big city where L > L̂, an increase in the running cost may result in

a lower distance fare.

5.3 Sensitivity Analysis of Mental Cost θ

We perform sensitivity analyses of θ̄ and θ to examine the influences of the bounds of passengers’

mental cost θ on the platform.

Theorem 4 We summarize the impacts of θ and θ on p∗r1, w
∗
1, r

∗, and π∗ as in Table 2, in which

ξ1, ξ2, θ3, and θ4 are defined as the following



ξ1 ≡ (np − 2nd)nd
(
θ − θ

)2
+ 4npγ2 (np − 2nd)

(
θ − θ

)
+ 2n2pγ2[(θ + pt0)− (γ1 + 2γ2 + CvdL0)],

ξ2 ≡ 2npγ2 − nd [(θ + pt0)− (γ1 − γ2 + CvdL0)] ,

θ3 ≡ θ + {
√
2ndnpγ2[(θ + pt0)− (γ1 − γ2 + CvdL0)]− 4(npγ2)2 − 2npγ2}/nd,

θ4 ≡ θ +
np
nd

2γ2 −
√
ndγ2

[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

]
min(np, nd)

 .

(12)

13



θ θ

Conditions L ≤ L̂ L > L̂ L ≤ L̂ L > L̂
np ≤ nd np > nd

p∗r1 ↓
{
↑ if θ ≤ θ3,
↓ if θ > θ3.

{
↑ if ξ1 ≥ 0,
↓ if ξ1 < 0.

↑
{
↑ if θ ≤ θ4,
↓ if θ > θ4.

w∗1 ↓
{
↓ if ξ2 ≥ 0,
↑ if ξ2 < 0.

↑ ↓

r∗ ↓ − ↓ ↑ ↓
π∗ ↑ − ↑ ↑ ↑

Table 2: The impacts of θ̄ and θ on p∗r1, w
∗
1, r

∗, and π∗. Note that the marks “↑” , “−”and “↓”
indicate that optimal decisions p∗r1 and w

∗
1, optimal payout ratio r

∗, and maximum profit π∗ are
“increasing in,”“independent of,”and “decreasing in”passengers’maximum(minimum) mental cost
for taxi service θ̄(θ), respectively.

The above theorem shows that the upper and lower bounds of the mental cost usually have

opposite impacts on the platform’s decisions. When L ≤ L̂, an increase in the lower bound of the

mental cost (i.e., θ) mostly raises distance fare p∗r1 and wage w
∗
1. This means that if passengers are

more likely to decline the Taxi service or accept the ridesharing service, then the platform should raise

its distance fare and pays a higher distance wage to attract more drivers. As a result, the platform

can obtain a higher profit. An increase in the upper bound of the mental cost (i.e., θ) decreases

distance fare p∗r1 and wage w
∗
1 but increases profit π

∗. Thus, the popularization of the ridesharing

service is good to the platform. When L > L̂, an increase in lower bound θ always decreases (raises)

the platform’s payout ratio r∗(profit π∗), whereas payout ratio r∗ and profit π∗ do not vary with the

value of θ when np ≤ nd, which means upper bound θ impacts the platform only when np > nd.

5.4 Sensitivity Analyses of Unit Distance Fare for Taxi Service pt1

We conduct sensitivity analyses of pt1 to explore the influences of the unit distance fare for taxi service

on the platform’s optimal decisions, optimal payout ratio, and maximum profit.

Theorem 5 Both the platform’s optimal distance fare p∗r1 and its maximum profit π∗ are increasing

in pt1. However, the impacts of pt1 on the platform’s optimal unit distance wage w∗1 and payout ratio

r∗ depend on passengers’trip distance L. Specifically, if L is suffi ciently small, then w∗1 is increasing

in pt1 (when L ≤ L̂) and r∗ is increasing in pt1 (when L ≤ L ≡ (2npγ2)2/{[nd(θ − θ) + 2npγ2]2 +

[nd(θ − θ)]2}). Otherwise, w∗1 is independent of pt1 (when L > L̂) and r∗ is decreasing in pt1 (when

L > L).

We learn from Theorem 5 that an increase in taxi distance fare pt1 results in a greater rideshar-

ing distance fare p∗r1 and generates a higher profit for the platform; but, it cannot always raise the

ridesharing drivers’distance wage w∗1, which depends on passengers’trip distance. When L is suffi -

ciently long, the platform does not raise the wage as a response to a higher unit distance fare for the

taxi service.
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5.5 Sensitivity Analyses of Opportunity Gain γ

We recall from Section 3.2 that the drivers who are not available for ridesharing service can gain γ,

whose mean is γ1, and the difference between the mean and the maximum (minimum) is γ2. We

perform sensitive analyses of γ1 and γ2 to learn managerial implications regarding their impacts on

the platform’s operations.

Theorem 6 We summarize the impacts of γ1 and γ2 on p
∗
r1, w

∗
1, r

∗, and π∗ as in Table 2, in

which ξ3, ξ4, γ3, γ4, and γ5 are defined as

ξ3 ≡ 2np
{
nd
(
θ − θ

)
− 2np

[(
θ + pt0

)
+ pt1 (L− L0)

]}
γ22 − 4npnd

(
θ − θ

)
(γ1 + CvdL) γ2 + 2npnd

×
(
θ − θ

) [(
θ + pt0

)
+ pt1 (L− L0)− (γ1 + CvdL)

]2 − n2d (θ − θ)2 [(θ + pt0
)
+ pt1 (L− L0)

]
,

ξ4 ≡ (8np − 2nd)npγ2
[
npγ2 + nd

(
θ − θ

)]
+ npn

2
d

(
θ − θ

) {[
2
(
θ − θ

)
−
(
θ + pt0

)
+ (γ1 + CvdL0)

]}
,

γ3 ≡
[
1 + (γ1 + CvdL)−

(
θ + pt0

)
− pt1 (L− L0)

]
+
√[
1 + 2

(
γ1 + CvdL

)
− 2

(
θ + pt0

)
− 2pt1 (L− L0)

]
n2p + npnd

(
θ − θ

)
/np,

γ4 ≡
(
θ + pt0 − CvdL0

)
− nd

(
θ − θ

)
/ (2np) ,

γ5 ≡ {np
√
6npnd

(
θ − θ

) [(
θ + pt0

)
−
(
γ1 + CvdL0

)]
− 3n2d

(
θ − θ

)2 − 3nd (θ − θ)}/(6n2p) .

(13)

γ1 γ2

Conditions L ≤ L̂ L > L̂ L ≤ L̂ L > L̂
np ≤ nd np > nd

p∗r1 − ↓ ↑
{
↓ if γ1 ≤ γ4,
↑ if γ1 > γ4.

w∗1 − ↓ ↑
{
↑ if ξ4 ≥ 0,
↓ if ξ4 < 0.

{
↓ if γ2 ≤ γ5,
↑ if γ2 > γ5.

r∗ ↑ ↑
{
↑ if ξ3 ≥ 0,
↓ if ξ3 < 0.

{
↓ if np ≤ nd/2,
↑ if np > nd/2.

π∗ ↓ ↓
{
↑ if γ2 ≤ γ3,
↓ if γ2 > γ3.

{
↑ if np ≤ nd/2,
↓ if np > nd/2.

Table 3: The impacts of γ1 and γ2 on p
∗
r1, w

∗
1, r

∗, and π∗. Note that the marks “↑” , “−” and
“↓” indicate that optimal decisions p∗r1 and w∗1, optimal payout ratio r∗, and maximum profit π∗

are “increasing in,”“independent of,”and “decreasing in”mean(radius) of drivers’opportunity cost
γ1(γ2), respectively.

Theorem 6 indicates that ridesharing drivers’opportunity cost significantly influences the plat-

form’s performance. If, in a served region, the drivers can gain higher benefits from non-ridesharing

chances than the ridesharing service delivery (i.e. γ1 is larger), then the platform should respond by

making a higher payment ratio to the drivers for attracting them to willingly deliver the ridesharing

service. This increases the platform’s operational cost and then reduces its profit. However, the

mean of the opportunity cost has no impact on the distance fare and wage when the trip distance is

suffi ciently short.

The dispersion degree of the opportunity cost has complex influences on the optimal decision

and performance. Nonetheless, we find that, for a suffi ciently short distance, when the ridesharing
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drivers are more diverse in their opportunity gains, the platform should reduce distance wage and

also distance fare. However, the platform can profit from the increase of dispersion degree when it is

suffi ciently small.

5.6 Sensitivity Analyses of the Number of Total Potential Passengers np and
Drivers nd

We investigate how the market size in the served region affects the platform’s optimal decisions and

profit. We begin by studying the influences of the number of total potential passengers (i.e., np) and

the number of total potential drivers (i.e., nd) on optimal decisions p∗r1 and w
∗
1 as well as optimal

payout ratio r∗. Then, we explore the impacts of np and nd on the platform’s maximum profit π∗.

Theorem 7 We summarize the impacts of np and nd on p∗r1, w
∗
1, and r

∗ as in Table 4, in which ξ6

and ξ7 are defined as{
ξ6 ≡ 2[nd

(
θ − θ

)
+ 2npγ2]2 − n2

d

(
θ − θ

) [(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

]
,

ξ7 ≡
[
nd
(
θ − θ

)
+ 2npγ2

]2 − n2
pγ2

[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

]
.

(14)

np nd
Conditions L ≤ L̂ L > L̂ L ≤ L̂ L > L̂

np ≤ nd np > nd np ≤ nd np > nd

p∗r1 ↑ ↓
{
↑ if ξ7 ≥ 0,
↓ if ξ7 < 0.

↓ ↑
{
↓ if ξ7 ≥ 0,
↑ if ξ7 < 0.

w∗1 ↑
{
↑ if ξ6 ≥ 0,
↓ if ξ6 < 0.

↓ ↓
{
↓ if ξ6 ≥ 0,
↑ if ξ6 < 0.

↑

r∗ ↑ ↑ ↓ ↓ ↓ ↑

Table 4: The impacts of np and nd on p∗r1, w
∗
1 and r

∗. Note that the marks “↑”, “− ”and “↓”indicate
that optimal decisions p∗r1 and w

∗
1, and optimal payout ratio r

∗ are “increasing in,”“independent of,”
and “decreasing in”the number of total passengers np and drivers nd, respectively.

When L > L̂ and np > nd, all potential drivers have an incentive to provide ridesharing service;

and when L > L̂ and np ≤ nd, all potential passengers prefer the ridesharing service to the Taxi

service. This means that the scenario “L > L̂”rarely occurs in practice. Accordingly, we concentrate

our discussion to the scenario “L ≤ L̂”under which p∗r1 and w
∗
1 are increasing in np and they are

decreasing in nd.

In practice, the number of potential passengers varies over time. During the peak time interval

(e.g., 7:30-9:30), the number of potential passengers surges. Theorem 7 indicates that the platform

should raise the distance fare and distance wage simultaneously for the service in peak times when

L ≤ L̂. The number decreases during the non-peak time interval (e.g., 9:30-23:00). In order to attract
more passengers, the platform lowers the distance fare and also reduces the distance wage to offset

the loss. For example, in Hangzhou (the capital city of Zhejiang province, China), Didi (the largest

on-demand, ridesharing service platform in China) sets the distance fare as U2.2/km in non-peak
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times, and increases the distance fare to U2.5/km in peak times. To ensure the fixed payout ratio

80%, Didi also raises the distance wage in peak times.

The number of potential drivers varies over time. For example, in the weekends, drivers are usually

available for providing the ridesharing service on the platform. As Theorem 7 indicates, the distance

fare and distance wage should decrease simultaneously with the increase in the number of drivers

who turn on the App to indicate his/her willingness to serve while L ≤ L̂. For some cases in which,

for example, bad weather makes it diffi cult to drive, less drivers agree to provide the service, the

platform would respond by increasing the distance fare and distance wage simultaneously. Moreover,

the payout ratio also varies with the number of potential passengers and drivers. As usual, when

there are more potential passengers, drivers should receive a higher allocation of the total fare from

the platform. However, when there are more potential drivers, the platform should obtain a higher

share. In recent years, the platform encourages passengers to pay red packets to the ridesharing

drivers in bad weather conditions, which, in fact, is an obscure measure to raise the price and reduce

the platform’s share in the total fare.

Theorem 8 The platform’s maximum profit π∗ is an increasing, concave function of np and nd.

Moreover, the values of nd and np are complementary to each other in influencing π∗, as ∂2π∗/∂np∂nd ≥
0.

Theorem 8 indicates that the increases in both the number of potential passengers (i.e., a larger

value of np) and the number of potential drivers (i.e., a larger value of nd) can help increase the

platform’s profit, which reflects the fact that a higher market “demand”and/or “supply”are beneficial

to the platform. That is, in order to obtain a greater profit, the platform may need to entice more

passengers or more drivers or both.

We also learn from Theorem 8 that if we continuously increase either the number of potential

passengers or the number of drivers, the impact on profit may be weaker. This means that when

there are more potential passengers (or drivers) but the platform does not also entice more drivers (or

passengers), the profit does not increase as significantly as when the value of np (or nd) is suffi ciently

small. According to Theorem 8, we find that the values of np and nd are complementary to each

other when they affect the platform’s profit. The result occurs mainly because the platform’s profit

is dependent on the match between the market “demand”and “supply.”This also exposes the fact

that the platform should not only entice more passengers to use its App for the ridesharing service

but also induce more drivers to join the ridesharing service network.

6 Dynamic Pricing vs. Static Pricing Methods: Numerical Exper-

iments with Real Data-Based Parameter Estimates

We learn from Sections 3 and 5.6 that the total number of potential passengers (i.e., np) impacts

the platform’s optimal pricing decisions. The pricing strategy under which the ridesharing price and

the driver wage vary with np is called “dynamic pricing strategy,” and the pricing strategy under

which the ridesharing price and the driver’s wage are independent of the value of np is called “static
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pricing strategy.”Our analysis in Section 5 exposes that the platform’s optimal distance fare and

distance wage should vary when the values of some parameters– such as total potential demand,

the number of drivers, mental cost, running cost, and others– change, which implies that dynamic

pricing strategy could help the platform enjoy a higher profit than static pricing strategy. However,

many researchers and practitioners have commented that increasing the service price in peak hours is

unfair to passengers. Cachon, Daniels, and Lobel (2017) argued that whether or not dynamic pricing

strategy is better than static pricing strategy should base on not only the platform’s profit but also

passengers’surpluses. Accordingly, we perform numerical experiments to examine if dynamic pricing

strategy always generates more profits to the platform and also results in a higher surplus/profit to

passengers and drivers.

6.1 Estimated Values of Major Parameters

We begin by estimating the values of major parameters based on the real evidences provided by Bai

et al. (2019). To verify analytic findings regarding the impact of potential passenger demand on

the ridesharing service price, the wage to drivers, and the payout ratio, Bai et al. (2019) performed

numerical experiments using the data from the Didi in Hangzhou on September 7-13 and November

1-30 in 2015. Since Hangzhou is a large city in which many passengers may not easily access drivers,

Bai et al. (2019) divided the city into 20 zones, and found that in each zone, the average demand

request (i.e., passengers who choose the Didi Express rather than the Taxi service) rate is equal to 100

persons per hour in peak times. Bai et al. (2019) also estimated the average customer (i.e., potential

passengers) rate as 200 persons per hour in peak times; and the average demand request rate and

customer rate are 50 persons per hour and 100 persons per hour, respectively, in non-peak times.

Thus, in our numerical experiments, we can reasonably assume that the total number of potential

passengers np varies from 100 to 200.

Peak-times Non-peak times
average demand request rate 100 50
average customer rate 200 100

Table 5: The demand request rates and passenger rates.

Both Bai et al (2019) and Taylor (2018) revealed that the service capacity should be higher than

the potential demand in any ridesharing system. Following Bai et al (2019), we set the total number

of potential drivers nd to be 300, and the average trip length L = 6km. In peak and non-peak

times, drivers’running speeds are 19km/h and 26km/h, respectively. It is thereby reasonable for us

to assume that the running cost Cvd equals U1.3 per km in peak times and U1 per km in non-peak

times, respectively.

According to the pricing policies for Didi and Taxi in Hangzhou, we learn that L0 = 3km,

pt0 = U13, and pt1 = U2.6/km. After comparing the policies for Didi and those for Taxi in Hangzhou,

we find that Didi’s total price is a bit cheaper than Taxi in non-peak times but a little more expensive

than Taxi in peak times. Thus, we believe that some passengers are more likely to choose Didi rather
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than Taxi, and we set the upper bound of mental cost as U5, i.e., θ̄ = U5; and there are a few

passengers who are more likely to choose Taxi rather than Didi in non-peak times, and we thus set

θ = −U2. In addition, as a trip needs about 20 minutes on average, a ridesharing driver’s willingness

to complete a trip requires that the driver should earn at least U5 to U15, which means that the
mean of ridesharing drivers’opportunity gain (i.e., γ1) is U10, and the difference between the mean

and the maximum (or, the minimum) value (i.e., γ2) is U5. The parameters’values are summarized

as in Table 6.

Parameter nd L pt0 pt1 L0 θ̄ θ γ1 γ2

Value 300 6km U13 U2.6/km 3km U5 −U2 U10 U5

Table 6: The values of parameters.

6.2 Numerical Experiments

We use the estimated parameter values in Section 6.1 to compute the ridesharing platform’s static

and dynamic pricing decisions, and compare the profits under the two pricing strategies to find

whether or not dynamic pricing strategy always results in a higher profit for the platform. This

can help address the question of whether the platform prefers the dynamic pricing strategy to the

static pricing strategy. In addition, we consider the impacts of the platform’s pricing strategy on the

passengers’and drivers’surpluses, which can help explore the externalities of the ridesharing service.

We start with the computation of the static service price and driver wage, using the formula in

Theorem 1 with np = 150 and Cvd = U1.15/km, which are obtained as the average of their values

in peak times and those in non-peak times. We find that under the optimal static pricing policy,

pS∗r0 = U15.21 and pS∗r1 = U2.18/km; and, under the optimal static wage policy, wS∗0 = U10.44 and

wS∗1 = U1.45/km.

6.2.1 Sensitivity Analyses for the Optimal Pricing Decisions and Profit

Using the parameter values given in Section 6.1, we perform numerical experiments to expose the

impacts of np and Cvd on the ridesharing platform’s optimal (dynamic) pricing decisions (i.e., p
∗
r1 and

w∗1) and its profit in the dynamic pricing setting (i.e., π
∗). For the sensitivity analyses, we increase

the value of np in steps of 10 from 100 to 200, and raise the value of Cvd in steps of 0.03 from 1 to 1.3.

For any combination of the values of np and Cvd , we use Theorem 1 to compute the corresponding

optimal distance fare p∗r1 and optimal distance wage w
∗
1, as shown in Figure 1.

We learn from Figure 1 that both the optimal distance fare p∗r1 and distance wage w
∗
1 are increasing

in both np and Cvd under the dynamic pricing strategy. This is consistent with Theorems 3 and 7. In

order to investigate whether the ridesharing platform prefers to adopt the dynamic pricing strategy or

to use the static pricing strategy, we compute the difference between the platform’s maximum profits

under the two strategies, as shown in Figure 2. Figure 2 indicates that the platform’s maximum profit

under the dynamic pricing strategy (i.e., πD∗) is always higher than that under the static pricing

strategy (i.e., πS∗), except for the case that np = 150 and Cvd = U1.15/km (for which πD∗ = πS∗).
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Figure 1: The impacts of np and Cvd on optimal distance price p
∗
r1 and optimal distance wage to

ridesharing drivers w∗1.

We also find that, on average, πD∗ is 12.3% higher than πS∗, which means that the dynamic pricing

strategy generates a higher profit to the platform than the static one. Moreover, we note from Figure

2 that, when the per kilometer running cost (i.e., Cvd ) is suffi ciently high (e.g., C
v
d = U1.30/km),

the dynamic pricing strategy helps the platform to obtain a greater extra profit– i.e., the difference

between the profit under the dynamic pricing strategy and that under the static strategy– from a

larger number of potential passengers (i.e., np). However, if the value of Cvd is suffi ciently small (e.g.,

Cvd = U1.00/km), then the dynamic pricing strategy generates a greater extra profit when the value of

np is smaller. This result shows that the dynamic pricing strategy makes a greater extra profit when

the number of potential passengers and the ridesharing drivers’per kilometer running cost increase

or decrease simultaneously. This is actually a prevailing issue in practice.

Figure 2: The differences between the platform’s maximum profits in the dynamic and static pricing
strategies, i.e., πD∗ − πS∗.

6.2.2 Sensitivity Analyses for the Passengers’and the Drivers’Surpluses

We perform numerical experiments to investigate how the ridesharing platform’s optimal pricing

strategy (i.e., its optimal pricing decisions under the dynamic/static pricing strategy) influences the

passengers’and the drivers’benefits in terms of their surpluses. This is important because our results
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can help the platform to observe the responses of passengers and drivers to its ridesharing operations.

We also perform our sensitivity analyses for the surpluses when the values of Cvd and np change.

Analysis of the Total Expected Surplus of Passengers We analyze the influence of the

ridesharing platform’s optimal pricing strategy on the passengers, starting with the computation

of a passenger’s surplus. A passenger with trip length L needs to pay pr0 + pr1(L − L0) if he/she

chooses the ridesharing service, whereas the passenger absorbs cost θ + pt0 + pt1(L − L0) if he/she

chooses a taxi service. Therefore, the cost savings that the passenger can achieve from the ridesharing

service are θ− [(pr0−pt0)+(pr1−pt1)(L−L0)], which can be simply called the passenger’s “surplus.”

If the surplus is greater than zero, or, mental cost θ is larger than [(pr0 − pt0) + (pr1 − pt1)(L− L0)],

then the passenger prefers to choose the ridesharing service instead of a taxi service. As θ is uniformly

distributed in [θ, θ], we compute the total expected surplus of passengers as

Sp = np

∫ θ

[(pr0−pt0)+(pr1−pt1)(L−L0)]
{θ − [(pr0 − pt0) + (pr1 − pt1) (L− L0)]} g(θ)dθ

=
np

2
(
θ − θ

) {θ − [(pr0 − pt0) + (pr1 − pt1) (L− L0)]
}2
. (15)

Next, we compute surpluses Sp under the dynamic and static pricing strategies. According to

Theorem 1, under the dynamic pricing strategy, when the platform makes its optimal pricing decisions,

the number of attracted passengers and that of drivers are identical (i.e., Qp = Qd). This means that

each passenger who chooses the platform’s service can be served by a driver, and each driver who is

available at the platform can be assigned to a passenger. Using parameter values in Section 6.1 and

assuming that optimal pricing policy (p∗r0, p
∗
r1) for each value of np in the range of [100, 200] and

each value of Cvd in [1, 1.3], we can compute SDp in (15) for each combination of np and Cvd , where

SDp denotes the total expected surplus of passengers under the dynamic pricing strategy.

Under the static pricing strategy, the service price and the drivers’wage are constant when the

values of np and Cvd vary. In addition, there are more passengers than drivers (i.e. Qp > Qd) when

the values of np and Cvd are suffi ciently large. This means that a passenger who places an order at

the platform can be served only with probability Qd/Qp. Then, according to (15), the total expected

surplus of passengers under the static pricing strategy is SSp = npQd{θ− [(pr0− pt0) + (pr1− pt1)(L−
L0)]}2/[2Qp(θ − θ)], where Qd and Qp are given by (3) and (2), respectively. When the values of np
and Cvd are suffi ciently small, under the platform’s static pricing strategy, there are more drivers than

passengers (i.e. Qd > Qp). As a result, each passenger can receive a ridesharing service, and the total

expected surplus of passengers is SSp = np{θ − [(pr0 − pt0) + (pr1 − pt1)(L− L0)]}2/[2(θ − θ)]. Using
the above results, we compute surpluses SSp when the value of np increases in steps of 10 from 100 to

200 and the value of Cvd increases in steps of 0.03 from 1 to 1.3.

To facilitate the comparison between SDp and S
S
p , we plot ratio S

D
p /S

S
p as in Figure 3, from which

we learn that in most scenarios, SDp /S
S
p > 1. However, when the value of np is suffi ciently large (e.g.,

np ≥ 160) and the value of Cvd is suffi ciently small (e.g., C
v
d ≤ 1.12), SDp is sometimes smaller than

SSp . The smallest value of ratio S
D
p /S

S
p is 0.889 when np = 200 and Cvd = 1.00. This result exposes
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that passengers benefit more from the static pricing strategy than the dynamic one, when the number

of passengers is suffi ciently large and the running cost is suffi ciently small. Nevertheless, a large value

of np and a small value of Cvd are unlikely to occur in practice, because of the following fact: when

the number of potential passengers (i.e., np) increases, the traffi c would be busier and the running

cost Cvd are likely to rise. It thus follows that in general, S
D
p is larger than SSp ; that is, passengers

always benefit more from the dynamic pricing strategy than from the static one.

We also reveal an interesting, and somewhat surprising, result as follows: in peak hours (np = 200,

and Cvd = 1.3), although passengers have to pay for a higher fare under the dynamic pricing strategy

than under the static pricing strategy, the dynamic strategy can still make a greater surplus to

passengers than the static strategy. According to our analysis regarding the impact of the number of

expected total passengers and the number of drivers, we find that, for a ridesharing driver, a higher

wage resulting from the dynamic pricing strategy can offset the driver’s loss generated by an increase

in the unit running cost Cvd . This can thereby attract more drivers to provide service, or mitigate the

effect of a reduction in the number of drivers. In addition, a higher fare could prevent the passengers

with a smaller mental cost θ from requesting service, which leads to the result that the surplus that

any passenger enjoys from each successful ridesharing deal does not decrease.

Figure 3: The ratios of SDp to SSp when the values of np and C
v
d vary.

Analysis of the Total Expected Surplus of Drivers We examine the impact of the platform’s

optimal pricing strategy on the ridesharing drivers, whose total expected surplus is computed as

follows. If a driver serves a passenger for a trip with distance L, then the driver can obtain a

payment w0 + w1(L − L0) from the platform. However, for the trip, the driver absorbs a running

cost CvdL, and he or she has an opportunity cost γ. Therefore, the driver’s surplus (net income)

is w0 + w1(L − L0) − (CvdL + γ), which indicates that only the drivers with opportunity cost γ ≤
w0 + w1(L − L0) − CvdL are willing to serve passengers. Recall from Section 3.2 that γ is uniformly

distributed over [γ1 − γ2, γ1 + γ2], and there are nd potential drivers in total. We can compute the
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total expected surplus of drivers as

Sd = nd

∫ w0+w1(L−L0)−CvdL

γ1−γ2
[w0 + w1(L− L0)− CvdL− γ]ϕ(γ)dγ

=
nd
4γ2

[w0 + w1(L− L0)− CvdL− (γ1 − γ2)]2. (16)

Similar to the computation of passengers’ total expected surplus, we can calculate drivers’ total

expected surplus under the dynamic pricing strategy and that under the static pricing strategy,

which are denoted by SDd and SSd , respectively.

Using parameter values in Section 6.1 as well as optimal service pricing policy (p∗r0, p
∗
r1) and

optimal wage (w∗0, w
∗
1) for np ∈ [100, 200] and Cvd ∈ [1, 1.3], we can compute SDd by using (16) for

different values of np and Cvd . For the static pricing strategy, when the values of np and C
v
d are

suffi ciently large, there are more passengers than drivers and each driver can serve a passenger. As

a result, the total expected surplus of drivers is given by (16). However, when the values of np and

Cvd are suffi ciently small, under the platform’s static pricing strategy, there are more drivers than

passengers (i.e. Qd > Qp), which means that a driver who is available at the platform can serve a

passenger only with probability Qp/Qd. Then, according to (16), the total expected surplus of drivers

is SSd = nd[w0 + w1(L− L0)− CvdL− (γ1 − γ2)]2Qp/(4γ2Qd).

To compare the difference of the total expected surplus of drivers under the dynamic pricing

strategy (i.e., SDd ) and that under the static pricing strategy (i.e., S
S
d ), we compute the ratios of

SDd /S
S
d for each combination of np and C

v
d and plot it in Figure 4. We note from Figure 4 that

SDd /S
S
d < 1 when Cvd is suffi ciently small (e.g., C

v
d < 1.03). That is, when the unit running cost

is suffi ciently small, the dynamic pricing strategy results in a lower wage than the static pricing

strategy, which thus makes a higher surplus to drivers than the dynamic pricing strategy. In addition,

comparing the average values of SDd and SSd , we find that the dynamic pricing strategy, on average,

generates a 10.4% higher surplus to drivers than the static one, similar to our analysis for passengers.

Figure 4: The ratios of SDd to SSd when the values of np and C
v
d vary.
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Analysis of the Sum of Passengers’and Drivers’Surpluses Summing the total expected

surplus of passengers and that of drivers, we obtain the total expected surplus of passengers and

drivers, which is denoted by SDpd under the dynamic pricing strategy and by S
S
pd under the static

pricing strategy. To facilitate our comparison between SDpd and S
S
pd, we calculate ratio S

D
pd/S

S
pd for

each combination of np and Cvd , and show our results in Figure 5, which indicates that S
D
pd is smaller

than SSpd with the probability of about 15.7%, which takes place when np is suffi ciently large and Cvd
is suffi ciently small. Note from Section 6.2.2 that the situation of a large value of np and a small

value of Cvd is unlikely to happen. Thus, we conclude that the dynamic pricing strategy can generate

a higher total expected surplus to passengers and drivers than static one.

Figure 5: The ratios of SDpd to S
S
pd when the values of np and C

v
d vary.

According to our numerical experiments, the dynamic pricing strategy not only generates a greater

profit to the platform but also usually results in higher surpluses to passengers and drivers. We

also observe that even when the dynamic strategy reduces the total expected surplus of drivers, the

passengers can still obtain a higher surplus. This implies that the dynamic pricing strategy is basically

better than the static pricing strategy.

7 Summary and Concluding Remarks

We consider an optimal pricing problem for a ridesharing platform who determines both the rideshar-

ing service fare charged to passengers and the wage paid to drivers registered on the platform. As

in practice, a passenger can choose either a ridesharing or a taxi service for a trip and a driver

can decide to either turn on the App to serve passengers or switch off the App to indicate his or

her unavailability. We accordingly begin by analyzing passengers’problems for their choices between

ridesharing and taxi services, and investigating drivers’problems for their choices between willingness

and unwillingness to serve passengers. Then, using our analytic results for the two choice problems,

we construct a profit function for a ridesharing platform and obtain the platform’s optimal pricing
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decisions.

In order to expose managerial implications regarding the ridesharing platform’s optimal pricing

decisions as well as its maximum profit and optimal payout ratio, we perform sensitivity analyses

of some important parameters, which include passengers’average trip distance, ridesharing drivers’

unit running cost, passengers’mental cost for taking a taxi service, distance fare for the taxi service,

parameters for ridesharing drivers’opportunity gains when they are unavailable for ridesharing ser-

vice, the number of total potential passengers and drivers. Our analytic results are summarized in

Table 7. Moreover, we conduct real data-based numerical experiments to show that comparing with

the static pricing strategy, the dynamic pricing strategy generates a higher profit to the ridesharing

platform, and provides a larger surplus to passengers and drivers.

According to the analytic results from our sensitivity analyses and the numerical experiments, we

draw a number of managerial implications as below.

1. When the number of passengers increases, the platform should raise the distance fare and

wage simultaneously, and the platform should raise the payout ratio to attract more drivers,

i.e. drivers obtain a higher benefit from the increase in the number of passengers than the

platform. When the number of drivers increases, the platform should decrease the distance fare

and wage simultaneously, and it can reduce the payout ratio to obtain a higher profit. Thus, the

platform should change not only the fare and wage but also the payout ratio when the number

of passengers or drivers varies.

2. Both an increase in the driver number and an increase in passenger number can help increase

the platform’s profits, if the numbers are smaller than their cutoff levels. When the number

of passengers (drivers) increases above its cutoff level, the platform’s profit still rises, but the

impact becomes weaker if the number of drivers (passengers) does not increase. The result

suggests that the platform is better off when both the number of passengers and the number of

drivers are higher.

3. Regardless of whether the upper or lower bound of mental cost increases, the platform’s profit

rises. Therefore, to achieve a higher profit, the platform should strive to improve its social

position, induce passengers to more likely choose the ridesharing service, and increase their

mental costs for the taxi service.

4. The dynamic pricing strategy is beneficial to all stakeholders. First, the dynamic pricing strat-

egy can generate a higher profit to the ridesharing platform than the static one. Second, the

dynamic strategy can, by and large, generate greater surpluses to both drivers and passengers

than the static strategy. It thus follows that for the platform, the dynamic pricing strategy

dominates the static strategy.

5. The platform’s payout ratio– which can measure the platform’s profit-making capability– is

increasing in the ridesharing drivers’running cost, passengers’minimum mental cost and mean

opportunity cost as well as the number of total potential passengers.
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Appendix A Proofs

Proof of Lemma 1. We learn from (1) that a passenger’s willingness to choose the ridesharing

service requires the inequality pr0 + pr1(L − L0) ≤
(
θ + pt0

)
+ pt1(L − L0). As the function in (3)

implies, a driver is willing to deliver the ridesharing service, if w0 + w1(L− L0) ≥ CvdL + (γ1 − γ2).

Noting that the platform should set pr0 ≥ w0 and pr1 ≥ w1 in order to avoid any loss, we have

θ + pt0 + pt1(L− L0) ≥ pr0 + pr1(L− L0) ≥ w0 + w1(L− L0) ≥ (γ1 − γ2) + CvdL, (17)

which can be rewritten as θ ≥ θ1, where θ1 is defined as in this lemma.

Proof of Theorem 1. Prior to solving the constrained maximization problem, we compare Qp
and Qd. We learn from (2) that Qp is decreasing in the platform’s decision variables pr0 and pr1 but

independent of the decision variables w0 and w1, and also find from (3) that Qd is independent of pr0
and pr1 but increasing in w0 and w1. We discuss the following two cases.

1. If the expected number of passenger Qp is larger than the expected number of drivers Qd, i.e.,

Qp > Qd, then the expected number of successful services is min(Qp, Qd) = Qd. Noting that

Qp is decreasing both in pr0 and pr1, we find that if the platform raises its prices (pr0, pr1) by a

suffi ciently small value such that Qp ≥ Qd, then the expected number of successful services (i.e.,
Qd) does not change and the profit margin (i.e., pr0 − w0 + (pr1 − w1)(L − L0)) increases. As

a result, the platform can obtain a higher profit by increasing (pr0, pr1). That is, for this case,

the optimal prices (p∗r0, p
∗
r1) (maximizing the platform’s profit) are obtained when Qp ≤ Qd.

2. If Qp < Qd, then min(Qp, Qd) = Qp and the platform can raise its profit if it reduces unit wages

(w0, w1) to decrease Qd by a suffi ciently small value such that Qp ≤ Qd. That is, for this case,
we can obtain the optimal solutions (w∗0, w

∗
1) when Qp ≥ Qd.

Our discussions above indicate that Qp = Qd when the platform chooses optimal price and wages.

Next, we compute base fare pr0 and base wage w0. When passengers’trip distance is L0, according

to equations in (2) and (3), we rewrite the equation Qp = Qd as

np[
(
θ + pt0

)
− pr0]

θ − θ
=
nd[w0 − (γ1 − γ2 + CvdL0)]

2γ2

. (18)

Solve the above equation for w0 yields

w0 = (γ1 − γ2 + CvdL0) +
2npγ2[

(
θ + pt0

)
− pr0]

nd
(
θ − θ

) . (19)

When the trip distance is L0, the platform’s profit is

π(L0) =
np[
(
θ + pt0

)
− pr0]

θ − θ

{
pr0 − (γ1 − γ2 + CvdL0)−

2npγ2[
(
θ + pt0

)
− pr0]

nd
(
θ − θ

) }
, (20)

which only depends on the decision variable pr0. Calculating its first-order derivative w.r.t. pr0, we
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have

∂π(L0)

∂pr0
=

−np
θ − θ

{
pr0 − CvdL0 − (γ1 − γ2)− 2npγ2[θ − (pr0 − pt0)]

nd
(
θ − θ

) }

+
np[θ − (pr0 − pt0)]

θ − θ

[
1 +

2npγ2

nd
(
θ − θ

)] ;
and we obtain its second-order derivative as ∂2π(L0)/∂p2

r0 = −2np[nd(θ−θ)+2npγ2]/[nd(θ−θ)2] < 0.

We can thereby solve the first order condition (i.e., ∂π(L0)/∂pr0 = 0) to find

p∗r0 =
nd
(
θ − θ

) [(
θ + pt0

)
+ (γ1 − γ2 + CvdL0)

]
+ 4npγ2

(
θ + pt0

)
2nd

(
θ − θ

)
+ 4npγ2

. (21)

Substituting p∗r0 in (21) into (19) yields

w∗0 = (γ1 − γ2 + CvdL0) +
npγ2

[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

]
[nd
(
θ − θ

)
+ 2npγ2]

. (22)

We then analyze distance fare pr1 and distance wage w1. When passengers’trip distance is L, we

use (2) and (3) to rewrite the equation Qp = Qd as

np[θ − (p∗r0 − pt0)− (pr1 − pt1)× (L− L0)]

θ − θ
=
nd[w

∗
0 − w1L0 + (w1 − Cvd )L− (γ1 − γ2)]

2γ2

. (23)

Solving the above equation for w1 yields

w1 =
(γ1 − γ2)− w∗0 + CvdL

L− L0
+

2npγ2[θ − (p∗r0 − pt0)]

nd
(
θ − θ

)
(L− L0)

− 2npγ2 (pr1 − pt1)

nd
(
θ − θ

) . (24)

Then, when the trip distance is L, the platform’s profit is

π(L) =
np[θ − (p∗r0 − pt0)− (pr1 − pt1) (L− L0)]

θ − θ
{(p∗r0 − w∗0) (25)

+

{
pr1 −

(γ1 − γ2)− w∗0 + CvdL

L− L0
− 2npγ2[θ − (p∗r0 − pt0)]

nd
(
θ − θ

)
(L− L0)

+
2npγ2 (pr1 − pt1)

nd
(
θ − θ

) }
(L− L0)

}
,

which is only dependent on the decision variable pr1.

We first ignore the constraints pr1 ≥ pt1 + [θ − (p∗r0 − pt0)] /(L − L0) and w∗0 + w1(L − L0) ≤
γ1 + γ2 +CvdL. Without the constraints, the platform maximizes its profit π(L) in (25) to determine
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optimal distance fare p∗r1. Partially differentiating π(L) in (25) once with respect to pr1 gives

∂π(L)

∂pr1
=
−np(L− L0)

θ − θ

{
(p∗r0 − w∗0) +

{
pr1 −

{
(γ1 − γ2)− w∗0 + CvdL

L− L0

+
2npγ2[θ − (p∗r0 − pt0)]

nd
(
θ − θ

)
(L− L0)

− 2npγ2 (pr1 − pt1)

nd
(
θ − θ

) }}
(L− L0)

}

+
np[θ − (p∗r0 − pt0)− (pr1 − pt1) (L− L0)]

θ − θ

{[
1 +

2npγ2

nd
(
θ − θ

)] (L− L0)

}
.

We also compute its second-order derivative as ∂2π(L)/∂pr1 = (L− L0)2∂2π(L0)/∂pr0 < 0. We can

thereby solve the first order condition (i.e., ∂π(L)/∂pr1 = 0) to find

p∗r1 =
4npγ2[θ + pt0 + pt1(L− L0)] + [

(
θ + pt0

)
+ pt1(L− L0)[

2nd
(
θ − θ

)
+ 4npγ2

]
(L− L0)

+(γ1 − γ2 + CvdL)]nd
(
θ − θ

)[
2nd

(
θ − θ

)
+ 4npγ2

]
(L− L0)

− p∗r0
L− L0

. (26)

Substituting p∗r0 in (21) into (26) yields p
∗
r1 = p̃r1, as shown in (7), and substituting (21), (22) and

(26) into (24) gives w∗1 = w̃1, as shown in (7).

Next, we consider the constraints pr1 ≥ pt1 + [θ − (p∗r0 − pt0)]/(L − L0) and w∗0 + w1(L − L0) ≤
γ1 +γ2 +CvdL. We find that (i) if and only if L ≤ L1 = L̂|np≤nd ≡ L0 +2[nd(θ−θ)+2npγ2]/[nd(pt1−
Cvd )]−[(θ+pt0)−(γ1−γ2+CvdL0)]/(pt1−Cvd ), p̃r1 ≥ pt1+[θ−(p∗r0−pt0)]/(L−L0); and (ii) if and only if

L ≤ L2 = L̂|np>nd ≡ L0 +2[nd(θ−θ)+2npγ2]/[np(pt1−Cvd )]− [(θ+pt0)−(γ1−γ2 +CvdL0)]/(pt1−Cvd ),

w∗0+w̃1(L−L0) ≤ γ1+γ2+CvdL. We calculate L1−L2 = 2(np−nd)[2npγ2+nd(θ−θ)]/[npnd(pt1−Cvd )],

which means that if np ≤ nd, then L1 ≤ L2; otherwise, L1 > L2. Comparing np and nd, we obtain

optimal decisions for the following two scenarios:

1. When np ≤ nd, we find that, if L ≤ L̂|np≤nd = L1 ≤ L2, then p̃r1 ≥ pt1+[θ−(p∗r0−pt0)]/(L−L0)

and w∗0 + w̃1(L − L0) ≤ γ1 + γ2 + CvdL. That is, p̃r1 and w̃1 satisfy the constraints, and

optimal decisions are p∗r1 = p̃r1 and w∗1 = w̃1. Otherwise, if L > L̂|np≤nd = L1, then p̃r1 <

pt1 + [θ− (p∗r0−pt0)]/(L−L0) and optimal distance fare is p∗r1 = pt1 + [θ− (p∗r0−pt0)]/(L−L0).

According to (24), we find that w∗1 = [(γ1 − γ2) − w∗0 + CvdL]/(L − L0) + 2npγ2/[nd(L − L0)].

Using (21) and (22), we have

p∗r1 = pt1 +

[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

]
nd
(
θ − θ

)[
2nd

(
θ − θ

)
+ 4npγ2

]
(L− L0)

− θ − θ
L− L0

,

and

w∗1 = Cvd −
npγ2

[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

]
[nd
(
θ − θ

)
+ 2npγ2](L− L0)

+
2npγ2

nd (L− L0)
.

2. When np > nd, if L ≤ L̂|np>nd = L2 < L1, then p̃r1 ≥ pt1 + [θ − (p∗r0 − pt0)] /(L − L0) and

w∗0 + w̃1(L − L0) ≤ γ1 + γ2 + CvdL. Then, the optimal decisions are p
∗
r1 = p̃r1 and w∗1 = w̃1.

Otherwise, if L > L̂|np>nd = L2, then w∗0 + w̃1(L − L0) > γ1 + γ2 + CvdL, and the optimal
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distance wage is w∗1 = [(γ1− γ2)−w∗0 +CvdL]/(L−L0) + 2γ2/(L−L0). We can use (23) to find

p∗r1 = pt1 + {np[θ − (p∗r0 − pt0)]− nd(θ − θ)}/[np(L− L0)]. We use (21) and (22) to find that

p∗r1 = pt1 +

[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

]
nd
(
θ − θ

)[
2nd

(
θ − θ

)
+ 4npγ2

]
(L− L0)

−
nd
(
θ − θ

)
np (L− L0)

,

and

w∗1 = Cvd −
npγ2

[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

]
[nd
(
θ − θ

)
+ 2npγ2](L− L0)

+
2γ2

L− L0
.

Summarizing the above, we obtain this theorem.

Proof of Theorem 2. We first investigate the impact of L on optimal decisions p∗r1 and w∗1.

From Theorem 1, we find that when L ≤ L̂, where L̂ is defined as in (6), optimal distance fare p∗r1
and optimal distance wage w∗1 are p

∗
r1 = [4npγ2pt1 + nd(θ − θ)(pt1 + Cvd )]/[4npγ2 + 2nd(θ − θ)] and

w∗1 = Cvd +npγ2(pt1−Cvd )/[nd(θ− θ) + 2npγ2], respectively, which are obviously all independent of L.

When L > L̂, we use Theorem 1 to compute the optimal decisions as

p∗r1 = pt1 +

{[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

]
nd

2
[
nd
(
θ − θ

)
+ 2npγ2

] − min(np, nd)

np

} (
θ − θ

)
(L− L0)

,

and

w∗1 = Cvd + 2

{
min(np, nd)

nd
−
np
[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

]
nd
(
θ − θ

)
+ 2npγ2

}
γ2

(L− L0)
.

If θ ≤ θ2, where θ2 is shown in (11), then we have nd[(θ + pt0) − (γ1 − γ2 + CvdL0)]/[2nd(θ − θ) +

4npγ2] − min(np, nd)/np ≤ 0. As a result, p∗r1 (w
∗
1) is decreasing (increasing) in L. Otherwise, p

∗
r1

(w∗1) is increasing (decreasing) in L.

Then, we analyze how trip distance L influences optimal payout ratio r∗. When L ≤ L̂, we find

r∗ as given in (9), and compute the first-order partial derivative of r∗ w.r.t. L as

∂r∗

∂L
=

2
[(
θ + pt0

)
Cvd − (γ1 − γ2 + CvdL0) pt1

] [
nd
(
θ − θ

)
+ 2npγ2

]2{
nd
(
θ − θ

) [(
θ + pt0

)
+ pt1 (L− L0) +

(
γ1 − γ2 + CvdL

)]
+ 4npγ2

[(
θ + pt0

)
+ pt1 (L− L0)

]}2 .

If Cvd ≤ C1, where C1 is defined in (11), then ∂r∗/∂L ≤ 0, which means that r∗ is decreasing in

L. Otherwise, r∗ is increasing in L. When L > L̂, we obtain r∗ as given in (10), and compute its

first-order partial derivative w.r.t. L as

∂r∗

∂L
= −

npndC
v
d

[(
θ + pt0

)
+ pt1(L− L0)

]
(pt1 − Cvd ) + min(np, nd)

[
nd
(
θ − θ

)
Cvd + 2npγ2pt1

]{
npnd

[(
θ + pt0

)
+ pt1(L− L0)

]
−min(np, nd)nd

(
θ − θ

)}2 .

Recalling from Section 3.2 that pt1 should be larger than Cvd , i.e. pt1 > Cvd , we obtain ∂r
∗/∂L < 0

regardless of whether np ≤ nd or np > nd. That is, r∗ is always decreasing in L when L > L̂.

Lastly, we analyze how trip distance L influences optimal profit π∗. When L ≤ L̂, differentiating
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π∗ as shown in (9) once w.r.t. L yields

∂π∗

∂L
=
npnd

[(
θ + pt0

)
+ pt1 (L− L0)− (γ1 − γ2 + CvdL)

]
(pt1 − Cvd )

2[nd
(
θ − θ

)
+ 2npγ2]

.

Note that pt1 > Cvd and the condition in (17) shows that (θ+pt0)+pt1(L−L0)− (γ1−γ2 +CvdL) ≥ 0.

Thus, ∂π∗/∂L ≥ 0; this means that π∗ is always increasing in L when L ≤ L̂. And when L > L̂, we

find π∗ as given in (10), and compute the first-order partial derivative of π∗ w.r.t. L as ∂π∗/∂L =

min(np, nd)(pt1 − Cvd ) > 0, i.e. when L > L̂, π∗ is also increasing in L wether np ≤ nd or np > nd.

Summarizing the above we have our results as shown in Table 1.

Proof of Theorem 3. If L ≤ L̂, where L̂ is defined as in (6), then, using (7), we find p∗r1 =

[4npγ2pt1 + nd(θ − θ)(pt1 + Cvd )]/[4npγ2 + 2nd(θ − θ)] and

w∗1 =
npγ2pt1

nd
(
θ − θ

)
+ 2npγ2

+
nd
(
θ − θ

)
+ npγ2

nd
(
θ − θ

)
+ 2npγ2

Cvd .

Therefore, both p∗r1 and w
∗
1 are increasing in C

v
d at constant slopes [nd(θ− θ)]/[4npγ2 + 2nd(θ− θ)] ∈

(0, 1) and [nd(θ − θ) + npγ2]/[nd(θ − θ) + 2npγ2] ∈ (0, 1), respectively.

We rewrite r∗ in (9) as

r∗ =
2nd

(
θ − θ

)
(γ1 − γ2) + 2npγ2

[(
θ + pt0

)
+ pt1 (L− L0) + (γ1 − γ2)

]
+
[
2nd

(
θ − θ

)
+ 2npγ2

]
CvdL

nd
(
θ − θ

) [(
θ + pt0

)
+ pt1 (L− L0) +

(
γ1 − γ2 + CvdL

)]
+ 4npγ2

[(
θ + pt0

)
+ pt1 (L− L0)

] ,

which indicates that r∗ is increasing in Cvd .

Next, we calculate the first-order partial derivative of optimal profit π∗ in (9) w.r.t. Cvd as

∂π∗

∂Cvd
= −

npnd[
(
θ + pt0

)
+ pt1(L− L0)− (γ1 − γ2 + CvdL)]

2[nd
(
θ − θ

)
+ 2npγ2]

.

Lemma 1 shows that
(
θ + pt0

)
+ pt1(L− L0)− (γ1 − γ2 + CvdL)] ≥ 0; so, π∗ is decreasing in Cvd .

When L > L̂, optimal decisions p∗r1 and w
∗
1 are shown in (8), from which we can observe that p∗r1

is decreasing in Cvd , whereas w
∗
1 is increasing in C

v
d . Using the formula in (10), we find that r

∗ is

increasing in Cvd , whereas π
∗ is decreasing in Cvd .

Proof of Theorem 4. When L ≤ L̂, p∗r is shown in (7). Differentiating it once w.r.t. θ yields

∂p∗r1/∂θ = 4npγ2nd(C
v
d − pt)/[4npγ2 + 2nd(θ − θ)]2. Recalling from Section 3.2 that pt1 > Cvd , we

obtain ∂p∗r1/∂θ < 0, which means that p∗r1 is decreasing in θ. Thus, ∂p
∗
r1/∂θ = −∂p∗r1/∂θ > 0, i.e., p∗r1

is increasing in θ. According to (7), w∗1 = Cvd + npγ2(pt1 −Cvd )/[nd(θ− θ) + 2npγ2]. As pt1 −Cvd > 0,

w∗1 is decreasing in θ but increasing in θ.

To investigate the impact on r∗, we differentiate r∗ in (9) once w.r.t. θ and θ, and find

∂r∗

∂θ
= −

2ndnpγ2

[(
θ + pt0

)
+ pt1 (L− L0)− (γ1 − γ2 + CvdL)

]2
+ 2(γ1 − γ2 + CvdL)

[
nd
(
θ − θ

)
+ 2npγ2

]2{
nd
(
θ − θ

) [(
θ + pt0

)
+ pt1 (L− L0) +

(
γ1 − γ2 + CvdL

)]
+ 4npγ2

[(
θ + pt0

)
+ pt1 (L− L0)

]}2 < 0
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and

∂r∗

∂θ
=

2ndnpγ2

[(
θ + pt0

)
+ pt1 (L− L0)− (γ1 − γ2 + CvdL)

]2{
nd
(
θ − θ

) [(
θ + pt0

)
+ pt1 (L− L0) +

(
γ1 − γ2 + CvdL

)]
+ 4npγ2

[(
θ + pt0

)
+ pt1 (L− L0)

]}2 > 0

respectively. It thus follows that r∗ is always decreasing (increasing) in θ (θ).

We then examine the impacts of θ and θ on π∗. To this end, we differentiate π∗ in (9) once w.r.t.

θ, and obtain ∂π∗/∂θ = npndAB/{4[nd(θ− θ) + 2npγ2]2}, where A = (θ+ pt0) + pt1(L−L0)− (γ1 −
γ2 +CvdL) and B =2[nd(θ− θ) + 2npγ2]−nd[(θ+ pt0) + pt1(L−L0)− (γ1− γ2 +CvdL)]. Noting from

(17) that A ≥ 0, we can reduce L ≤ L̂ to B ≥ 0. Thus, ∂π∗/∂θ ≥ 0, i.e., π∗ is always increasing in θ.

Using (9), we find that π∗ = npnd[(θ+ pt0) + pt1(L−L0)− (γ1− γ2 +CvdL)]2/{4[nd(θ− θ) + 2npγ2]}
is increasing in θ.

When L > L̂, we analyze the impact of θ on p∗r1. Differentiating p
∗
r1 in (8) once w.r.t. θ yields

∂p∗r1
∂θ

=
nd
(
θ − θ

)[
2nd

(
θ − θ

)
+ 4npγ2

]
(L− L0)

+
nd
{

4npγ2

[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

]}[
2nd

(
θ − θ

)
+ 4npγ2

]2
(L− L0)

− min(np, nd)

np (L− L0)
. (27)

Then, we study the impact for the following two cases.

1. When np ≤ nd, we rewrite (27) as

∂p∗r1
∂θ

=
−2
[
nd
(
θ − θ

)
+ 2npγ2

]2 − 8 (npγ2)2 + 4ndnpγ2 [(θ + pt0)− (γ1 − γ2 + CvdL0)][
2nd

(
θ − θ

)
+ 4npγ2

]2
(L− L0)

.

Then, solving the equation ∂p∗r1/∂θ = 0 yields two solutions

θ = θ +
±
√

2ndnpγ2

[
(θ + pt0)−

(
γ1 − γ2 + CvdL0

)]
− 4 (npγ2)2 − 2npγ2

nd
.

So, when θ ≤ θ3, as shown in (12), ∂p∗r1/∂θ > 0, which means that p∗r1 is increasing in θ. When

θ > θ3, p∗r1 is decreasing in θ.

2. When np > nd, we rewrite (27) as

∂p∗r1
∂θ

=
2nd

{
(np − 2nd)nd

(
θ − θ

)2
+ 4npγ2 (np − 2nd)

(
θ − θ

)
+ 2n2

pγ2 [(θ + pt0)− (γ1 + 2γ2 + CvdL0)]
}

np
[
2nd

(
θ − θ

)
+ 4npγ2

]2
(L− L0)

.

Therefore, if ξ1 ≥ 0, where ξ1 is defined in (12), then ∂p
∗
r1/∂θ ≥ 0; that is, p∗r1 is increasing in

θ. Otherwise, p∗r1 is decreasing in θ.
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We then analyze the impact of θ on p∗r1. Differentiating p
∗
r1 in (8) once w.r.t. θ yields

∂p∗r1
∂θ

=
−ndnpγ2

[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

][
nd
(
θ − θ

)
+ 2npγ2

]2
(L− L0)

+
min(np, nd)

np (L− L0)
.

So, if θ ≤ θ4, as shown in (12), then ∂p∗r1/∂θ ≥ 0, i.e., p∗r1 is increasing in θ. Otherwise, p
∗
r1 is

decreasing in θ. To study the impact on w∗1, we partially differentiate w
∗
1 in (8) once w.r.t. θ yields

∂w∗1
∂θ

= −npγ2 {2npγ2 − nd [(θ + pt0)− (γ1 − γ2 + CvdL0)]}
(L− L0)[nd

(
θ − θ

)
+ 2npγ2]2

.

Hence, if ξ2 ≥ 0, where ξ2 is defined in (12), then ∂w
∗
1/∂θ ≤ 0, which means that w∗1 is decreasing in

θ. Otherwise, w∗1 is increasing in θ. We can observe that w
∗
1 is always decreasing in θ.

To study the impacts of θ and θ on r∗ and π∗, we use (10) to rewrite r∗ and π∗ as

1

r∗
=

[np −min(np, nd)]ndθ + min(np, nd)ndθ + npnd [pt0 + pt1(L− L0)]

npnd
[
(γ1 − γ2) + CvdL

]
+ 2npγ2 min(np, nd)

,

and

π∗ = min(np, nd)

{
[max(np, nd)− nd] θ + ndθ + 2npγ2

max(np, nd)
+ pt0 − (γ1 − γ2 + CvdL) + pt1(L− L0)

}
.

So, both 1/r∗ and π∗ are increasing in θ. Noting that payout ratio r∗ > 0, we can conclude that

r∗ is decreasing in θ. When np ≤ nd, both 1/r∗ and π∗ are independent of θ and thus, r∗ is also

independent of θ. When np > nd, r∗ is decreasing in θ, whereas π∗ is increasing in θ.

Proof of Theorem 5. When L ≤ L̂, according to (7), we find that p∗r1 = [4npγ2pt1 + nd(θ −
θ)(pt1 +Cvd )]/[4npγ2 + 2nd(θ− θ)] and w∗1 = Cvd +npγ2(pt1−Cvd )/[nd(θ− θ) + 2npγ2], which are both

increasing in pt1. Then, we differentiate r∗ in (9) once w.r.t. pt1, and obtain

∂r∗

∂pt1
=

(L− L0)
{

(2npγ2)2 −
{[
nd
(
θ − θ

)
+ 2npγ2

]2
+
[
nd
(
θ − θ

)]2}
(γ1 − γ2 + CvdL)

}
{
nd
(
θ − θ

) [(
θ + pt0

)
+ pt1 (L− L0) +

(
γ1 − γ2 + CvdL

)]
+ 4npγ2

[(
θ + pt0

)
+ pt1 (L− L0)

]}2 .

So, if L ≤ L = (2npγ2)2/{[nd(θ− θ) + 2npγ2]2 + [nd(θ− θ)]2}, then ∂r∗/∂pt1 ≥ 0, i.e., r∗ is increasing

in pt1; Otherwise, r∗ is decreasing in pt1. Differentiating π∗ in (9) once w.r.t. pt1 yields

∂π∗

∂pt1
=

2npnd (L− L0)
[(
θ + pt0

)
+ pt1 (L− L0)− (γ1 − γ2 + CvdL)

]
4[nd

(
θ − θ

)
+ 2npγ2]

.

Note from (17) that (θ + pt0) + pt1(L − L0) − (γ1 − γ2 + CvdL) > 0; so, ∂π∗/∂pt1 ≥ 0, which means

that π∗ is increasing in pt1.

When L > L̂, we use (8) to find that p∗r1 is increasing in pt1 and w
∗
1 is independent of pt1. In

addition, according to (10), we reveal that r∗ is decreasing in pt1 and π∗ is increasing in pt1.

Proof of Theorem 6. When L ≤ L̂, we find from (7) that both p∗r1 and w
∗
1 are independent of
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γ1, and w
∗
1 is increasing in γ2. Then, partially differentiating p

∗
r1 once w.r.t. γ2 yields ∂p

∗
r1/∂γ2 =

4npnd(θ− θ)(pt1−Cvd )/[4npγ2 + 2nd(θ− θ)]2 > 0, which means that p∗r1 is increasing in γ2. Partially

differentiating r∗ and π∗ in (9) once w.r.t. γ1 gives

∂r∗

∂γ1

=
2
[(
θ + pt0

)
+ pt1 (L− L0)

] [
nd
(
θ − θ

)
+ 2npγ2

]2{
nd
(
θ − θ

) [(
θ + pt0

)
+ pt1 (L− L0) +

(
γ1 − γ2 + CvdL

)]
+ 4npγ2

[(
θ + pt0

)
+ pt1 (L− L0)

]}2 > 0,

and
∂π∗

∂γ1

=
−npnd

[(
θ + pt0

)
+ pt1 (L− L0)− (γ1 − γ2 + CvdL)

]
2
[
nd
(
θ − θ

)
+ 2npγ2

] < 0.

respectively. We can find that r∗ (π∗) is always increasing (decreasing) in γ1. We differentiate r
∗ in

(9) once w.r.t. γ2 and find

∂r∗

∂γ2

=
ξ3{

nd
(
θ − θ

) [(
θ + pt0

)
+ pt1 (L− L0) +

(
γ1 − γ2 + CvdL

)]
+ 4npγ2

[(
θ + pt0

)
+ pt1 (L− L0)

]}2 ,

where ξ3 is defined in (13). If ξ3 ≥ 0, then r∗ is increasing in γ2; otherwise, r
∗ is decreasing in γ2.

Next, we differentiate π∗ in (9) once w.r.t. γ2, and have

∂π∗

∂γ2

=
2npnd

[(
θ + pt0

)
+ pt1 (L− L0)− (γ1 − γ2 + CvdL)

]
ξ5

4[nd
(
θ − θ

)
+ 2npγ2]2

,

where

ξ5 = −npγ2
2 − 2np

[(
θ + pt0

)
+ pt1 (L− L0)− (γ1 + CvdL)− 1

]
γ2

+nd
(
θ − θ

)
− np

[(
θ + pt0

)
+ pt1 (L− L0)− (γ1 + CvdL)− 1

]2
.

Noting from (17) that (θ+ pt0) + pt1(L−L0)− (γ1−γ2 +CvdL) > 0, we find that the sign of ∂π∗/∂γ2

is the same as the sign of ξ5. Solving the equation ξ5 = 0 yields

γ2 =
[
1 + (γ1 + CvdL)−

(
θ + pt0

)
− pt1 (L− L0)

]
±
√[

1 + 2
(
γ1 + CvdL

)
− 2

(
θ + pt0

)
− 2pt1 (L− L0)

]
n2
p + npnd

(
θ − θ

)
/np.

If γ2 ≤ γ3, as shown in (13), then ∂π
∗/∂γ2 ≥ 0, i.e., π∗ is increasing in γ; Otherwise, π∗ is decreasing

in γ2.

When L > L̂, we find from (8) that both p∗r1 and w
∗
1 are decreasing in γ1. Partially differentiating

p∗r1 once w.r.t. γ2 yields

∂p∗r1
∂γ2

=
nd
(
θ − θ

) [
2nd

(
θ − θ

)
− 4np

(
θ + pt0 − CvdL0

)
+ 4npγ1

][
2nd

(
θ − θ

)
+ 4npγ2

]2
(L− L0)

.

So, if γ1 ≤ γ4, as shown in (13), then ∂p
∗
r1/∂γ2 ≤ 0, that is, p∗r1 is decreasing in γ2; Otherwise, p

∗
r1 is

increasing in γ2.
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We calculate first-order partially derivative of w∗1 w.r.t. γ2 as

∂w∗1
∂γ2

=
[8 min(np, nd)− 2nd] (npγ2)2 + [8 min(np, nd)− 2nd]nd

(
θ − θ

)
npγ2

nd (L− L0) [nd
(
θ − θ

)
+ 2npγ2]2

+
n2
d

(
θ − θ

) {
2 min(np, nd)[

(
θ − θ

)
]− np

[(
θ + pt0

)
− (γ1 + CvdL0)

]}
nd (L− L0) [nd

(
θ − θ

)
+ 2npγ2]2

. (28)

As the denominator of ∂w∗1/∂γ2 in (28) is positive, the sign of ∂w
∗
1/∂γ2 depends on the numerator

of ∂w∗1/∂γ2. We accordingly discuss the following two cases.

1. When np ≤ nd, the numerator is ξ4, where ξ4 is defined in (13). If ξ4 ≥ 0, then w∗1 is increasing

in γ2; otherwise, w
∗
1 is decreasing in γ2.

2. While np > nd, we compute the numerator as nd{6(npγ2)2 +6ndnpγ2(θ−θ)+nd(θ−θ){2nd(θ−
θ)−np[(θ+pt0)−(γ1 +CvdL0)]}}, equate the numerator to zero, and solve the resulting equation
to find the following two solutions:

γ2 =
−3nd

(
θ − θ

)
± np

√
6npnd

(
θ − θ

) [(
θ + pt0

)
−
(
γ1 + CvdL0

)]
− 3n2

d

(
θ − θ

)2
6n2

p

.

So, if γ2 ≤ γ5, as shown in (13), then w
∗
1 is decreasing in γ2; otherwise, w

∗
1 is increasing in γ2.

To study the impact on r∗, we rewrite r∗ in (10) as

r∗ =
npnd(γ1 + CvdL) + [2 min(np, nd)− nd]npγ2

npnd [pt0 + pt1(L− L0)] + min(np, nd)ndθ + ndθ [np −min(np, nd)]
.

Because the denominator of r∗ is positive, r∗ is increasing in γ1. If np ≤ nd/2, then r∗ is

decreasing in γ2; Otherwise, r
∗ is increasing in γ2. We rewrite π

∗ in (10) as

π∗ = min(np, nd)

[(
θ + pt0

)
− (γ1 + CvdL) + pt1(L− L0) +

max(np, nd)− 2np
max(np, nd)

γ2

]
.

So, π∗ is decreasing in γ1. If np ≤ nd/2, then π∗ is increasing in γ2; Otherwise, π
∗ is decreasing

in γ2.

Proof of Theorem 7. We consider the following three cases.

1. When L ≤ L̂, we rewrite p∗r1 and w∗1 in (7) as

p∗r1 = pt1 −
(pt1 − Cvd )

(
θ − θ

)
4npγ2
nd

+ 2
(
θ − θ

) and w∗1 = Cvd +
pt1 − Cvd

nd(θ−θ)
npγ2

+ 2
.

As pt1 − Cvd > 0, both p∗r1 and w∗1 are increasing (decreasing) in np (nd). Then, partially
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differentiating r∗ in (9) once w.r.t. np and nd yield

∂r∗

∂np
=

2γ2nd
(
θ − θ

) [(
θ + pt0

)
+ pt1 (L− L0)− (γ1 − γ2 + CvdL)

]2{
nd
(
θ − θ

) [(
θ + pt0

)
+ pt1 (L− L0) +

(
γ1 − γ2 + CvdL

)]
+ 4npγ2

[(
θ + pt0

)
+ pt1 (L− L0)

]}2

> 0,

and

∂r∗

∂nd
=

−2npγ2

(
θ − θ

) [(
θ + pt0

)
+ pt1 (L− L0)− (γ1 − γ2 + CvdL)

]2{
nd
(
θ − θ

) [(
θ + pt0

)
+ pt1 (L− L0) +

(
γ1 − γ2 + CvdL

)]
+ 4npγ2

[(
θ + pt0

)
+ pt1 (L− L0)

]}2

< 0.

Thus, r∗ is always increasing (decreasing) in np (nd).

2. When L > L̂ and np ≤ nd, we rewrite p∗r1 in (8) as

p∗r1 = pt1 +

[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

] (
θ − θ

)[
2
(
θ − θ

)
+

4npγ2
nd

]
(L− L0)

−
(
θ − θ

)
(L− L0)

.

Obviously, p∗r1 is always decreasing (increasing) in np (nd). Then, differentiating w
∗
1 in (8) once

w.r.t. np and nd yield ∂w∗1/∂np = γ2ξ6/{nd(L − L0)[nd(θ − θ) + 2npγ2]2} and ∂w∗1/∂nd =

−npγ2ξ6/{n2
d(L − L0)[nd(θ − θ) + 2npγ2]2}, respectively, where ξ6 is defined as in (14). So, if

ξ6 ≥ 0, then w∗1 is increasing (decreasing) in np (nd); otherwise, w
∗
1 is decreasing (increasing)

in np (nd). Next, we rewrite r∗ in (10) as

r∗ =
[(γ1 − γ2) + CvdL]

[(θ + pt0) + pt1(L− L0)]
+

2npγ2

nd [(θ + pt0) + pt1(L− L0)]
,

which indicates that r∗ is always increasing (decreasing) in np (nd).

3. When L > L̂ and np > nd, we partially differentiate p∗r1 in (8) once w.r.t. np and nd and find

∂p∗r1
∂np

=
nd
(
θ − θ

)
ξ7

n2
p (L− L0)

[
nd
(
θ − θ

)
+ 2npγ2

]2 and ∂p∗r1∂nd
=

−
(
θ − θ

)
ξ7

np (L− L0)
[
nd
(
θ − θ

)
+ 2npγ2

]2 ,
respectively, where ξ7 is defined as in (14). So, if ξ7 ≥ 0, then ∂p∗r1/∂np ≥ 0 and ∂p∗r1/∂nd ≤ 0,

i.e., p∗r1 is increasing (decreasing) in np (nd); otherwise, p
∗
r1 is decreasing (increasing) in np (nd).

Next, we rewrite w∗1 in (8) as

w∗1 = Cvd +
2γ2

(L− L0)
−
γ2

[(
θ + pt0

)
− (γ1 − γ2 + CvdL0)

]
[nd
(
θ − θ

)
/np + 2γ2](L− L0)

,

which indicates that w∗1 is decreasing (increasing) in np (nd). We rewrite r
∗ in (10) as

r∗ =
[(γ1 + γ2) + CvdL][(

θ + pt0
)

+ pt1(L− L0)
]
− nd(θ−θ)

np

,
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which shows that r∗ is always decreasing (increasing) in np (nd).

Summarizing the above, we obtain this theorem.

Proof of Theorem 8.
We conduct our analyses in the following three cases.

1. If L ≤ L̂, then the platform’s maximum profit π∗ is given as in (9), and the first-order partial

derivatives of π∗ w.r.t. np and nd are computed as ∂π∗/∂np = (θ−θ){nd[(θ+pt0)+pt1(L−L0)−
(γ1 − γ2 +CvdL)]}2/{4[nd(θ− θ) + 2npγ2]2} ≥ 0 and ∂π∗/∂nd = γ2n

2
p[(θ+ pt0) + pt1(L−L0)−

(γ1−γ2 +CvdL)]2/{2[nd(θ−θ)+2npγ2]2} ≥ 0, respectively. Moreover, we partially differentiate

π∗ twice w.r.t. np and nd as ∂2π∗/∂(np)
2 = −n2

dγ2(θ − θ)[(θ + pt0) + pt1(L− L0)− (γ1 − γ2 +

CvdL)]2/[nd(θ − θ) + 2npγ2]3 ≤ 0 and ∂2π∗/∂(nd)
2 = −n2

pγ2(θ − θ)[(θ + pt0) + pt1(L − L0) −
(γ1 − γ2 + CvdL)]2/[nd(θ − θ) + 2npγ2]3 ≤ 0, respectively. We also calculate the second-order

cross-partial derivative of π∗ w.r.t. np and nd as ∂2π∗/(∂np∂nd) = ndnpγ2(θ − θ)[(θ + pt0) +

pt1(L−L0)− (γ1− γ2 +CvdL)]2/[nd(θ− θ) + 2npγ2]3 ≥ 0. Using the above we obtain the result

when L ≤ L̂ as shown in this theorem.
2. If L > L̂ when np ≤ nd, then π∗ = np{(pt − Cvd )L + θ − (γ1 − γ2) − 2npγ2/nd}. Partially
differentiating π∗ once w.r.t. np yields ∂π∗/∂np = [(θ + pt0) + pt1(L − L0) − (γ1 − γ2 +

CvdL)]− 4npγ2/nd. Recalling from Section 3.2 that pt1 > Cvd and L̂|np≤nd = L0 + 2[nd(θ − θ) +

2npγ2]/[nd(pt1−Cvd )]−[(θ+pt0)−(γ1−γ2+CvdL0)]/(pt1−Cvd ), we find that ∂π∗/∂np > θ−θ ≥ 0;

that is, π∗ is increasing in np. The first-order partial derivative of π∗ w.r.t. nd is ∂π∗/∂nd =

2n2
pγ2/n

2
d > 0, which means that π∗ is increasing in nd. In addition, the second-order derivatives

of π∗ w.r.t. np and nd are ∂2π∗/∂n2
p = −4γ2/nd < 0 and ∂2π∗/∂n2

d = −4n2
pγ2/n

3
d < 0, and the

second-order, cross-partial derivative is ∂2π∗/∂np∂nd = 4npγ2/n
2
d > 0.

3. If L > L̂ when np > nd, then π∗ = nd[(θ+ pt0)− (γ1 + γ2 +CvdL) + pt1(L−L0)]−n2
d(θ− θ)/np,

according to (10). We partially differentiate π∗ once w.r.t. np, and find ∂π∗/∂np = (nd/np)
2(θ−

θ) > 0, i.e., π∗ is increasing in np. The first-order partial derivative of π∗ w.r.t. nd is ∂π∗/∂nd =

[(θ+pt0)−(γ1 +γ2 +CvdL)+pt1(L−L0)]−2nd(θ−θ)/np. Since L > L̂|np>nd = L0 +2[nd(θ−θ)+

2npγ2]/[np(pt1−Cvd )]−[(θ+pt0)−(γ1−γ2+CvdL0)]/(pt1−Cvd ) and pt1 > Cvd , ∂π
∗/∂nd > 2γ2 > 0,

which means that π∗ is increasing in nd. In addition, partially differentiating π∗ twice w.r.t.

np and nd yields ∂2π∗/∂n2
p = −2n2

d(θ − θ)/n3
p < 0 and ∂2π∗/∂n2

d = −2(θ − θ)/np < 0, and the

cross-partial derivative is ∂2π∗/(∂np∂nd) = 2nd(θ − θ)/n2
p > 0.

Summarizing the above, we obtain this theorem.

Appendix B Robustness Tests

In order to test the robustness of the results regarding the impacts of the number of potential pas-

sengers np, we increase the value of np in steps of 5, and plot the results in Figures 6-10. We can find

that Figures 6, 7, 8, 9, and 10 are similar to Figures 1, 2, 3, 4, and 5, respectively. This means that

the results about the impact of np are robust.
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Figure 6: The impacts of np and Cvd on the optimal distance price p
∗
r1 and the optimal distance wage

to ridesharing drivers w∗1, when we increase the value of np in steps of 5.

Figure 7: The differences between the platform’s maximum profits in the dynamic and static pricing
strategies, i.e., πD∗ − πS∗, when we increase the value of np in steps of 5.

Figure 8: The ratios of SDp to SSp when the values of np and C
v
d vary, when we increase the value of

np in steps of 5.
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Figure 9: The ratios of SDd to SSd when the values of np and C
v
d vary, when we increase the value of

np in steps of 5.

Figure 10: The ratios of SDpd to S
S
pd when the values of np and C

v
d vary, when we increase the value

of np in steps of 5.
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