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Abstract: 

A real-time, personalized consumption-based pricing scheme can induce electricity users to change their 

purchase behaviors, thus becoming an important issue in exploring the management mechanisms of electricity 

markets. To stabilize electricity prices, increase operators’ revenues, and balance market demands, we consider 

the pricing scheme in a smart grid market where traditional and renewable energies are available for sales. 

Under the scheme, we develop a leader-follower game to characterize the strategic interactions between a 

demand side management center and residential users, and show that there exists a unique Stackelberg 

equilibrium. Our numerical analysis indicates that the real-time pricing scheme makes the electricity price 

difference between valley and peak times within 0.4 cents, thereby achieving the goal of mitigating peak loads 

and stabilizing electricity prices. We reveal that the renewable energy loads dominate traditional energy loads 

even when the price of renewable energy is higher than that of traditional energy. We also perform sensitivity 

analysis and find that an increase in a user’s dissatisfaction with the electricity supply can raise electricity 

prices for the user and two different electricity loads. Moreover, the demand side management center’s 

revenue changes with a concave appearance. 

Keywords: Real-time Pricing; Leader-follower Game; Smart Grid; Personalized Consumption 

1. Introduction 

In the globalization process, the energy sustainability transition has been a core issue that attracts great 

attention from international communities. Nonetheless, the oil continues to hold the largest share of the energy 

mix (33.1%) and the coal is the second largest fuel to account for 27.0% in the shares of global primary energy 

[1]. This behooves us to examine the issues regarding energy consumption and environmental protection. It is 

of vital importance to choose a cleaner way of development while following the laws of nature [2]. As a 

necessary part of sustainable development, renewable energy tends to be more and more popular in energy 
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market, which has risen to the record highs of 5.0% in the shares of global primary energy in 2019 since it can 

result in a visible change for energy market from the high-carbon to the low-carbon. Qualified as an important 

energy source for future power grid, renewable energy has intrigued numerous scholars [1, 3-6]. 

In recent years, renewable energy is transforming its own role from a non-conventional energy to a main 

energy and also from an alternative energy to a leading energy in the energy supply of power grid. That is, the 

power system needs to be upgraded with the integration of traditional and renewable energies. Therefore, the 

traditional power grid has been transformed into a smart and decentralized power system—smart grid [7, 8]. 

Smart grid, as a novel power grid integrating renewable energy and advanced information technology, tends to 

play an important role in the process of developing a low-carbon economy [9]. At present, more and more 

scholars focus on different areas of smart grid from different perspectives such as fundamental equipment, 

privacy protection and demand response (DR) [10, 11]. As one of the key issues of demand side management 

(DSM) in smart grid, DR maintains the strategic interaction between power grid and users, so as to improve 

the operation efficiency of power grid, reduce the electricity investment, and shave the peak load as well [12]. 

Therefore, to achieve the goal of sustainable development, it is necessary to design an effective DR mechanism 

integrating renewable energy in smart grid [13]. 

DR mechanism integrating renewable energy can be defined as the electricity usage change of users in 

response to various electricity prices or incentive payoffs by using electricity from traditional and renewable 

energy generation [14, 15]. The current researches mainly focus on price-based DR including Critical Peak 

Pricing (CPP), Time-of-Use (TOU) pricing, Peak Load Pricing (PLP) and Real-time Pricing (RTP) [16], which 

the RTP is the hottest area of DR mechanism and an ideal method to adjust loads of users in recent years [17]. 

Many researches about RTP based DR mechanism have been done in the existing works. From the 

perspective of public goods, DR mechanism maximizing social welfare is adopted by some researchers. For 

example, Dong et al. [16] proposed a smart DR mechanism based on maximizing social welfare and designed 

a new solving algorithm. Tan [18] constructed a multi-scenario operation optimization model for park 

integrated energy system based on multi-energy demand response. Using the similar method, Zhu et al. [17] 

broke through the single-stage limitation in Dong et al. [16]. Considering the effect of random fluctuation of 

electricity consumption, Tao et al. [19] also proposed a RTP scheme based on expectation bilevel programming. 

The above works mainly reflect the user's direct DR to electricity price, and aim to maximize the social 

welfare to regulate the power load depicted by utility function, but renewable energy is ignored in these works. 
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Relative researches for modelling the RTP problems in smart grid have also been performed increasingly 

with game theory in recent years. Dipti et al. [20] evaluated and compared game theory based dynamic pricing 

strategy for Singapore electricity market, and the results demonstrated that the RTP scheme was the best in 

reducing the peak load and increasing the profit. Similarly, Abapour et al. [21] designed a Bayesian pricing 

game model to depict the interaction among DR aggregators. Tao and Gao [22] studied the smart grid system 

with shortage device and distributed renewable energy based on dual decomposition theory. Most of the above 

works construct the game model among the electricity suppliers or among users, however, the interaction 

between the suppliers and users is also an important subject of smart grid. Given the typical hierarchical 

structure of the electricity market, it is a new trend in recent years that establish a leader-follower Game 

between the electricity suppliers and users for RTP research. Dai et al. [23] established a DR model with 

incentive factor based on leader-follower Game to adjust the price information from electricity retailers for 

guaranteeing the grid operation and assuring supply-demand balance. Yu and Hong [24] proposed a RTP 

algorithm for power load management of residential electrical appliances, so as to obtain an optimal household 

appliance management solution in the condition of real-time electricity price change. Luo et al. [25] 

constructed a hierarchical leader-follower Game to study the energy scheduling problem of a three-level 

integrated energy system. Nevertheless, the renewable energy was still not fully considered in these literatures. 

Note that most of the existing RTP researches based on game models focus on day-ahead electricity price, 

and each user must follow the optimal price in the next day once the game equilibrium is determined. However, 

there always exists a large gap between day-ahead prices and real-time prices. In addition, considering the 

dynamic real-time characteristics of market changes and the informationization of smart devices, there is a 

continuous two-way information interaction between the electricity suppliers and users. Thus how to ensure 

the balance between supply and demand of electricity is still the key of electricity market. To date, this kind of 

information interaction is based on the premise that the electricity suppliers and the users are rational partners 

considering the fairness preference [26, 27], but the personalized electricity consumption behavior of users is 

not considered by the authors of existing literatures. The above problems are exactly the key consideration 

objects in our paper.  

In conclusion, a leader-follower Game is developed to model the strategic interaction between the DSM 

center of power supplier and residential users in the presence of rapidly updated real-time prices to operate the 

optimal power load management [28]. On that basis, we propose a RTP scheme by considering electricity 

users’ personalized electricity consumption for the traditional and renewable energies. The users may consume 

both renewable and traditional energies at the same time, but consuming the latter incurs a guilt cost [29, 30]. 
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The DSM center allocates the electricity price to each user through the DR mechanism, and then the users 

determine their optimal electricity consumption to respond to the prices allocated by the DSM center. In view 

of our focus on the users’ personalized electricity consumption, the uncertainty in the generation of renewable 

energy is beyond the scope of this paper.  

The major contributions of this work are summarized as follows:  

(1) We propose a RTP scheme between the DSM center of electricity supplier and multiple residential 

users in the presence of rapidly updated real-time prices. 

(2) A one-leader, N-follower game is formulated to model the strategic interaction between the DSM 

center and the residential users, with the DSM center being the leader to offer the real-time electricity prices to 

the residential users. The users purchase the electricity from the DSM center in response to the announced 

real-time electricity prices.  

(3) The dissatisfaction and fairness preference concept are introduced to the residential users considering 

the satisfaction and irrational behavior of users in the electricity market. 

(4) Although users may consume both renewable energy and traditional electricity, they feel guilty about 

using traditional electricity. The guilt cost of consuming traditional electricity is quantified. 

(5) We show the existence and uniqueness of Stackelberg equilibrium, which means that there is an 

optimal solution for the game. The Stackelberg equilibrium is obtained analytically, which avoids the iterative 

process as well as alleviates the computational between the DSM center and residential users. 

The rest of this paper is organized as follows. Section 2 introduces the system model. Section 3 analyzes 

the formulation of game model with personalized electricity consumption. Section 4 discusses the number 

simulation results and sensitivity analysis. Finally, Section 5 draws the conclusion. 

2. System Model 

In this paper, a regional smart grid market is composed of a centralized electricity supplier and N  

residential users. The set of users is expressed as { }1,2, , N⋅ ⋅ ⋅ . One day that is divided into K  time slots 

is regarded as an operating cycle, denoted as { }1,2, , K⋅ ⋅ ⋅  where time slot t∈ . The electricity supplier 

is equipped with a DSM center to manage all users’ electricity consumption [31]. The overall market structure 

and configuration are showed in Figure 1.  

2.1 User’s Cost Function 

The cost of each residential user consists of three parts: the first one is the normal cost, based on the cost 

of electricity consumption; the second one is the dissatisfaction cost [24], evaluated by DSM center according 

to electricity consumption; the third one is the guilt cost caused by using traditional electricity (because 

traditional electricity consumption leads to global warming and pollution problems). The expenses of users 
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will change when their electricity consumption changes at different time slots. This change information is 

transmitted to the DSM center through the DR mechanism of different users, and then the DSM center will 

allocate reasonable electricity prices for each user respectively and inform all users. 

 

Figure 1. Electricity market structure between the DSM center and the users. 

Assuming that at time slot t , user i 's electricity consumption from renewable energy and traditional 

electricity is icx  and ifx , respectively. min
icx  and max

icx  are the minimum and maximum value of icx , 

min
ifx  and max

ifx  are the minimum and maximum value of ifx . Based on the electricity consumption of all 

users, the DSM center disseminates the price information to all users. The electricity price allocated to user i  

is denoted as ( , )i ic ifp p=p , where icp  is price of renewable energy and ifp  is price of traditional electricity. 

Then the strategy of DSM center is 1 2[ , , , ]N= ⋅⋅⋅p p p p . Obviously, user i ’s normal cost based on electricity 

consumption is +ic ic if ifp x p x . The dissatisfaction cost is the second cost that evaluates the dissatisfaction level 

of user i . Let ic if ix x d+ = , the function ( )i iF d  is used to express user i ’s dissatisfaction. Let im  be the 

electricity consumption when the satisfaction of user i  is moderate. If user i 's electricity consumption id  

is lower than im , it means that user i  is not satisfied and ( )i iF d  will drop rapidly with the increasing of id . 

Conversely, when the electricity consumption is greater than im , it means user i  is satisfied, and ( )i iF d  

will be negative and decrease with the increasing of id . When i id m= , the dissatisfaction function value is 

zero, which indicates that the user i ’s satisfaction is neutral in the median energy demand [24].  

The function ( )i iF d  is selected in the following formula based on the above description and theory of Yu 

and Hong [24]. 

max 2 max 2( ) ( ) , 0( ) i i i i i ii i iF da d a m d ad = − − − > ,                        (1) 

where max max max
i ic ifd x x= + , ia  is a non-negative parameter.  



 

6 
 

The third part cost is the negative utility caused by using traditional electricity which is denoted by as 

( , )i if iG x b . Holding the similar idea with Samadi et al. [32], we assume that it should satisfy the following 

conditions: 

(1) 
( ),

0if i

if

G x b
x

∂
≥

∂
. That is, users are always interested to consume less traditional electricity if possible. 

(2) 
( ),

0if i

i

G x b
b

∂
>

∂
, which means when ifx  is fixed, the larger ib  brings larger guilt. 

(3) 
( )2

2

,
0if i

if

G x b
x

∂
≥

∂
. It means that the negative utility for user i  cannot get saturated. The more traditional 

electricity they use, the guiltier they feel. 

(4) ( )0, 0iG b = . It shows no traditional electricity consumption brings no guilt. 

So the third part cost is depicted by the following function [22]: 

2( ) , 0i if i if iG x b x b= > .                                     (2)  

Based on the normal cost of user i , formula (1) and formula (2), the total electricity consumption cost of 

user i  is expressed as  

2( , , ) + ( ) , 0, 0.i ic if ic ic if if i i i if i iiu x x p x p x b xdF bµ µ= + + > >p                      (3) 

In formula (3), the parameter iµ  is used to measure user i ’s satisfaction at a specified time slot for 

quantifying the dissatisfaction cost, and different iµ  is selected based on user i ’s preference at different time 

slot. A larger value of iµ  corresponds to the scenario that the user is the less satisfied with the allocated 

electricity. Thus, the users concerned more with improving their satisfaction, namely, reducing dissatisfaction 

cost, which can be achieved by increasing electricity demand. Therefore, user i  needs to solve the following 

problem for minimizing his cost. 

min max

min max

  

 
  

 

min ( , , )

,
s.t.

, 1,2 , , .

i ic if

ic ic ic

if if if

u x x

x x x

x x x i N

≤ ≤

≤ ≤ ∀ = ⋅ ⋅⋅





p

                              (4) 

where user i ’s strategy set is denoted as 

min max min max{ ( , ) | , , , , 1,2, , }  i i ic if ic if ic ic ic if if ifx x x x R x x x x x x i NΩ = = ∈ ≤ ≤ ≤ ≤ ∀ = ⋅⋅⋅x . 

2.2 Revenue of the DSM Center 

Since the revenue of electricity supplier with the DSM center is the sum of all users' electricity cost, the 

revenue function ( , )DSMU p x  of electricity supplier can be denoted as follows: 
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0 2

1 1 1
( , ) [( ) ( ) ] ( ) , 0, 0

N N N

DSM ic c ic if f if i i i if i i
i i i

iU p c x p c x F b x bdµ µ
= = =

= − + − − − > >∑ ∑ ∑p x ,              (5) 

where the second part in the right side is negative since users’ total dissatisfaction cost must be subtracted from 

the total revenue of the supplier. 1 2 1 1 2 2( , ,..., ) (( , ), ( , ),..., ( , ))N c f c f Nc Nfx x x x x x= =x x x x . Besides, cc  and fc  

respectively represent the DSM’s unit cost of purchasing renewable energy and traditional electricity from 

electricity market.
 

Based on all users' electricity consumption, the DSM center needs to maximize its revenue, and then the 

following problem will be solved. 

0    
  ,

    
  ,

max ( , )
0

s.t.
0 1,2, , ,

ic DSM

if D M

DSM

S

p P
U

ip P N

 = ⋅⋅⋅

< <
< < ∀

p x


                            (6) 

where  DSMP  is the maximum value of real-time electricity price. The strategy set of the DSM center is 

denoted as 

2
1 2{ ( , ,..., ) | ,0 ,0 }    D i ic DSM i DSM N f SMp P p PRΩ ∈ < < <= <= p p p p p . 

3. The Leader-follower Game Model for the Personalized Electricity Consumption  
3.1 The Model of User Side with Fairness Preference 

With the improving of living standard and economy, based on the consumption mentality, each user’s 

electricity cost is affected not only by the user himself, but also by the comparison of electricity costs with 

other electricity users. If the electricity cost of user i  is much higher than that of user j  at some time slot, 

user i  will reduce the electricity cost by reducing his own electricity consumption. 

Assuming that each user has fairness preference and the electricity supplier is fair and neutral, based on 

formula (3) in Section 2.1, the user’s utility function with fairness preference is described by introducing a 

reference point. Since the electricity cost is a major factor in the sense of unfairness for each user, the 

electricity cost of other users is taken as the reference point of his electricity consumption, and the parameter 

γ  is introduced as a fairness preference factor [26, 28], then the cost function of user i  with fairness 

preference is generated as follows: 

2

1,

max 2 max 2 2          

( , , ) + ( ) [( ) ( )]

(   1 )( + ) ( ) ( )

(

 

N

i ic if ic ic if if i i ic if ic ic jc jc ic ic jc jc i if
j j i

ic ic if if i i ic if i i i i i i if

j

U x x p x p x F x x p x p x p x p x b x

N p x p x a x x x a m d b x

p

µ γ

γ µ µ

γ

= ≠

= + + + − + − +

= + + + − − − +

−

∑p




1

), 0, 0, 0, 0,
N

c jc jf jf i i i
j

x p x a b µ γ
=

+ > > > >∑   

        (7) 
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where [( ) ( )]ic ic jc jc ic ic jc jcp x p x p x p xγ − + −  indicates that user i  feels unfair if there is a gap between the 

electricity cost of user i  and that of user j . 

Similar to formula (4), it is also necessary to find the optimal electricity consumption 

( ) ( ( ), ( ))i ic ifx x x=p p p  to minimize the user’s cost, i.e., solving the following optimization problem: 

min max

min max

min ( , , )

,
s.t.

, 1,2, , ,

  

 
  

 

i ic if

ic ic ic

if if if

U x x

x x x

x x x i N

≤ ≤

≤ ≤ ∀ = ⋅⋅⋅





p

                            (8) 

where the strategy set of user i  is denoted as  

min max min max{ ( , ) | , , , , 1,2, , }  i i ic if ic if ic ic ic if if ifx x x x R x x x x x x i NΩ = = ∈ ≤ ≤ ≤ ≤ ∀ = ⋅⋅⋅x . 

3.2 The Model of DSM Center 

Considering the user's fairness preference, the revenue function of the DSM center is rewritten as  

2

1 1 1

1 1,

( , ) [( ) ( ) ( ) ( )] ( ( ))

[( ( ) ( )) ( ( ) ( ))].

N N N

DSM ic c ic if f if i i i if
i i i

N N

ic ic jc jc if if jf jf
i j j i

iU p c x p c x F b x

p x p x p x p x

dµ

γ

= = =

= = ≠

= − + − − −

− − + −

∑ ∑ ∑

∑ ∑

p x p p p

p p p p
             (9a) 

However, since  

1 1,

1 1, 1 1,

1

[( ( ) ( )) ( ( ) ( ))]

[( ( ) ( ))] [( ( ) ( ))]

( 1) ( ( )) ( 1) ( ( )) ( 1) ( ( ))

N N

ic ic jc jc if if jf jf
i j j i

N N N N

ic ic jc jc if if jf jf
i j j i i j j i

N

ic ic ic ic if if
i

p x p x p x p x

p x p x p x p x

N p x N p x N p x

γ

γ γ

γ γ γ

= = ≠

= = ≠ = = ≠

=

− + −

= − − −

= − − − − − −

∑ ∑

∑ ∑ ∑ ∑

∑

p p p p

p p p p

p p p




1

( 1) ( ( ))

= 0,

N

if if
i

N p xγ
=

−∑ p



 

i.e., the value of fourth term is exactly zero, we can obtain 

2

1 1 1
( , ) [( ) ( ) ( ) ( )] ( ( )) .

N N N

DSM ic c ic if f if i i i if
i i

i
i

U p c x p c x F b xdµ
= = =

= − + − − −∑ ∑ ∑p x p p p           (9b) 

Similarly, because the DSM center needs to make optimal response for allocating the electricity price ip  

based on the electricity consumption of all users, we must solve the following optimization problem: 

max ( , )
0

s

    
  ,

  
  , 1,2,

t.
0 ,

.
,

ic DSM

if

DS

S

M

D M

P
P i

p
p N

U
< <

 < < ∀ = ⋅⋅⋅

p x

                              (10) 

where  DSMP  is the real-time electricity price, and the strategy set of the DSM center is denoted as 

2
1 2{ ( , ,..., ) | ,0 ,0 }    i ic DSM if DDS N MM Sp p Rp p Pp p PΩ = = ∈ < < < <p . 

3.3 Formulation of Leader-Follower Game Model 

In this section a leader-follower game is developed to study the strategic interaction between the DSM 
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center and residential users, and backward induction is used to obtain the Stackelberg equilibrium according to 

Fudenberg and Tirole [33]. The DSM center maximizes its revenue based on each user’s optimal strategy, and 

then every user reselects his optimal electricity consumption to minimize his cost according to the optimal 

strategy of the DSM center. 

The game is processed as follows: 

(1) The DSM center allocates the electricity price 1 2[ , , , ]N= ⋅⋅⋅p p p p  to each user based on the real-time 

price of smart grid at the previous time slot; 

(2) Each user selects the optimal strategy ( )ix p  from iΩ  according to the electricity price allocated by 

the DSM center so that formula (4) is established, i.e., ( ) arg (n , )mi
i i

i i iU
∈Ω

=
x

p p xx  . 

(3) The DSM center reselects the optimal strategy *p  according to each user's strategy 1( ), , ( )N⋅ ⋅ ⋅ xp px , 

so that formula (6) is established, i.e., 1* arg ( , ( ), ,max ( ))
DSM

DSM NU
∈Ω

= ⋅⋅⋅
p

xp xp p p . 

(4) After the optimal strategy is determined, the DSM center reallocates the electricity price to all users, 

and then all users determine their optimal electricity consumption 1 2( , , , )N
∗ ∗ ∗⋅ ⋅ ⋅x x x . The DSM center and the 

users will repeat process (2) to (4) until the game equilibrium is reached. At last the Stackelberg equilibrium is 

obtained. 

Definition: Let 1 2* ( *, * *)N= ⋅⋅⋅x x x x  be the optimal strategy profile of all users, set 1 2I NΩ = Ω ×Ω ×⋅⋅⋅×Ω , 

* I∈Ωx . The strategy profile ( *, *)p x  is the Stackelberg equilibrium of the proposed leader-follower game if 

and only if the following optimization problem is met. 

( , )
( *, *) arg max ( , *)

DSM I
DSMU

∈Ω ×Ω
=

p x
p x p x                           (11) 

s.t. * arg min ( , ), 1,2, , . 
i I

i i iU i N
∈Ω

= ∀ = ⋅⋅⋅
x

x p x                     (12) 

3.4 The Existence and Uniqueness Analysis of Stackelberg Equilibrium  

For the leader-follower game, we can use the backward induction to obtain its equilibrium. Firstly, 

according to problem (12), the best-response strategies of all users are identified in responding to the 

announced strategy of the DSM center. We then obtain the best strategy of the DSM center based on formula 

(11) given the identified strategies of all users. 

Theorem 1 For the leader-follower game developed between the DSM center and all users, the unique 

Stackelberg equilibrium exists if and only if the following conditions are satisfied. 

(1) The strategy sets of all game participants are nonempty, convex and compact; 

(2) Given a strategy of the DSM center, each user has a unique best-response strategy; 
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(3) Given the identified optimal strategies of all users, the DSM center can admits a unique optimal strategy. 

Proof: (1) According to Section 3.1 and 3.2, we find that the strategy set iΩ  of user i  and the strategy set
 

DSMΩ  of the DSM center are both sets of convex constraints. Obviously, these sets are nonempty, convex, and 

compact [34]. 

(2) We first need to find the best-response strategy of each user according to problem (12), i.e., the user’s 

optimization problem (4). It can be verified that ( , , )i ic ifU x xp  is continuous and differentiable in iΩ  

according to formula (7), which allows us to analyze ( , , )i ic ifU x xp . Given the strategy p  of the DSM center, 

in order to obtain each user’s best-response function, we calculate the first-order derivative of ( , , )i ic ifU x xp  

with respect to icx  and ifx  as 

max( , , )
(1 ) 2 ( )i ic if

ic i i ic if i
ic

U x x
N p a x x d

x
γ γ µ

∂
= + − + + −

∂

p
,                      (13) 

max( , , )
= (1 ) 2 2 ( ).i ic if

if i if i i ic if i
if

U x x
N p b x a x x d

x
γ γ µ

∂
+ − + + + −

∂

p
                   (14) 

Equating (13) and (14) to be zero and solving them yields 

max2 ( ) (1 )
( )

2
i i i if ic

ic
i i

a d x p N
x

a
µ γ γ

µ
− − + −

=p ,                            (15) 

max2 ( ) (1 )
( ) .

2( )
i i i ic if

if
i i i

a d x p N
x

b a
µ γ γ

µ
− − + −

=
+

p                             (16) 

Simplifying (15) and (16), we have the best-response function: 

max

max

(1 ) ( ) (1 ) 2
( )

2

(1 ) (1 )( ) 2
= ,

2

i i if ic i ic i i i i
ic

i i i

i i if i i i ic i i i i

i i i

N a p p N b p a b d
x

a b

N a p N a b p a b d
a b

γ γ µ γ γ µ
µ

γ γ µ γ γ µ µ
µ

− + − − − + +
=

− + − − + + +

p
                (17)

 

(1 )( )
( ) .

2
ic if

if
i

N p p
x

b
γ γ+ − −

=p                                (18)
 

As in real life, ic ifp p> , ( ) 0ifx >p , ( ) 0icx >p , thus,  

2
1 2{ ( , ,...,     ) | ,0 ,0 ( ) 0, ( ) 0, },i ic DSM ifDSM N ic if if icDSMR p pp xp P xPΩ = = ∈ > >< < >< <p p pp pp p . 

Taking the second-order derivatives of ( , , )i ic ifU x xp  with respect to icx
 

and ifx yields 

2

2

( , , )
2 0i ic if

i i
ic

U x x
a

x
µ

∂
= >

∂

p
, 

2

2

( , , )
2 2 0i ic if

i i i
if

U x x
b a

x
µ

∂
= + >

∂

p
. Moreover, user i ’s cost function is strictly 
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convex since the strategy set iΩ  of user i  is convex in the presence of the user's fairness preference. It is 

obvious that ( )ix p  is the unique optimal response to p  and the optimal electricity consumption of user i . 

Therefore, the best-response strategy in terms of (17) and (18) is optimal and unique. Then, condition (2) of 

Theorem 1 is satisfied. 

(3) We next find the DSM center’s best strategy by solving the problem in (11), which is built on the 

users’ identified best-response strategies in (17) and (18). By substituting (17) and (18) into the DSM center’s 

revenue function given in (9b), we have  

max

1

max

( , )

(1 ) (1 )( ) 2 (1 )( )
( ) ( )

2 2

(1 ) (1 )( ) 2 (1 )( )
2 2

DSM

N
i i if i i i ic i i i i ic if

ic c if f
i i i i i

i i if i i i ic i i i i ic if
i

i i i i

U

N a p N a b p a b d N p p
p c p c

a b b

N a p N a b p a b d N p p
F

a b b

γ γ µ γ γ µ µ γ γ
µ

γ γ µ γ γ µ µ γ γ
µ

µ

=

 − + − − + + + + − −
− + − 

  
 − + − − + + + + − −

−

=

+

∑

p x


1

2

1

(1 )( )
.

2

N

i

N
ic if

i
i i

N p p
b

b
γ γ

=

=


 
  

+ − − 
−  

 

∑

∑

 

Since min max min max,ic ic ic if if ifx x x x x x≤ ≤ ≤ ≤ , ( )icx p , ( )ifx p  should satisfy the requirement 

max
min max(1 ) (1 )( ) 2

( ) [ , ]
2

i i if i i i ic i i i i
ic ic ic

i i i

N a p N a b p a b d
x x x

a b
γ γ µ γ γ µ µ

µ
− + − − + + +

= ∈p , 

min max(1 )( )
( ) [ , ].

2
ic if

if if if
i

N p p
x x x

b
γ γ+ − −

= ∈p  

We then find  

min max max2 (1 ) (1 )( ) 2 2i i i ic i i if i i i ic i i i i i i i ica b x N a p N a b p a b d a b xµ γ γ µ γ γ µ µ µ≤ − + − − + + + ≤ , 

min max2 (1 ) (1 ) 2i if ic if i ifb x N p N p b xγ γ γ γ≤ + − − + − ≤ , 

which means  

max max

max min

max

min

(1 ) (1 )( ) 2 2 ,

(1 ) (1 )( ) 2 2 ,

(1 ) (1 ) 2 ,

(1 ) (1 ) 2 .

i i if i i i ic i i i ic i i i i

i i if i i i ic i i i i i i i ic

if ic i if

if ic i if

N a p N a b p a b x a b d

N a p N a b p a b d a b x

N p N p b x

N p N p b x

γ γ µ γ γ µ µ µ

γ γ µ γ γ µ µ µ

γ γ γ γ

γ γ γ γ

− + − − + + ≤ −

− − + + − + + ≤ −

− + − + + − ≤

+ − − + − ≤ −
             

 

Therefore, the optimal strategy of the DSM center in the presence of the user’s fairness preference is:  

2

1 1 1
* arg max ( , ) [( ) ( ) ( ) ( )] ( ( ))

N N N

DSM ic c ic if f if i i i ifi
i i i

U p c x p c x F xd bµ
= = =

= = − + − − −∑ ∑ ∑p p x p p p       (19) 

where 2
1 2* { ( , ,..., ) | ,     , (240 ,0 )}i ic DSM if DSM MDS N p PR p P< < < <∈Ω = = ∈p p p p pp . It is straightforward to find 

that ( , )DSMU p x  is continuous and differentiable in DSMΩ . 
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In order to determine that (19) is the solution for maximizing the DSM center's revenue, we need to 

calculate the Hessian matrix of ( , )DSMU p x . The second derivatives of ( , )DSMU p x  with respect to icp , jcp ,  

ifp , jfp  are computed as  

22
2   ,

  

(1 )( + ) (1 )( + )(1 ) 12 ,( , )
2 2 2

        0   ,  

i i i i i i
i iDSM

i i i i i i i i
ic jc

N a b N a bN NaU
b b a b a bp

j i
p

γ γ µ γ γ µγ γ γ γµ
µ µ

 + − + −+ − + −
− − − −∂  = 

=
∂ ∂

p x

 .j i≠





   

2
2  (1 ) 1 ,( , ) 2

0 ,

     ,

      .

DSM
i i

if jf

j iN N
U b b

p p
j i

γ γ γ γ + − + −
− −∂ =

≠
∂ ∂

=




p x


 

2
2       ,

     

1 (1

   

) ,( ,

     
2

.

)

0,

DSM
i i

ic jf

j iN N
U b b

p p
j i

γ γ γ γ + − + −
+∂ = ∂ ∂

≠


=p x


 

2
2  ,1 (1 ) ,( , ) 2

0,             .

DSM
i i

if jc

jN N
U b b

j
p

i

i
p

γ γ γ γ + − + −
+∂ = ∂ ∂ 



=

≠

p x 


 

Denote the Hessian matrix of ( , )DSMU p x  by 11 12

21 22

A A
A A

 
=  
 

A , where  

( )
2

11 11
11

(1 ) 1 ,
, 2

0

 ,

      , .
ij ij i i

N N j i

j
a a b b

i
A

γ γ γ γ + − + −
− −= = 



=

≠




 

( )
2

12 12
12

1 (1 ) ,
, 2

0,

  ,

             .
ij ij i i

j i

j i

N N
A a a b b

γ γ γ γ + − + −
+= = 




=

≠
 

( )
2

21 21
21

1 (1 ) ,
, 2

0,

 ,

             .
ij ij i i

N N
A

j i
a

j i
a b b

γ γ γ γ + − + −
+= = 

=


 ≠





( )
22

22

(1 )( + ) (1 )( + )(1 ) 12 ,, 2 2 2
0,

  ,

             

i i i i i i
i i

ij ij i i i i i i i i

N a b N a bN NaA a a b b a b a b
j iγ γ µ γ γ µγ γ γ γµ

µ µ
 + − + −+ − + −

− − − − 


=
= = 

  

  .j i




 ≠ 

 

The congruent transformation matrix of matrix A  is denoted as ( )1 2, , Ndiag b b= ⋅⋅⋅B , where  

11
1 2 ... ,N iib b b a= = = =  
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21 2
1 22

1 2 2 11

22

(1 )( + )(1 ) 1... = 2
2 2 2

(1 )( + ) (1 )( + )1 (1 ) 12
2 2 2

(1


ij i i i

N N N ji ii i i
ij i i i i i

i i i i i i
i i

i i i i i i i i i

a N a bN Nb b b a a a
a b b a b

N a b N a bN N Na
a b b b b a b

γ γ µγ γ γ γµ
µ

γ γ µ γ γ µγ γ γ γ γ γµ
µ µ

γ

+ +

 + −+ − + −
= = = = − + − − − 

 

 + − + −+ − + − + −
− + + = − − 

 
+

−
)( + ) 1 .i i i

i i i i

N a b N
a b b
γ µ γ γ
µ

− + −
+

 

Considering 

(1 )( + ) (1 )1 1 1 1 0i i i i i

i i i i i i i i i i

N a b N aN N N N
a b b a b b b b

γ γ µ γ γ µγ γ γ γ γ γ γ γ
µ µ

+ − + −+ − + − + − + −
− + < − + = − + = , 

we then obtain 1 2 2... 0N N Nb b b+ += = = < . Therefore, matrix B  is strictly negative definite, implying that the 

Hessian matrix A  of ( , )DSMU p x  is also strictly negative definite in view of the congruent relationship of A  

and B . Hence, ( , )DSMU p x  is a strictly concave function in DSMΩ , i.e., the problem in (19) is a convex 

optimization problem that can be solved using convex programming methods [34]. Meanwhile, the best 

strategy *p  for the problem in (19) is determined to be unique based on the strictly negative definite Hessian 

matrix A . As a result, condition (3) of Theorem 1 is satisfied.  

Once the DSM center’s unique optimal strategy *p  is determined, the optimal strategies of all users can 

be subsequently identified according to (17) and (18). Finally, the strategy profile ( *p , *x ) constitutes the 

unique Stackelberg equilibrium of the proposed leader-follower game. It is then straightforward to show that 

Theorem 1 holds when conditions (1)-(3) are satisfied. The proof of Theorem 1 is then completed. 

Since the analytical solutions exist for both the DSM center and the users according to the proof of 

Theorem 1, the Stackelberg equilibrium can be directly obtained using the backward induction. Moreover, the 

Stackelberg equilibrium is unique and optimal.  

4. Numerical Simulations  
4.1 Simulation Scenario and Parameter Setting 

This section reveals the numerical results for our RTP scheme, which help evaluate its performance. A 

regional electricity market of smart grid with three users is considered for our simulation. Each user procures 

both renewable energy and traditional electricity from the same DSM center of an electricity supplier. The set 

of users is denoted as { }1,2,3= . Note that our findings can apply to any electricity market that serves more 

than three users; and, we consider three users in our simulation only for a clear presentation of simulation 

results. 

The values of relevant parameters are listed in Tables 1 and 2. In addition, 1 [2.1,2.2]m ∈ , 2 3, [2,2.1]m m ∈ , 

1 3, [0.3,0.31]a a ∈ , 2 [0.31,0.32]a ∈ , and 1 2 3 [0.08,0.09]b b b ∈，， . The parameter values are particular to this 

simulation, which may vary according to different local electricity markets or different types of users. 
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However, the change does not distort our analytic results. Next, we examine various aspects to evaluate the 

performance of our RTP scheme. 

Table 1. Values of relevant parameters. 

Parameter Value 
min

ifx  0.5 
min

icx  0.5 
max

ifx  4.2 
max

icx  4 
cc  0.5 
fc  0.3 
γ  0.3 

 DSMP  4 

Table 2. Values of iµ  at different time slots. 

Time 0:00-9:00; 23:00-24:00 9:00-13:00; 19:00-23:00 13:00-19:00 
iµ  0.18 0.17 0.16 

 

4.2 Simulation Result 

Based on the above scenarios and parameters, we first obtain the prices in Stackelberg equilibrium for 

each time slot (one hour), as is given in Figure 2. We can observe that the peaks of electricity prices are 

consistent with those in reality, which validates the RTP scheme. The renewable electricity prices and 

traditional electricity prices have little fluctuation (the difference between peak and valley electricity price is 

less than 0.04 cents), which indicates that our RTP scheme is in line with practices and ensures the stability of 

electricity prices. We note that the cost of renewable energy from electricity market is higher than that of 

traditional electricity, which is due to the uncertainty of renewable energy. Then, the price of renewable 

electricity is higher, moreover, the users’ dissatisfaction decrease faster ( max2 ( ) 0i
i i

i
i

F da d
d

−
∂

= ≤
∂

，greater ia  

makes iF  drop faster). The DSM center charges user i  a higher price for a greater revenue, because a larger 

value of ia  means that it is easier for user i  to feel satisfied with his electricity consumption.  

Since the DSM center hopes to not only secure its own revenue but also meet the users’ electricity 

demand, which are both involved in its revenue function, the revenue of the DSM center decreases if the 

dissatisfaction of users increases. Figure 2 demonstrates that the prices of traditional and renewable energies 

are both less than their costs, which entices the DSM center to care more about the users’ dissatisfaction than 

its own revenue. 
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Figure 2. The users’ optimal prices at the equilibrium allocated by the DSM center. 

Figures 3 and 4 show the hourly optimal renewable/traditional electricity demand and total energy 

demand of each user in Stackelberg equilibrium under the RTP scheme, respectively. From Figure 3, we learn 

that the difference among traditional electricity demands of three users is not conspicuous, whereas the 

difference among renewable electricity demands is larger. As shown in Figure 4, the user with a greater value 

of ia  consumes more electricity. This occurs because a greater value of ia  makes the value of iF  drop 

faster, which makes the user more satisfied and thus incentivizes them to buy more electricity. Moreover, the 

peak and valley distributions of electricity demands are influenced by iµ . The electricity demands at time 

slots with a smaller value of iµ  are higher than those with a greater value of iµ , which is consistent with our 

assumption in Section 2.1 (i.e., a smaller value of iµ  causes a higher satisfaction for the user, thus achieving 

more electricity demand). 
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Figure 3. Optimal renewable/traditional electricity demands of the users at the equilibrium. 
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Figure 4. Optimal total electricity demands of the users at the equilibrium. 

Figure 5 and Figure 6 show all users’ costs and the DSM center’s revenue at the equilibrium, respectively. 

As can be seen from Figure 5, the user with a larger value of im  incurs a higher cost of consuming electricity. 

That is, a greater value of im  means that ceteris paribus, using the same amount of electricity generates a 

higher dissatisfaction and a greater cost. We also note from Figure 6 that the segment change of the DSM 

center’s revenue is obvious, and the peak and valley distributions are synchronized with the optimal electricity 

prices, electricity demands, and the values of iµ  in Stackelberg equilibrium. 
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Figure 5. Costs of the users at the equilibrium. 
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Figure 6. Revenue of the DSM center at the equilibrium. 

4.3 Sensitivity Analysis 

4.3.1 Sensitivity Analysis about Dissatisfaction Parameter iµ  

We use the parameter values of Table 1 and scenarios in Section 4.1, and set other values of relevant 

parameters as 2im = , 0.08ib = , 1 2 30.03, 0.35, 0.25a a a= = = , 1 2 30.16, [0,022,1]µ µ µ= = ∈ . Next, we 

investigate the influence of 3µ  on the optimal electricity prices, electricity demands, and the users’ costs, as 

well as the DSM center’s revenue. 

Figure 7 presents how 3µ  affects the price of renewable/traditional electricity in Stackelberg equilibrium, 

and Figures 8 and 9 depict the influence of 3µ  on the resulting renewable/traditional electricity demands and 

total electricity demands in equilibrium. We find that both renewable energy price and traditional electricity 

price of user 3 increase with 3µ , whereas the prices for users 1 and 2 do not change. This reflects the fact that 

user 3 is less satisfied. It thus follows that iµ  has a positive impact on the electricity price. From Figures 8 

and 9, we find that the renewable/traditional electricity demand and total electricity demand of user 3 are also 

increasing with 3µ . We conclude that when user 3 is more dissatisfied, he is more willing to consume 

electricity, which may lead to an increase in price. Note that the increase of the optimal price and the resulting 

electricity demand resulting from the influence of 3µ  do not mean that an increase in electricity demand is 

caused by an increase in electricity price.  
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Figure 7. Influence of 3µ  on optimal prices at the equilibrium. 
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Figure 8. Influence of 3µ  on the users’ traditional/renewable electricity demands at the equilibrium. 
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Figure 9. Influence of 3µ  on the users’ total electricity demands at the equilibrium. 

From Figure 10, we find that the revenue of the DSM center begins with slightly diminishing and then 
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increases when the value of 3µ  rises. Figure 11 indicates that the cost of user reaches its maximum value first, 

and then decreases until it reaches its minimum value. Obviously, the dissatisfaction of users has a great 

influence on the DSM center’s revenue. Moreover, since the cost of user is divided into four parts: normal cost, 

dissatisfaction cost, guilt cost, and unfairness cost, 3µ  mainly affects the second part. A greater value of 3µ  

results in a larger value of 3x  (see Figure 9), which makes the user’s dissatisfaction higher. When the value of 

3x  is sufficiently large, 3F  is negative and the revenue of the DSM center rises firstly. Figure11 also shows 

that parameter 3µ  influences all users’ costs. The change of 3µ  mainly affects electricity demand of user 3, 

which also has a direct effect on unfairness costs of users 1 and 2. 
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Figure 10. Influence of 3µ  on DSM center’s revenue at the equilibrium. 
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Figure 11. Influence of 3µ  on costs of the users at the equilibrium. 

4.3.2 Sensitivity Analysis about Unfair Parameter γ  

To investigate the influences of γ  on the optimal electricity prices, electricity demands, and costs of the 

users, as well as the DSM center’s revenue, we change the values of parameters iµ  and γ  in Section 4.3.1 
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as 0.16iµ = , [0,1]γ ∈ .   

Figure 12 shows how γ  affects the optimal renewable/traditional electricity prices. As Figure 12 

exposes, both renewable electricity price and traditional electricity price decrease when the value of γ  

increases. This reflects the negative effect of γ , which occurs because a larger value of γ  brings about a 

higher unfairness cost if the user consumes the same amount of traditional electricity, and the DSM center thus 

has to set a higher price to decrease the electricity demand and thus reduce the unfairness cost of the user. As 

Figures 13 and 14 show, the renewable electricity demand of the user decreases whereas the traditional 

electricity load increases with γ . The increase of traditional electricity demand is more than the decrease of 

renewable electricity demand. Due to the concern about fairness, the users feel more unfair with the increase of 

γ , thus consuming less electricity. 
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Figure 12. Influence of γ  on optimal electricity prices at the equilibrium. 
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Figure 13. Influence of γ  on traditional/renewable electricity demands at the equilibrium. 
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Figure 14. Influence of γ  on the users’ electricity demands at the equilibrium. 
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Figure 15. Influence of γ  on DSM center’s revenue at the equilibrium. 
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Figure 16. Influence of γ  on costs of the users at the equilibrium. 

We can learn from Figures 15 and 16 that both the DSM center’s revenue and the costs of users decrease 

as γ  increases. In fact, as Figure14 indicates, the electricity demands of users decrease due to the increase of 
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γ , which lowers the normal costs of users and the revenue of the DSM center.  

4.3.3 Sensitivity Analysis about Guilt Parameter ib  

In this section, we investigate the influence of ib  on the optimal electricity prices, electricity demands, 

and user costs, as well as the DSM center’s revenue. The values of parameter ib  and iµ  in Section 4.3.1 are 

changed to 0.16iµ = , 1 2 0.08b b= = , 3 [0,0.55]b ∈ . 
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Figure 17. Influence of 3b  on optimal electricity prices at the equilibrium. 
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Figure 18. Influence of 3b  on traditional/renewable electricity demands at the equilibrium. 
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Figure 19. Influence of 3b  on users’ total electricity demands at the equilibrium. 

According to Figures 17-19, 3b  has a small effect on the optimal electricity prices and demands of other 

users. However, 3b  has a positive effect on the optimal renewable electricity price of user 3 whereas it has a 

negative effect on his optimal traditional electricity price and electricity demand. As shown by (2), a 

consumption of the same amount of electricity can brings about a greater guilt cost if the value of ib  

increases. Thus, when the value of 3b  increases, user 3 has to reduce his traditional electricity demand to 

lower the guilt cost. The DSM center responds by charging user 3 a lower traditional electricity price to entice 

him to consume more electricity. Meanwhile, user 3 increases his renewable electricity procurement to meet 

his electricity demand. The DSM center then sets a higher renewable electricity price for a greater revenue. 

However, the higher price finally leads to a decrease of total electricity demand, which results in the decrease 

of the DSM center’s revenue, as shown in Figure 20. Especially, the DSM center’s revenue drops faster when 

3b  is larger than 0.4 because the electricity demand of user 3 drops faster at that time. The reason is that when 

user 3 is more concerned about guilt caused by using traditional electricity, he incurs a larger guilt cost. As 

Figure 21 reveals, the increase of 3b  can affect not only user 3’s cost but also other users’ costs. This is due to 

the fact that the change of 3b  affects the traditional electricity demand 3 fx  of user 3, and then has a direct 

impact on the unfairness costs of users 1 and 2. 
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Figure 20. Influence of 3b  on DSM center’s revenue at the equilibrium. 
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Figure 21. Influence of 3b  on costs of the users at the equilibrium. 

4.4 Comparative Analysis 

In this section, we evaluate our RTP scheme. From the perspectives of peak load reduction and price 

stabilization, the CPP scheme relevant to renewable energy can reduce the peak-to-average ratio by up to 22%, 

while the RTP scheme relevant to renewable energy can reduce the peak-to-average ratio by 26.55% [35]. 

Moreover, as mentioned in [36], the CPP scheme can considerably reduce the operation cost of microgrids and 

control the peak-to-valley load difference to 18.29%. The PLP scheme [37] can also obviously cut peaks and fill 

valleys. However, the above CPP and PLP schemes make it impossible to recover the cost of generating 

renewable resources. If subsidy incentives are provided, then the optimal results can be changed by the 
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incentive schemes. Differently, the RTP scheme proposed in this paper can control the peak-to-valley price 

difference for electricity loads to less than 0.4 cents, which shows that the RTP scheme can ensure the stability 

of electricity price, so as to maintain the revenues of all market partners. 

Similar to this paper, Dai et al. [38] developed a leader-follower game for studying the RTP scheme, and 

designed two iterative algorithms to solve their game model. They found that the RTP scheme may ease the 

valley to peak power loads, and the fluctuation of electricity price is within 2.5. However, Dai et al. [38] did not 

consider the user consumption behavior nor do they conduct research under renewable energy. Observing this, 

we introduce the dissatisfaction and fairness preference to the utility function of user, and quantify the guilt of 

user consuming traditional energy. Both renewable and traditional energies are supplied for sustainable 

development and stable electricity prices. This makes our research results more applicable to real operations. 

In addition, we obtain analytical Stackelberg equilibrium. 

Today, China is staying in a transitional period of energy conversion, and many users are choosing 

renewable energy in addition to traditional energy. This is consistent with our analysis that involves both 

renewable energy and traditional energy. Moreover, noting the lack of researches about behavior analysis in the 

existing RTP scheme, we introduce one more complex personalized electricity consumption behaviors of users 

to our game model. This breaks through the limitations of existing researches regarding the user behavior [22], 

which better stabilizes electricity prices and balances supply and demand. 

5. Conclusion 

This paper proposes a RTP scheme to improve the management of personalized electricity consumptions in 

a smart grid market where the users consume both traditional and renewable energies. We develop a 

leader-follower game to study the strategic interaction between the DSM center and residential users, and use 

the backward induction to obtain the Stackelberg equilibrium. The DSM center maximizes its revenue based 

on each user’s optimal strategy, and each user then reselects his optimal electricity consumption to minimize 

his cost as a response to the optimal strategy of the DSM center. Finally, we set the scenarios and parameters 

for our numerical simulations and sensitivity analysis. According to our findings, we summarize the 

conclusions below.  

(1) The dissatisfaction in the users’ personalized electricity consumption has a positive effect on the 

electricity price and a negative effect on the electricity demand. When the dissatisfaction increases faster, then 

the price of renewable electricity is higher but the revenue of the DSM center changes with a concave 

appearance. 
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(2) The fairness preference factor has a negative effect on the DSM center’s revenue and two kinds of 

different electricity prices. Moreover, the more users concern about fairness, the less electricity they consume. 

When the fairness preference factor increases, traditional electricity load increases whereas renewable energy 

load decreases. Nonetheless, the increased amount of traditional electricity load is no more than the decreased 

amount of renewable energy load.  

(3) The change of user’s guilt factor using traditional electricity has a small effect on the optimal prices 

and loads of other users, but has a positive effect on his own optimal renewable electricity price and negative 

effect on his own optimal traditional electricity price and demand. In addition, the increase of guilt factor can 

affect all users’ costs. 

The RTP scheme in this paper provides a new research direction for the personalized pricing in an 

electricity market with renewable energy. First, this model takes into account the dissatisfaction of electricity 

consumption on the user side, which personally measures the satisfaction of each user on electricity 

consumption and is involved in the user cost function. Secondly, the users feel guilty when using traditional 

electricity, which is more in line with the current concept of low-carbon life and sustainable development. 

Finally, the fairness preference is also considered in our model. Thus, the user’s cost function can be analyzed 

more accurately since one user’s electricity cost is affected by the electricity consumption of other users who 

have personalized electricity consumptions. 

This paper involves some factors along with personalized electricity consumptions in the RTP study with 

traditional and renewable energies. However, it does not consider the instability of renewable energy 

generation. If the users are more inclined to renewable energy due to the guilt of using traditional electricity, 

then the large amount of electricity demand may lead to a shortage of supply. How to solve this dilemma and 

focus on the intermittent and volatile effects of renewable energy generation may be an important subject in 

our research calendar. 
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