
Joint Pricing and Contingent Free-Shipping Decisions
in B2C Transactions

Mingming Leng
Department of Computing and Decision Sciences, Lingnan University, Tuen Mun, Hong Kong, mmleng@ln.edu.hk

Rafael Becerril-Arreola
Department of Marketing, Anderson School of Management, University of California, Los Angeles, California 90095, USA,

rafael.becerril.2013@anderson.ucla.edu

We consider an online retailer’s joint pricing and contingent free-shipping (CFS) decisions in both monopoly and
duopoly structures, which is an important marketing-operations interface problem. We begin by investigating the

impacts of a retailer’s decisions on consumers’ purchase behaviors, and show that the CFS strategy is useful to acquire
the consumers with large order sizes. Then, we compute the probability of repeated purchases, and construct an expected
profit function for an online retailer in the monopolistic setting. We find that the fixed shipping fees may have the largest
impact on the retailer’s profit among all shipping-related parameters, and the retailer can benefit more from homoge-
neous markets than from heterogeneous ones. Next, we consider the competition between two retailers in the duopoly
structure, and analytically show that, if two retailers have identical fixed and variable shipping fees, then their equilibrium
decisions are equal. In order to numerically find a Nash equilibrium for two retailers, we develop a simulation approach
using Arena and OptQuest. Our simulation-based examples suggest that, as a result of the competition, the two retailers
should decrease their profit margins but increase their CFS cutoff levels if they have the same fixed and also the same variable
shipping fees.
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1. Introduction
Free shipping (FS) has proved to be significantly
effective in improving online retailing operations. In
addition to traditional price discounts, many online
retailers offer free-shipping promotions to consumers
whose purchases exceed a given dollar amount. This
paper investigates whether, when, and how price and
shipping promotions boost online retailers’ profits.
The significance of this research stems from the in-
creasing importance of online retailing (see US Census
Bureau News 2007) and the prominence of online
sales during certain shopping periods (such as holi-
day shopping seasons). For example, a large number
of consumers choose the Internet to make online pur-
chases during holiday shopping seasons. LeClaire
(2006) indicated that around 75% of holiday shoppers
buy their holiday gifts online, and nearly a third of
holiday shoppers do half or more of their holiday
shopping on the Internet. Holiday sales are crucial to
online retailing. Moreover, as Dilworth (2006) re-
ported, 78% of US small business owners that operate
online shopping sites have stated that revenues gen-

erated from online shopping during the December
holiday season make up a large percentage of their
annual revenues. Online retailers are nonetheless dis-
advantaged as compared with offline merchants. In
particular, online stores are currently less efficient
than physical stores, since, as Moe and Fader (2004)
estimated, their rates of conversion (defined as the
percentage of online visitors that are converted into
consumers) rarely exceed 5%. Although such ineffi-
ciency results largely from the low cost of visiting
online stores (Moe and Fader 2004), it is also signifi-
cantly driven by shipping fees, which may deter
consumers. The impact of shipping fees on order in-
cidence is forceful. Market research showed that from
52% (refer to Direct Marketing Association’s report
2004) to 60% (refer to Jupiter Communications’s re-
port 2001) of online visitors abandon their online
shopping carts when presented with shipping and
handling fees.

To mitigate the negative impacts of shipping fees on
conversion rates, online retailers (hereafter, simply
referred to as retailers) implement a variety of ship-
ping policies. The three most common ones are

390

PRODUCTION AND OPERATIONS MANAGEMENT
Vol. 19, No. 4, July–August 2010, pp. 390–405
ISSN 1059-1478|EISSN 1937-5956|10|1904|0390

POMS
DOI 10.3401/poms.1080.01112

r 2009 Production and Operations Management Society

mailto:mmleng@ln.edu.hk
mailto:rafael.becerril.2013@anderson.ucla.edu


unconditional FS (UFS), contingent FS (CFS), and
shipping fees that increase with order size. Under the
UFS policy, a retailer absorbs the shipping costs for all
orders. When CFS applies, the retailer pays the ship-
ping fees but only for orders with a value equal to or
above a predefined cutoff level. Under the third pol-
icy, all consumers are responsible for the shipping fees
that increase with purchase values. Lewis (2006)
showed that, among the three policies, CFS is the
most effective in increasing the revenues of the retail-
ers. From the 2007 survey (Advertising.Com 2007) of
Advertising.com, we find that around 67% of con-
sumers consider FS as the most enticing promotion
offered by online retailers.

The degree of effectiveness of a CFS policy depends
on the choice of the cutoff level. On the one hand, a
high cutoff level exempts the retailer from a large part
of the total shipping expenses and entices consumers
to consolidate multiple orders into one, which can re-
duce the retailer’s operational and shipping expenses.
On the other hand, this high cutoff level may also
hamper the arrival of some potential consumers by
pushing them to spend more in order to qualify for
FS. As Lewis (2006) and Yang (2006) showed, the
number of online consumers decreases when the FS
cutoff level increases, and vice versa. Although a low
CFS cutoff level favors a large number of orders, it
also imposes significant shipping costs on the retailer.
For example, Amazon.com introduced everyday CFS
in January 2002 and the firm, since then, has gradually
lowered the minimum qualifying purchase amount.
As a result, the firm’s net shipping costs as a percent-
age of its net consolidated sales have almost steadily
increased from 0.61% in 2001 to 1.02% in 2002, 2.58%
in 2003, 2.85% in 2004, 2.82% in 2005, and 2.96% in
2006; see Amazon.com’s annual reports. The financial
burden that online retailers contract by implementing
UFS and CFS could be compensated by inflated
prices. However, higher prices also have a detrimen-
tal effect on order incidence. For recent discussions on
pricing decisions in the retailing industry, see Cho
et al. (2009), Ketzenberg and Zuidwijk (2009), etc.
Thus, when an online retailer adopts the CFS strategy,
he should deal with the trade-off between the follow-
ing two issues: (i) a high CFS threshold deters
consumers from placing online orders and (ii) a low
CFS cutoff level imposes high operational and ship-
ping expenses on the retailer. How should the retailer
take this trade-off into consideration and maximize
his expected profit when choosing the price and ship-
ping promotion for a single shopping period? This is a
marketing-operations interface problem, because pric-
ing and shipping promotion levels impact operational
and shipping expenses and vice versa.

Heuristic experimentation has been used by retailers
in practice to search for their optimal cutoff levels (see

Aimi 2006, Regan 2002). Two recent academic papers
are concerned with the analysis of CFS decision-mak-
ing problems in two different settings. Leng and Parlar
(2005) considered a CFS decision problem in business-
to-business (B2B) transactions, where an online seller
announces his cutoff level decision and a buyer
chooses her purchase amount. Accordingly, this prob-
lem was modeled as a leader–follower game in which
the seller and the buyer act the roles of the leader and
the follower, respectively. The authors solved the game
to find the Stackelberg equilibrium. Yang (2006) con-
sidered a free shipping and repeat buying problem, in
which a rational and cost-minimizing online shopper
responds to both the price and the CFS threshold de-
termined by a retailer. However, Yang (2006) con-
sidered a single consumer, and investigated only this
consumer’s purchasing decision problem rather than
the retailer’s free-shipping decision problem.

In this paper, we develop a two-stage model in
a business-to-consumer (B2C) setting to capture the
aggregate purchase behaviors of heterogeneous con-
sumers, and characterize the relationship between the
retailer’s pricing and CFS decisions and his single-
period expected profits. More specifically, we first an-
alyze a consumer’s net surplus function in a single
transaction, which is computed as the consumer-spe-
cific utility minus his or her purchase-related expense.
To reflect the diverse preferences and incomes of con-
sumers, we introduce a random parameter into the
consumer’s utility function. Then, we maximize the
net surplus function to forecast the consumer’s pur-
chase amount, and compute the conversion rate, i.e.,
the probability that a consumer buys products online.

Using our analytical results for a consumer’s pur-
chase amount, we develop the repeat buying model,
and then analyze a monopolistic problem in which a
single retailer seeks the optimal price and CFS cutoff
level that maximize his expected profit for a single
period. We perform sensitivity analyses to draw some
important managerial insights; for example, we find
that an online retailer should set its fixed shipping fee
to zero but increase its variable shipping fee, because
the impact of the fixed shipping fee on the retailer’s
profit is the largest compared with other shipping-
related parameters. Then, we consider the duopoly
structure in which two retailers compete for consum-
ers in a market. We analytically show that, if the two
retailers set the same fixed and variable shipping fees,
then their equilibrium profit margins and CFS cutoff
levels are symmetric; this important managerial in-
sight is illustrated by our numerical examples. We use
Arena and OptQuest to simulate several duopoly
games and find their Nash equilibria. Note that Arena
is a simulation and automation software application
commonly used for the simulation of business pro-
cesses; OptQuest is a software add-in for Arena used
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to optimize such processes. Our simulation approach
is helpful to solve those non-cooperative games that
are too complicated to analyze algebraically.

The remainder of our paper is organized as follows:
section 2 provides a preliminary discussion about our
modeling approach for an online retailer, and section 3
concerns our analysis of a consumer’s purchasing de-
cision in a single transaction. We then examine
optimal decisions for an online retailer for the monop-
oly structure in section 4 and the competition between
two retailers in section 5. This paper ends with a sum-
mary of our major managerial insights in section 6.

2. Preliminaries
In this section, we provide a preliminary discussion
about our modeling approach for an online retailer in
the monopoly and duopoly structures. For both cases,
we consider a joint pricing and free-shipping decision
problem of the retailer who sells multiple products of a
single category and offers a CFS promotion in a mar-
ket during a single period. We assume that all
products for sale at an online retailer belong to a sin-
gle category. Moreover, as Gupta (1991) discussed, in
almost all marketing applications, the covariate values
—i.e., prices and other variables that affect purchase
rates—remain constant for a time interval (e.g., a
week). Accordingly, it is assumed that the single pe-
riod is short enough for static pricing (as opposed to
dynamic pricing) to be the most appropriate strategy.

Since the online retailer sells n products, it has to
determine n optimal prices. Note that, as discussed
above, these n products that are sold by the online
retailer are in a single category. Like a number of
scholars in both the marketing and the operations
management areas, use the concept of profit margin to
make the pricing decisions for the online retailer. The
profit margin for a product is defined as the ratio of
the retailer’s per unit profit to its unit acquisition cost.
As a result, given the profit margin and the unit ac-
quisition cost for a product, we can easily compute the
selling price for the product. More specifically, we
denote the retailer’s profit margin of product i
(i 5 1, 2, . . ., n) by mi and the retailer’s unit acquisition
cost of the product by ci. The unit (marginal) profit of
the product is mici, and its price pi can be computed as
pi 5 (11mi)ci. As some marketing scholars (e.g., An-
derson et al. 1992, Blattberg and Neslin 1990) have
shown, the profit margins of different products in the
same category are typically identical and setting a
uniform margin has been a common pricing rule for
retailers. Therefore, it is reasonable to assume that the
retailer applies an identical profit margin m to n prod-
ucts belonging to a single category. As a result,
making the pricing decisions for these n products is
equivalent to determining a single profit margin m.

Using this modeling approach, we find that, if the
online retailer makes an optimal decision on the profit
margin m, the retailer can then easily determine its
prices for all of n products in the category. For recent
applications of this modeling approach to marketing-
operations problems, see Cachon and Kok (2007),
Dong et al. (2009), etc.

We notice that, during the single period, each con-
sumer may repeat his or her purchase (see, e.g.,
Ehrenberg 1988). When repeat-buying occurs, a con-
sumer may make multiple online transactions with
possibly correlated purchase amounts. As a result, we
cannot assume independence between the transactions
of a given customer. Thus, for each consumer, we need
to consider the probability of multiple purchases and
compute the expected number of purchases. We as-
sume that consumers do not influence each other when
they buy products online, such that the purchase
amounts of different consumes are independent.

In practice, the cutoff levels for CFS promotions are
measured in terms of the value of the purchase. For
example, the CFS cutoff levels set by Amazon.com
and Barnesandnoble.com are both equal to US$25.
Accordingly, in our problem formulation, the retailer
announces a CFS cutoff level in US$, and offers the
free shipping service to every consumer with a total
purchase amount (also measured in US$) no less than
the CFS threshold. A consumer’s online purchasing
process is described as follows: At first, the consumer
browses the website of the retailer and collects the
prices of the products (in which the consumer is in-
terested) and the shipping-related information. Then,
the consumer determines his or her optimal purchase
quantity of each product. If the purchase quantity of
every product is zero, then the consumer abandons
the shopping cart, leaves the retailer, and buys the
product(s) from a brick-and-mortar store or another
source. Otherwise, the consumer completes an online
transaction with the retailer but may or may not qual-
ify for free shipping. In particular, when the con-
sumer’s total purchase amount (i.e., the consumer’s
purchase cost for all products that he or she buys) is
greater than or equal to the retailer’s CFS cutoff level,
the consumer qualifies for FS and is not responsible
for the shipping fee. On the other hand, when the
purchase amount is less than the CFS threshold, the
consumer pays the shipping fee. Note that, when a
consumer repeats his or her purchase, the CFS policy
applies to the consumer’s purchase amount of each
transaction rather than to the cumulative amount of
all repeated transactions. For example, if the CFS cut-
off level is US$100 and a consumer makes two
purchases each for an amount of US$60, then the
consumer does not qualify for free-shipping service in
either transaction. Since the concept of ‘‘shipping fee’’
is important to our paper, we define it below.
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DEFINITION 1. Shipping fee is the amount that a consumer,
who does not qualify for CFS in a single transaction, pays
to the retailer for the delivery of the products sold.

We assume that, in the market that the online re-
tailer serves, there is a finite consumer base B con-
sisting of some consumers who may buy the retailer’s
products. The concept of ‘‘consumer base’’ has been
widely used to analyze the impact of marketing strat-
egies on consumer behavior; e.g., Lewis et al. (2006)
considered a consumer base that includes 1000 con-
sumers and presented an empirical study regarding
the effects of shipping costs on consumer behavior.
Whether or not a consumer is likely to complete an
online purchase and possibly pay the shipping fee
depends on his or her income and willingness to
spend in the purchase of this product. Like previous
works (e.g., Braden and Oren 1994, Gajanan et al.
2007, Sarvary and Parker 1997, etc.), this research ac-
counts for preferences, income, and other hetero-
geneous consumer characteristics by introducing a
non-negative i.i.d. random parameter yi (i 5 1, 2, . . ., n)
into the consumer-specific net-surplus function. A
high value of yi implies that the consumer places a
high value on product i and that he or she can afford
to spend a relatively high amount of money to acquire
it. In contrast, a low value of yi implies that the con-
sumer is relatively indifferent to product i or that he
or she can spend only a relatively low amount of
money to buy it.

Next, we examine a consumer’s purchasing deci-
sion in a single transaction, and then consider a
monopoly structure in which a single retailer deter-
mines its optimal decisions to maximize its expected
profit. We also investigate the competition between
two retailers in a duopoly structure.

3. Purchasing Decision of a Consumer
in a Single Online Transaction

We now investigate the purchasing decision of a con-
sumer in a single transaction, given the pricing and
CFS decisions of an online retailer. We first develop
the consumer’s net surplus function, and then max-
imize the net surplus to find the consumer’s optimal
purchase quantity of each product and optimal pur-
chase amount (that the consumer spends for his or her
online purchase). In addition, we analyze the impacts
of the retailer’s pricing and CFS decisions on the con-
version rate (i.e., probability that a consumer buys in
an online transaction).

3.1. Net Surplus Function of a Consumer
We propose a net surplus function for a consumer with
product-specific parameters yi (i 5 1, 2, . . ., n) and max-
imize it to determine the consumer’s optimal purchase
quantities of n products, given the retailer’s profit

margin m and CFS cutoff level x. When the consumer
buys qi units of product i from the retailer, the con-
sumer obtains a consumption utility U(q1, q2, . . ., qn|y1,
y2, . . ., yn) (a.k.a. ‘‘gross surplus’’; see, e.g., Cremer et al.
2001). Since the consumer’s product-specific parame-
ter yi affects only his or her purchasing decision on
product i, we can write the consumer’s utility function
U(q1, q2, . . ., qn|y1, y2, . . ., yn) as the sum of the con-
sumer’s utilities for all products, i.e.,

Uðq1; q2; . . . ; qnjy1; y2; . . . ; ynÞ ¼
Xn

i¼1
LiðqijyiÞ; ð1Þ

where LiðqijyiÞ is the utility of the consumer with spe-
cific parameter yi who consumes qi units of product i.
Such an additive form has been commonly used to
model a consumer’s consumption utility (see, e.g.,
Chung 1994, Coto-Millán 1999, etc.). As commonly
assumed, the utility function LiðqijyiÞ is positive, in-
creasing and concave in qi; that is, Lið0jyiÞ ¼ 0,
LiðqijyiÞ � 0, L0iðqijyiÞ � 0, and L00i ðqijyiÞ � 0. (For a de-
tailed discussion on utility functions, see Chung 1994,
Coto-Millán 1999.) Since, for a fixed quantity qi, a con-
sumer with a large value of yi should draw a utility
higher than that drawn by a consumer with a small
value of yi, the utility function LiðqijyiÞ is increasing in
yi (see Tirole 1992). In our paper, we assume that the
consumer’s utility function is linear in the parameter yi

and in the square root of the purchase quantity
qi, i.e.,

LiðqijyiÞ ¼ yi
ffiffiffiffi
qi
p

; ð2Þ

for i 5 1, 2, . . ., n. Note that the square-root utility func-
tion is widely used in the economics, marketing, and
operations management areas (for other applications
of the square-root utility function, we refer readers to,
e.g., Basu et al. 1985, Leng and Parlar 2005).

In order to get qi40 units of product i (i 5 1, 2, . . ., n),
the consumer pays the purchase amount and the ship-
ping fee (if the consumer does not qualify for free
shipping). The consumer’s cost of purchasing qi units of
product i is piqi ¼ ð1þmÞciqi, in which m and ci denote
the retailer’s profit margin and unit acquisition cost,
respectively. The consumer’s total purchase amount (in
US$) is then computed as

A � ð1þmÞ
Xn

i¼1
ciqi: ð3Þ

We next discuss the calculation of the shipping fees
that the consumer with parameters yi (i 5 1, 2, . . ., n)
absorbs if he or she does not qualify for free shipping.
In practice, there are three common shipping-fee cal-
culation methods: (i) quantity-based shipping rate, (ii)
weight-based shipping rate, and (iii) order size-based
shipping rate. Using the first method, an online re-
tailer determines the shipping fees as a fixed shipment
fee for an online order plus unit fees for each product
in the order. In practice, the quantity-based shipping
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method usually applies to an online retailing system
that sells a single product or multiple ‘‘similar’’ prod-
ucts that have similar weights and/or similar prices.
Otherwise, for two different products even in the
same category, the shipping fees should be different.
For example, the shipping fee incurred by a consumer
who purchases a USB flash disk should be different
from that when the consumer buys a desktop com-
puter. In this paper, we consider an online retailer
selling multiple products that belong to a single cat-
egory but may not have similar weights and prices.
Therefore, we do not consider the quantity-based
shipping method. An online retailer adopts the sec-
ond method (i.e., weight-based shipping rate) mostly
when the products for sale at the retailer have heter-
ogeneous weights and physical sizes. We do not use
this method for our modeling, because we do not
consider the products’ weights but only investigate
the pricing and free-shipping issues that are both as-
sociated with a consumer’s purchase amount (order
size) rather than the weights or physical sizes of the
products that the consumer buys.

The third shipping method (i.e., order size-based
shipping rate)—which has been the most common
one for the online retailers—is used to calculate the
shipping fee according to the dollar value of an online
order. Specifically, this method is, in practice, imple-
mented by using ‘‘By Order Total’’ shipping method
(see, e.g., rmtsupport.com.) with the following for-
mula: the shipping fees for an order equal a fixed
shipping base rate plus variable shipping fees that are
calculated as a percentage (i.e., shipping charge per
unit dollar) times the total dollar value of the order.
For example, HayHouse.com, an online bookstore,
calculates the shipping fee for an online order as 30%
of the total dollar value of the order. HermeticKa.com,
a webstore with robes, banners, cloths, etc., charges as
shipping fees 10% of the dollar value of each order
placed within the United States. As reported by Luen-
ing (a staff writer of CNET News) in Luening (2001), a
survey of 50 major online retailers found that 54% of
them base shipping charges on order size. Accord-
ingly, we, in this paper, assume that the shipping
fee of the consumer with purchase amount A is cal-
culated as

SðAÞ ¼ s0 þ sA ¼ s0 þ sð1þmÞ
Xn

i¼1
ciqi; ð4Þ

where s0 and s denote the fixed shipping fee and the
variable shipping fee, respectively.

Using the above, we can compute the net surplus
that the consumer with parameters yi (i 5 1, 2, . . ., n)
derives from consuming qi units of product i
(i 5 1, 2, . . ., n) as the consumer’s gross surplus (util-
ity) minus his or her purchase cost and, possibly,
shipping fee. For an application of the concept of net

surplus, see Valletti and Cambini (2005). Letting G
denote the net consumption surplus of the consumer
with parameters yi (i 5 1, 2, . . ., n) when the retailer’s
profit margin is m and its CFS cutoff level is x, we
have

G ¼
G1 �

Pn
i¼1

yi
ffiffiffiffi
qi
p � ð1þmÞ

Pn
i¼1

ciqi; if A � x;

G2 �
Pn
i¼1

yi
ffiffiffiffi
qi
p � ð1þmÞ

Pn
i¼1

ciqi � SðAÞ; if Aox:

8>>><
>>>:

ð5Þ

3.2. Purchasing Decision of a Consumer
We momentarily ignore the constraints in (5) and find
the solution that maximizes G1 and the solution that
maximizes G2.

THEOREM 1. The optimal purchase quantities �qi (i 5

1, 2, . . ., n) that maximize the consumer’s net surplus
function G1 are

�qi ¼
y2

i

4ð1þmÞ2c2
i

; for i ¼ 1; 2; . . . ; n; ð6Þ

and the resulting purchase amount �A and maximum net
surplus G�1 are, respectively,

�A ¼ f
4ð1þmÞ and G�1 ¼

f
4ð1þmÞ; ð7Þ

where f �
Pn

i¼1 y
2
i =ci denotes the consumer-specific utility

parameter (for all products) in his or her net surplus.
The optimal purchase quantities q̂i (i 5 1, 2, . . ., n)

that maximize the consumer’s net surplus function G2

are

q̂i ¼
y2

i

4ð1þ sÞð1þmÞ2c2
i

; for i ¼ 1; 2; . . . ; n; ð8Þ

and the resulting purchase amount Â and maximum
net surplus G�2 are, respectively,

Â ¼ f
4ð1þ sÞð1þmÞ ¼

�A

1þ s
and

G�2 ¼
f

4ð1þ sÞð1þmÞ � s0:

ð9Þ

PROOF. The proof of this theorem and the proofs of all
subsequent theorems in our main paper are given in
Appendix S1. &

In a single transaction, whether or not the consumer
with the parameter f can obtain the free-shipping
service depends on the comparison between the CFS
cutoff level x and the consumer’s total purchase
amount A. This means that we should only pay at-
tention to the amount A, which is a random variable
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due to the randomness of the parameter f, as shown
in Theorem 1.

THEOREM 2. The net surplus functions G1 and G2 are both
concave in the consumer’s purchase amount A, and have
their maxima at �A [as given in (7)] and Â [as given in (9)],
respectively.

Now we maximize the consumer’s net surplus G in
(5) to find the consumer’s optimal purchase quantities
q�i (i 5 1, 2, . . ., n) and purchase amount A�. When we
consider the constraints in (5), we should perform our
analysis according to the position of the CFS cutoff
level x. Thus, we need to discuss four cases as shown
in Figure 1, and for each case we need to find the
optimal purchase amount A�. For our particular dis-
cussion regarding the four cases in Figure 1, see
Appendix S2.

Using our analytical results in Appendix S3, we can
calculate the optimal purchase amount A� as shown
in the following theorem.

THEOREM 3. Given a profit margin m and a CFS cutoff level
x, the optimal purchase amount A� that maximizes the net
surplus of the consumer with specific parameter f is as
follows:

1. If x � 4s0ð1þ sÞ, then
(a) the consumer does not purchase any product online

if foxð1þmÞ;
(b) the consumer spends $x if xð1þmÞ � f � 4ð1þ sÞ
ð1þmÞ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sÞx

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sxþ s0
p �2;

(c) the consumer spends $Â if 4ð1þ sÞð1þmÞ
½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sÞx

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sxþ s0
p �2ofo4xð1þmÞ;

(d) the consumer spends $�A if f � 4xð1þmÞ.
2. If s0ð1þ sÞoxo4s0ð1þ sÞ, then

(a) the consumer does not purchase any product online
if fo4s0ð1þ sÞð1þmÞ;

(b) the consumer spends $Â if 4s0ð1þ sÞð1þmÞof
o4xð1þmÞ;

(c) the consumer spends $�A if f � 4xð1þmÞ.
3. If 0 � xos0ð1þ sÞ, then

(a) the consumer does not purchase any product online
if fo4xð1þmÞ;

(b) the consumer spends $�A if f � 4xð1þmÞ.

Theorem 3 suggests that a consumer’s online
purchasing decision depends on the CFS cutoff level
x. More specifically, if the CFS cutoff level x is
sufficiently high [i.e., when x � 4s0ð1þ sÞ], then the
consumer with the specific parameter f may spend
$x, $�A, $Â, or may not buy anything online. Note that
a consumer with the purchase amount $�A qualifies for
free shipping; then, the consumer does not need to
consider whether or not to change his or her
purchasing decision for the free-shipping service.
However, if a consumer’s purchase amount is $Â,
then the consumer does not qualify for free shipping.
Thus, the consumer may increase his or her purchase
amount from $Â to $x. More specifically, if Â is close
enough to x, then the consumer may increase his or
her purchase amount to obtain the free-shipping
service; otherwise, if Â is small, then the consumer
is unlikely to increase Â to x and stays with Â. In
addition, the consumers with very small purchase
amounts cannot afford the shipping fee and cannot

Figure 1 Four Cases for the Optimal Solution A� that Maximizes the Net Surplus G of the Consumer with the Parameter /
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increase their amounts to qualify for free shipping;
thus, they are likely to quit their online purchases.

When the CFS threshold x is at the medium level
[i.e., s0ð1þ sÞoxo4s0ð1þ sÞ], the consumer may
spend $�A, $Â, or leave without any purchase. This
implies that a number of consumers with medium or
large values of f spend the amount $�A and qualify for
the free shipping. However, consumers with small
values of f intend small purchase amounts, and may
not want to increase their purchase amounts to the
CFS cutoff level x to qualify for the free-shipping
service. Furthermore, if a consumer has very small
value of f and thus his or her purchase amount is
very small, then the consumer may abandon his or her
online shopping cart because he or she cannot afford

the shipping fee and also cannot spend more to
qualify for free shipping. Therefore, we conclude that,
when a moderate CFS threshold applies, the con-
sumers who do not qualify for the free-shipping
service may stay with their small purchase amount
$Â, or may leave without any purchase. When the
CFS threshold x is small [i.e., 0 � x � s0ð1þ sÞ], most
consumers qualify for free shipping but few other
consumers with very small purchase amounts
abandon their shopping carts because they do not
want to pay for the shipping fee and also do not
purchase more to qualify for free shipping.

From the above discussion we draw an important
managerial insight, which is presented in the
following remark.

REMARK 1. The CFS strategy should be attractive mostly to
consumers with large order sizes. That is, if a consumer’s
purchase amount is large but it is still smaller than the CFS
cutoff level, then the consumer is likely to increase his or her
purchase amount to qualify for the free-shipping service.
Thus, an online retailer should use the CFS strategy mainly
to acquire consumers with large order sizes. Our analytical
result is supported by Lewis et al.’s empirical study (Lewis
et al. 2006) in which the CFS schedules that involve
incentives for large orders are able to successfully induce
consumers to shift to larger order sizes.

3.3. Conversion Rate
We find from Theorem 3 that each consumer may buy
or may not buy from the online retailer. One may be
interested in the following question: how do the
retailer’s pricing (profit margin) and CFS decisions

affect the conversion rate? The conversion rate is
herein defined as the ratio of the number of
consumers who buy at least once from the retailer
over the total number of consumers who consider
buying from the retailer. According to this definition,
the conversion rate is the probability that a consumer
makes at least one purchase. As in some previous
marketing publications (e.g., Lewis et al. 2006), we let
all of arriving consumers compose the consumer base
B (e.g., B ¼ 1000 in Lewis et al. 2006). Then we can
calculate the number of consumers who buy from the
retailer as the size of the consumer base times the
conversion rate. That is, the number of consumers
who buy from retailer is B� PrðA40Þ, where PrðA
40Þ is the conversion rate.

THEOREM 4. The conversion rate PrðA40Þ as follows:
where f( 	 ) and F( 	 ) are, respectively, the probability
density function (p.d.f.) and the cumulative distribution
function (c.d.f.) of the random parameter f.

From Theorem 4, we can find that the conversion
rate decreases as the CFS threshold x increases in the
range ½0; s0ð1þ sÞ�. This means that a small CFS thresh-
old deters most consumers with small purchase
amounts, because those consumers are unwilling to
increase their small amounts and also cannot afford the
shipping fee. However, as the CFS cutoff level increases
in the range ½s0ð1þ sÞ; 4s0ð1þ sÞ�, the conversion rate is
unchanged, because of the following facts: most con-
sumers with small purchase amounts are deterred by
the nonzero CFS threshold. The consumers with me-
dium purchase amounts can afford the shipping fee
(which may not be large compared with their purchase
amounts), but they are unwilling to spend more for the
free-shipping service, as shown in Theorem 3. Other
consumers have large purchase amounts and qualify
for free shipping. Thus, for medium-size orders, the
CFS cutoff level does not significantly affect the con-
version rate. However, as x increases to a large value,
i.e., x � 4s0ð1þ sÞ, some consumers with medium and
large purchase amounts may abandon their shopping
cart and the conversion rate thus decreases. In addi-
tion, we find from Theorem 4 that the conversion rate
decreases as the profit margin m (prices) increases.

Using Theorem 4 we can draw some important man-
agerial insights, as shown in the following theorem.

THEOREM 5. The impacts of profit margin m and CFS
threshold x on the conversion rate are described as follows:

PrðA40Þ ¼

1� F½xð1þmÞ� ¼
R1

xð1þmÞ fðfÞdf; if x � 4s0ð1þ sÞ;
1� F½4s0ð1þ sÞð1þmÞ� ¼

R1
4s0ð1þsÞð1þmÞ fðfÞdf; if s0ð1þ sÞoxo4s0ð1þ sÞ;

1� F½4xð1þmÞ� ¼
R1

4xð1þmÞ fðfÞdf; if 0 � x � s0ð1þ sÞ;

8>><
>>:
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1. If m is constant and the p.d.f. f( 	 ) is unimodal, then a
small CFS threshold x [i.e., 0 � x � s0ð1þ sÞ] has
greater impact on the conversion rate than a large
value of x [i.e., x � 4s0ð1þ sÞ].

2. If x is constant and the p.d.f. f( 	 ) is unimodal, then
the profit margin m when x is small [i.e.,
0 � x � s0ð1þ sÞ] may or may not have greater im-
pact on the conversion rate than that when x is large
[i.e., x � 4s0ð1þ sÞ], which depends on the p.d.f. f( 	 ).

According to Theorem 5, we find that the impacts of
x and m depend on the shape of the p.d.f. f( 	 ). Since
many commonly used probability density functions
are unimodal, e.g., Normal, Weibull, Johnson, Log-
normal, etc., the results given in Theorem 5 should be
applicable to practice. In fact, as the CFS cutoff level
increases within a low range, many consumers with
small purchase amounts may leave because they can-
not afford the shipping fee and are also unwilling to
increase their purchase amounts for free shipping.
But, as x increases within a high range, most con-
sumers with large purchase amounts are likely to
increase their order sizes for free shipping or be will-
ing to pay for shipping fee (which should be small
compared with these consumers’ purchase amounts).
But, the profit margin (pricing decision) affects all
consumers, no matter in which range the CFS thresh-
old x is. Summarizing the above gives the following
remark.

REMARK 2. The CFS strategy should be mostly applied to
acquire consumers with large order sizes, because, as The-
orem 5 indicates, the CFS threshold x’s impact on the
conversion rate when x is small is greater than that when x
is large. This reflects the fact that the CFS strategy does not
significantly deter consumers with large purchase amounts
from their online transactions. Our result in this remark is
similar to that in Remark 1 in which the CFS strategy is
also proved to be important to consumers with large pur-
chases but using our analytical results of consumers’
purchase amounts rather than the conversion rate.

4. Optimal Decisions of a Single
Retailer in the Monopoly Structure

In this section, we analyze the online retailer’s ex-
pected profit generated during a single period, and
find optimal profit margin and CFS cutoff level for the
retailer. Since a consumer may buy nothing, or may
buy products once or multiple times, we first consider
the repeat buying for a consumer, and compute the
probability that the consumer makes r (r 5 0, 1,. . .,1)
purchases during the single period. Next, we con-
struct an expected profit function for the retailer,
using our analytical result for repeat buying and that
for a consumer’s purchasing decision in a single

transaction (which is obtained in section 3). We then
maximize the expected profit to find optimal deci-
sions for the retailer, and perform sensitivity analysis
so as to examine the impacts of some parameters on
the retailer’s decisions and also draw some important
managerial insights.

4.1. Repeat Buying
We now consider the purchasing behavior of a con-
sumer who may not place any order, or may order
products online once, or may repeat his or her pur-
chases. We assume that, for a consumer, the number of
purchases is a Poisson-distributed random variable,
i.e., the probability of r (r 5 0, 1,. . .,1) purchases dur-
ing the single period is

PrðT ¼ rÞ ¼ expð�lÞlr

r!
; ð10Þ

where l denotes the consumer’s expected order fre-
quency (i.e., expected number of purchases for a
period). The Poisson distribution and its compounded
extensions with random values of l, such as the neg-
ative binomial distribution, have been widely used to
model repeat buying; see Morrison and Schmittlein
(1988). Unlike extant work, we do not account for
consumer heterogeneity by letting l be a random
variable. We instead incorporate consumer heteroge-
neity into our model by using our results in Theorem
4, which already account for any distribution f( 	 ) of
the parameter f.

THEOREM 6. For the Poisson distribution PrðT ¼ rÞ in (10),
a consumer’s expected order frequency (i.e., expected num-
ber of purchases that a consumer makes during a period) is
obtained as follows:

l ¼

lnf1=F½xð1þmÞ�g; if x � 4s0ð1þ sÞ;

lnf1=F½4s0ð1þ sÞð1þmÞ�g; if s0ð1þ sÞoxo4s0ð1þ sÞ;

lnf1=F½4xð1þmÞ�g; if 0 � x � s0ð1þ sÞ:

8>><
>>:

ð11Þ

Theorem 6 implies that, when the online retailer
increases the CFS cutoff level x and/or the profit
margin m, the consumer responds by reducing his or
her order frequency.

REMARK 3. Theorem 6 indicates that a consumer’s expected
order frequency l is decreasing in the CFS cutoff level x. We
recall from Theorem 3 that the CFS cutoff level x affects a
consumer’s order size (i.e., purchase amount), and learn
from Remark 1 that the CFS strategy can induce consumers
(whose order sizes are relatively large but smaller than x
dollars) to increase their purchase amounts to qualify for
free shipping. It thus follows that, as the CFS cutoff level x
increases, a consumer’s order size increases whereas the
consumer’s order frequency decreases.
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Using (10) and (11) we can easily compute the prob-
abilities of no purchase, one purchase, and multiple
purchases, which are next used for the calculation of
the retailer’s expected profit during a single period.

4.2. Expected Profit Function of the Retailer
Given the profit margin m and the CFS cutoff level x,
an integer-valued number of consumers visit the on-
line retailer during a single period. Like in extant
marketing publications (e.g., Lewis et al. 2006), we let
all of arriving consumers compose the consumer base
B (e.g., B ¼ 1000 in Lewis et al. 2006). Note that each
arriving consumer in the base B may not buy, may
buy once, or may buy multiple times.

THEOREM 7. The retailer’s expected profit is computed as,

Pðm; xÞ ¼
X1

r¼0
pðm; xjT ¼ rÞ � PrðT ¼ rÞ �B; ð12Þ

where pðm; xjT ¼ rÞ ¼
R1

0 piðm; x;fjT ¼ rÞ � fðfÞdf de-
notes the retailer’s expected profit drawn from a consumer
who places his or her orders r times; PrðT ¼ rÞ is the prob-
ability of r purchases with the expected number l as given
in Theorem 6; and PrðT ¼ rÞ �B is the number of con-
sumers who repeat their purchases r times.

Next, we compute the retailer’s expected revenue
and expected cost that are generated when the retailer
serves r online orders of a consumer, and then find the
expected profit function pðm; xjT ¼ rÞ. We notice from
Theorem 3 that a consumer with parameter f may
abandon his or her shopping cart and leave without
any purchase, may spend $x or $�A to qualify for free
shipping, or may spend $Â and pay the shipping fee.
Note that the CFS policy applies to a consumer’s sin-
gle transaction rather than the consumer’s aggregate
amount for his or her r repeated purchases. Thus, we
must calculate pðm; xjT ¼ rÞ as the retailer’s expected
profit from a single transaction of the consumer times
the number of transactions r; that is, pðm; xjT ¼ rÞ
¼ pðm; xÞ � r, in which pðm; xÞ represents the profit
that the retailer attains from a single transaction of a
consumer. Note that pðm; xÞ is computed as the re-
tailer’s revenue minus acquisition and shipping costs.
Recalling our discussion in section 2, we can use profit
margins to calculate the retailer’s revenue minus its
acquisition cost. For example, assuming that a con-
sumer’s purchase amount is A, the retailer’s revenue
is A and its acquisition cost is A=ð1þmÞ; thus, the
retailer’s revenue minus its acquisition cost is
mA=ð1þmÞ. Next, we discuss the calculation of the
retailer’s shipping cost, which is defined below.

DEFINITION 2. Shipping cost is the amount that the retailer
pays for shipping the products bought by a consumer from
stock (e.g., the retailer’s warehouse) to the consumer’s ad-
dress.

Note that ‘‘shipping cost’’ is different from ‘‘ship-
ping fee’’ (which is given by Definition 1). While the
shipping fee is always set by the retailer, the shipping
cost may be determined by a third-party transporta-
tion firm (e.g., UPS, Fedex, etc.) if shipping is
outsourced. In fact, regardless of whether a consumer
pays the shipping fee or qualifies for CFS, the retailer
absorbs the shipping cost.

As Lewis et al. (2006) showed, online retailers may
subsidize the shipping fees. This means that, even if a
consumer does not qualify for CFS, the shipping fee
paid by the consumer may be lower than the shipping
cost incurred by the retailer. Actually, the retailer may
treat the shipping fee (paid by consumers) as a source
of its revenue, and thus choose the shipping fee that is
higher than the shipping cost incurred by the retailer.
Using a non-negative parameter k, we can compute the
shipping cost K(A) for delivering products worth $A as

KðAÞ ¼ k� SðAÞ ¼ kðs0 þ sAÞ; ð13Þ

where S(A) is given in (4), and the parameter k may be
greater than, equal to, or smaller than 1. If k41, then the
retailer subsidizes the shipping for consumers who
spend $A but do not qualify for CFS. If k 5 1, then the
shipping cost K(A) is equal to the shipping fee S(A);
there is no shipping subsidization. Otherwise, if
0 � ko1, then the shipping fee paid by a consumer is
higher than the shipping cost incurred by the retailer
who thus benefits from shipping products to the con-
sumer. The shipping cost function (13) has been used by
some scholars such as Baumol and Vinod (1970).

Using pðm; xÞ we re-write Pðm; xÞ in (12) as

Pðm; xÞ ¼
X1

r¼0
pðm; xÞ � r� PrðT ¼ rÞ �B

¼ pðm; xÞ � lðfÞ �B; ð14Þ

Since a consumer’s purchase amount depends on the
value of the CFS cutoff level x, as indicated by Theorem
3, we need to calculate Pðm; xÞ for each of three
scenarios: x � 4s0ð1þ sÞ, s0ð1þ sÞoxo4s0ð1þ sÞ, and
0 � x � s0ð1þ sÞ. For our detailed discussion about
these three scenarios, see Appendix S3.

4.3. Numerical Example and Sensitivity Analysis
In order to find optimal decisions for the retailer, we
should compare the maximum values of Pðm; xÞ in
the three scenarios above. Next, we provide a
numerical example to illustrate our analysis.

EXAMPLE 1. We assume that the fixed shipping fee per
shipment is s0 ¼ $1, and the variable shipping fee per dollar
value is s ¼ $0:1. The consumer base is B5 1000, the
parameter k ¼ 1:1 and the consumer parameter f is a
normally distributed r.v. with mean m5 30 and standard
deviation s5 5. We consider the three scenarios discussed
in Appendix S3, and find the optimal profit margin and
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CFS cutoff level as 1.038 and $4:63, respectively, which
result in the maximum profit $16; 194:34.

Next we will perform sensitivity analyses to examine
the impacts of four important parameters—i.e., fixed
shipping fee s0, variable (per dollar) shipping fee s, the
parameter k, and the standard deviation s of the
random variable f—on the retailer’s optimal decisions
and maximum profit. In particular, we investigate how
the retailer’s optimal decisions and maximum profit
change when the parameters (s0; s; k; s) vary around
their base values ð1; 0:1; 1:1; 5Þ used in Example 1. Note
that, since the rate k is used to compute the shipping
cost KðAÞ ¼ kðs0 þ sAÞ according to (13), the parameters
s0, s, and k are all related to the impacts of shipment. We
consider the sensitivity analysis of s in order to examine
the impacts of consumer heterogeneity.

Our computational results are presented in Table S1
(which is given in Appendix S4). Using the data in
Table S1, we plot twelve graphs (given in Figure 2) to
help discuss managerial insights.

4.3.1. Impacts of s0 and s. We begin by examining
the effect of the fixed shipping fee s0 on the retailer’s
optimal decisions and maximum profit. In this
sensitivity analysis, we increase the value of s0 from
0 to 7.5 in increments of 0.5, and compute optimal
solutions and maximum profit for each value of s0. We
find from Figure 2(a) that, as the fixed shipping fee s0

increases, the retailer should accordingly raise the CFS
cutoff level to reduce its shipping-related expenses,
which may prevent some consumers from buying
online. In order to keep some of those pur-
chases, the retailer has to decrease the profit margin

Figure 2 The Impacts of the Fixed Shipping Fee s0, Variable Shipping Fee s, the Parameter k and the Standard Deviation r on the Retailer’s Optimal CFS
Cutoff Level x�, Optimal Profit Margin m� and Maximum Profit P�ðm�; x �Þ
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and thus the prices of all products; see Figure 2(b).
Nevertheless, as Figure 2(c) indicates, the retailer’s
profit still decreases; this implies that increasing the
fixed shipping fee always inevitably harms the
performance of the retailer who cannot change its de-
cisions to eliminate the negative impacts. Especially,
when s0 is very large (e.g., s0 � 5.5), the retailer’s
profit is very close to zero.

In addition, Figures 2(a) to (c) indicate that the
retailer’s optimal CFS threshold is almost concave,
increasing in s0, but its optimal profit margin and
maximum profit are almost convex, decreasing in s0.
This means that the impacts of s0 when its value is
large are greater than that when its value is small.

The sensitivity analysis of the variable shipping
fees s yields some interesting results. We increase the
value of s from 0 to 0.7 in steps of 0.05. From Figure
2(d) we find that increasing the value of s forces the
retailer to increase its optimal CFS cutoff level.
However, as Figure 2(e) shows, the impacts of s on
profit margin change as s increases. More specifi-
cally, when s is sufficiently small (e.g., s � 0.2),
increasing the value of s leads the retailer to slowly
increase its CFS threshold and also slightly increase
the profit margin. This happens because of the
following fact: When per dollar shipping fee s
increases in the range [0, 0.2], the consumers with
small purchase amounts may not be willing to pay
for the higher shipping fee and thus leave without
any purchase. The retailer should not respond by
setting a low CFS cutoff level to absorb the shipping
fee for those small orders, because a low CFS
threshold would otherwise result in more shipping
expenses (only for small orders) and less profit. Thus,
in order to compensate for the loss of consumers
with small orders, the retailer has to slightly raise its
profit margin, which should not significantly impact
the consumers with medium or large purchase
amounts because most of these consumers qualify
for the free shipping.

When the variable shipping fee s is large (e.g.,
s � 0.2), increasing s results in a rise in optimal CFS
cutoff level and a reduction in optimal profit margin.
Moreover, compared with the changes of optimal
solutions when s is small, increasing the large value
of s more significantly impacts the retailer’s decisi-
ons. This can be justified as follows: if a low CFS
cutoff level applies, then the large value of per dollar
shipping fee s lets the retailer have very high ship-
ping expenses. To reduce these, the retailer should
raise its CFS cutoff level, which may deter some
consumers with medium or large orders from com-
pleting online transactions. The retailer then re-
sponds by reducing its profit margin to attract those
consumers who may leave because of a higher
CFS threshold. Referring to Figure 2(f), we find that

increasing s nonetheless deteriorates the retailer’s
performance no matter how the retailer responds to
a higher value of s.

4.3.2. Impacts of k. We now investigate how
changing the rate k impacts the retailer’s optimal
decisions and its maximum profit. For the sensitivity
analysis, the value of k is increased from 0.5 to 2.0 in
increments of 0.1. Note that, as discussed in section 1,
the value of the rate k depends on whether the retailer
subsidizes the shipment for consumers or treats the
shipping fee as a source of its operating revenue.
More specifically, if the retailer hopes to increase its
revenue from shipping, then ko1; if the shipping cost
incurred by the retailer is the same as the shipping
fee paid by consumers, then k 5 1; otherwise, if the
retailer shares a part of shipping cost with consumers
who do not qualify for the free shipping, then k41.

From Figure 2(g) we find that, as k increases, the
retailer’s CFS cutoff level first decreases but then
increases. This interesting result reflects the follow-
ing fact: When k is smaller than 1, the retailer earns
revenue from shipping when consumers pay for the
shipment; but, some consumers may abandon their
shopping carts because of the high shipping fee.
Thus, in order to entice the consumers to place
online orders, the retailer has to reduce its CFS cutoff
level. However, increasing the value of k reduces the
retailer’s revenue; so, the retailer increases its profit
margin, as shown in Figure 2(h).

When k41 but is not very high (i.e., k � 1.6), the
retailer shares shipping cost with consumers who do
not qualify for the free shipping. Thus, as k increases
in the range [1, 1.6], the retailer experiences a smaller
difference between the retailer’s shipping payment
when a consumer qualifies for the free shipping and
that when the consumer does not qualify for the free
shipping. This implies that reducing the CFS cutoff
level does not bring significantly high shipping
expense to the retailer. As a result, the retailer is
willing to decrease the CFS threshold to attract more
consumers. To ensure its profitability, the retailer still
increases its profit margin, as indicated by Figure
2(h).

When k is very high (i.e., k41.6), we find that the
retailer increases its CFS cutoff level, which differs
from the retailer’s free-shipping decision when
k � 1.6. This occurs because of the following reason.
Note that the retailer’s cost savings generated when
a consumer with purchase amount A � x does not
qualify for free shipping is actually the shipping fee
SðAÞ ¼ KðAÞ=k according to (13). This means that,
when k is very large, the retailer’s benefit from the
CFS strategy is reduced. As a consequence, the
retailer is willing to increase its CFS cutoff level. But,
the retailer still shares considerable shipping costs
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with the consumers with very large order sizes, thus
increasing its profit margin as shown in Figure 2(h).

From Figure 2(i) we find that, as in the case of s0

and s, the retailer’s profit decreases in k. This
happens because increasing the value of k makes
the retailer incur more shipping expenses no matter
how the retailer behaves. Observing Figure 2(a)–(i),
we find that, among the three shipping-related
parameters, the impacts of s0 are the largest whereas
the impacts of k are the smallest. This suggests that
reducing s0 could be more useful to increase the
retailer’s operating profit, which is observed in the
practice of many online retailers (e.g., HayHouse.
com, HermeticKa.com, etc.) that do not charge a
fixed shipping fee.

4.3.3. Impacts of s. For this sensitivity analysis, the
value of s is increased from 4 to 18 in increments of 1.
As shown in Figure 2(j), the numerical results suggest
that the heterogeneity of consumers (measured by s)
affects the retailer’s free-shipping decision; more
specifically, as the value of s increases, the retailer
should increase its CFS threshold. This means that, in
a relatively homogeneous market (i.e., s is small), the
retailer should set a low cutoff level. In relatively
heterogeneous markets (i.e., s is large), the retailer
should choose a high cutoff level. Figure 2(k) indicates
that the retailer’s profit margin decision is unimodal
in s. That is, when s is small (e.g., s � 7) and the
market is still relatively homogeneous, increasing s
results in a few more consumers with small order
sizes and also a few more consumers with large order
sizes. Those consumers with small order sizes may be
deterred by the CFS threshold from their online
purchases. In order to ensure its profitability, the
retailer has to increase its profit margin. However,
when s is large (e.g., s47) and the market is relatively
heterogeneous, the retailer raises its CFS cutoff level
as a result of increasing s, which may deter a number
of consumers from their online transactions. To reduce
this impact, the retailer needs to decrease its profit
margin to keep consumers. Our study also indicates
(see Figure 2(l)) that the retailer can benefit more from
homogeneous markets than from heterogeneous ones.

5. Competition between Two Retailers
in the Duopoly Structure

In this section, we consider a duopoly problem in
which two online retailers (i.e., Retailers 1 and 2) sell
identical products to consumers in a common market.
These two retailers choose their profit margins and
CFS cutoff levels to compete for consumers. For online
retailing operations, we notice the following two facts:
(i) consumers’ search costs are lower in online
(virtual) markets than in traditional (physical) ones
(see, e.g., Bakos 1997), (ii) the majority of online

consumers are more likely to go to a comparison
shopping site rather than directly to a web-based store
(see, e.g., LeClaire 2006). As a result, the competition
among online retailers should be higher than that
among the brick-and-mortar stores.

Because of the above two facts, consumers can
cheaply and conveniently visit two retailers before
they make their purchasing decisions. Accordingly,
we can assume that both retailers’ pricing and free-
shipping information is known to each consumer,
who maximizes his or her net surplus (defined in
section 1) to determine an optimal purchase amount
and make a single or multiple online transactions with
either Retailer 1 or Retailer 2. Recall from section 4
that, when a consumer with parameter f visits a
single retailer in the monopoly structure, the con-
sumer’s optimal purchase amount is calculated as
shown in Theorem 3. Now, we consider the consu-
mer’s optimal purchasing decision in the duopoly
structure, and compute the equilibrium profit margins
and CFS thresholds for two retailers.

In the duopoly structure, Retailer i (i 5 1, 2)
announces its profit margin mi and CFS threshold xi

to consumers in a market. The fixed and variable
shipping fees of Retailer i (i 5 1, 2) are denoted by s

ðiÞ
0

and sðiÞ; thus, the shipping fee of a consumer with
purchase amount A at Retailer i is SðiÞðAÞ ¼ s

ðiÞ
0 þ sðiÞA.

Moreover, we denote by kðiÞ (i 5 1, 2) the parameter in
Retailer i’s shipping cost function (13). For the
duopoly case, the consumer with specific parameter
f needs to compare his or her maximum net surpluses
generated from purchasing at Retailers 1 and 2. Note
that we can compute the consumer’s maximum net
surplus from a single retailer (i.e., Retailer i, i 5 1, 2)
by using the consumer’s optimal purchase amount A�

given in Theorem 3. After comparing maximum net
surpluses at the two retailers, the consumer decides to
make online transaction(s) with the retailer at which
his or her net surplus is higher. If the consumer’s net
surpluses from buying at two retailers are equal,
then we assume that the consumer chooses Retailer 1
with the probability g (0 � g � 1) and Retailer 2 with
the probability 1� g. The probability of choosing a
retailer can be determined based on the preference of
the consumer for each online retailer, which depends
on the consumer’s subjective perception of each
retailer’s brand name (Smith and Brynjolfsson
2001), web-site usability (Montgomery et al. 2004,
Venkatesh and Agarwal 2006), his or her shopping
habit (Reibstein 2002), and experience (Johnson et al.
2004), etc.

According to the above discussion, we should use
Nash equilibrium to characterize optimal decisions of
Retailers 1 and 2 for the duopoly problem. We denote
Retailer i’s equilibrium profit margin and CFS thresh-
old, respectively, by mN

i and xN
i , for i 5 1, 2. Note that
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our game is similar to Bertrand game (Bertrand 1883)
in which two retailers make their pricing decisions to
compete for consumers; however, in our game, we
also consider the CFS decisions.

THEOREM 8. If s
ð1Þ
0 ¼ s

ð2Þ
0 and sð1Þ ¼ sð2Þ, then two retailers’

equilibrium profit margins and CFS cutoff levels are
identical, i.e., mN

1 ¼ mN
2 and xN

1 ¼ xN
2 .

We learn from Theorem 8 that the two retailers
should choose similar profit margins and CFS cutoff
levels when they charge consumers the same ship-
ping fees. This result may explain the actual strategies
of Amazon.com and Barnesandnoble.com—which
charge very similar shipping fees (see, e.g., Dinlersoz
and Li 2006)—set same CFS cutoff levels (currently,
US$25), and also determine very similar profit
margins (see, e.g., Chevalier and Goolsbee 2003).

One may notice from the proof of Theorem 8 that our
analysis for the duopoly structure is very complicated
because we should consider the consumer’s decision
for nine cases each corresponding to one of three
ranges of x1 and one of three ranges of x2. Moreover, in
each case, there is a large number of possibilities for the
position of f. Thus, it is unrealistic to analytically solve
our game; instead, we have to develop a simulation
approach to find the equilibrium solutions.

In this section, we construct a simulation model by
using ‘‘Arena,’’ which is a primary simulation soft-
ware in industry, and then use ‘‘OptQuest’’—an
optimization add-in for Arena—to find the optimal
(equilibrium) decisions for the two retailers. This soft-
ware has been previously used in academic research
by, for example, Aras et al. (2006) and Askin and Chen
(2006). For more information regarding ‘‘Arena’’ and
‘‘OptQuest’’ (see, e.g., Kelton et al. 2007). We present
our simulation framework in detail in Appendix S5.

Next, we provide two numerical examples to
illustrate our simulation approach. As Theorem 8
indicates, the two retailers’ equilibrium decisions are
identical when their fixed and variable shipping fees
are identical, i.e., s

ð1Þ
0 ¼ s

ð2Þ
0 and sð1Þ ¼ sð2Þ. To illustrate

this result, we first consider an example in which two
retailers have equal fixed and variable shipping fees,
and use simulation to find Nash equilibrium. Then,
we consider another example in which two retailers
have different fixed and variable shipping fees.

EXAMPLE 2. We now consider a duopoly structure in which
Retailers 1 and 2 determine their profit margins and CFS
thresholds to compete for consumers. We assume that the
two retailers set identical fixed and variable shipping fees as
s0 ¼ $1 and s ¼ $0:1. As in Example 1, we assume that the
consumer base is B ¼ 1000, and the consumer parameter f
is a normally distributed r.v. with mean m5 30 and
standard deviation s5 5. Moreover, we assume that, in the

shipping cost functions (13) for Retailers 1 and 2, k1 51.1
and k2 5 0.5. When a consumer can draw the same net
surpluses from buying at either retailer, we assume that the
consumer buys from Retailer 1 with the probability g5 0.6,
and buys from Retailer 2 with the probability 1� g5 0.4.
From Example 1 we learn that the Retailer 1’s optimal
monopolistic profit margin and CFS cutoff level are 1.038
and $4:63, respectively. We also find that the Retailer 2’s
optimal monopolistic profit margin and CFS cutoff level are
0.9311 and $4:704, respectively.

Using our simulation approach (presented in
Appendix S5) we perform 11 simulations (for detailed
results, see Appendix S6), and find that the two re-
tailers’ equilibrium decisions are as follows: mN

1 ¼
mN

2 ¼ 0:8750 and xN
1 ¼ xN

2 ¼ 4:846. The resulting
profits are $8; 749:31 for Retailer 1 and $9; 333:49 for
Retailer 2.

The above example indicates that, when the two
retailers’ fixed and variable shipping fees are the same,
their equilibrium decisions should be equal, as shown
in Theorem 8. In fact, we use our simulation approach
in Example 2 to solve a large number of games with
different parameter values. We find that two retailers
always choose identical equilibrium decisions, in
agreement with our analytical results in Theorem 8.
Since these results hold even when k1 6¼ k2, it follows
that the retailers may have different profits regardless
of implementing identical shipping and pricing
policies. A retailer may be more profitable by using
shipping fees as a source of revenue than by sub-
sidizing shipping even when its shipping costs are
high. In addition, when we compare Examples 1 and 2,
we find that the competition in the duopoly structure
‘‘forces’’ the two retailers to decrease their profit
margins (i.e., prices of their products) but increase their
CFS cutoff levels. These important managerial insights
also hold for all of other games that we simulated.

Next, we provide another example to show that the
two retailers’ equilibrium solutions may not be
identical when their fixed and variable shipping fees
are unequal.

EXAMPLE 3. We again consider Example 2 but change only
Retailer 2’s fixed and variable shipping fees to s0 ¼ $2 and
s ¼ $0:2. We then calculate Retailer 2’s optimal decisions
for the monopoly structure as m�2 ¼ 0:2417 and x�2 ¼ $9:6.
We perform 13 simulations (see Appendix S6 for our si-
mulation results) to find the equilibrium solutions as mN

1

¼ 0:6591, xN
1 ¼ 10:114; and mN

2 ¼ 0:6898, xN
2 ¼ 16:139.

The resulting profits are $7119:38 for Retailer 1 and
$16; 997:46 for Retailer 2.

Our result in Example 3 suggests that, when the
two retailers’ shipping fees are different, they should
make asymmetric equilibrium decisions. Moreover,
when we compare Examples 2 and 3, we find that the
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retailer with higher shipping fees (i.e., Retailer 2 in
our Example 3) may increase both its profit margin
and CFS cutoff level. If we assume that profit margins
and prices are positively correlated, then our results
would agree with those of Dinlersoz and Li (2006)
who empirically found that shipping fees and prices
are correlated, and explained this correlation as a
result of imperfect consumer information. Our model
and results suggest that this positive correlation may
also arise because of competitive effects even under
perfect consumer information.

Example 3 also suggests that, in the duopoly
structure, a retailer should achieve more profits from
insensitive consumers than from highly sensitive
consumers. This insight is drawn from the following
result in Example 3: Retailer 2 with higher shipping
fees sets a higher cutoff level but its profit margin is
not significantly different from Retailer 1’s profit
margin. As a consequence, Retailer 2 obtains a
significantly higher profit than Retailer 1, even though
the two retailers’ shipping policies in terms of k1 and
k2 are the same. It thus follows that we can attribute
the result (about the profits) to the difference between
the shipping fees of the two retailers. Because of the
fact that higher shipping fees and cutoff levels deter
shipping-sensitive consumers, we can conclude that,
in Example 3, most consumers who buy from Retailer
2 should be insensitive to shipping fees; and thus,
Retailer 2 could profit more from serving fewer
shipping fee-sensitive consumers.

6. Summary and Concluding Remarks
This paper contributes to the body of literature on
shipping promotions by exploring the managerial
implications and optimality of joint pricing (profit
margin) and CFS decisions during a single period. We
investigated this problem by considering both mono-
poly and duopoly structures. After analyzing a con-
sumer’s purchase decision given an online retailer’s
pricing and CFS decisions, we then considered the
monopoly structure and found the optimal profit
margin and CFS cutoff level that maximize a retailer’s
single-period expected profit. We performed sensitiv-
ity analysis to examine the impacts of shipping- and
consumer heterogeneity-related parameters on the
retailer’s decisions and profit. Then, we considered
the duopoly structure, and used Arena and OptQuest
to find Nash equilibria for several duopolistic games.

Next, we summarize major managerial insights that
we have drawn analytically and numerically.

1. The main managerial insights based on our
analytical results include:

(a) An online retailer’s CFS strategy is useful to
acquire consumers with large order sizes; this
implies that the retailer should mainly consider

the CFS strategy to entice the consumers whose
purchase amounts are large. This result is sup-
ported by Lewis et al.’s empirical study (Lewis
et al. 2006).

(b) An online retailer’s CFS strategy when the CFS
cutoff level is small has greater impact on the
conversion rate than that when the CFS cutoff
level is large.

This result also demonstrates our result (a),
because of the following facts: the CFS strategy
when the CFS cutoff level is small largely deters
the consumers with small order sizes from their
online purchases whereas that when the CFS
cutoff level is large does not significantly impact
the consumers with large order sizes. Thus, our
result regarding the impact of CFS strategy on
the conversion rate also implies that the CFS
strategy should be mainly used to acquire
consumers with large order sizes.

(c) An online retailer’s profit margin (pricing
decision) when the CFS threshold is small may
or may not have greater impact on the con-
version rate than that when the CFS cutoff level
is large, which depends on the preference and
incomes of consumers [i.e., the p.d.f. f(A)].

(d) In the duopoly structure, if the two retailers’
fixed shipping fees are equal and their variable
shipping fees are also equal, then the retailers
should determine identical equilibrium deci-
sions. This result is exemplified by the prac-
tice of Amazon.com and Barnesandnoble.com
which set very similar shipping fees (see,
e.g., Dinlersoz and Li 2006), the same CFS
cutoff level $25; and very similar profit margins
(Chevalier and Goolsbee 2003).

2. The main managerial insights based on our
numerical results (i.e., sensitivity analysis and
computer simulation with Arena and OptQuest)
include:

(a) Among three shipping-related parameters (i.e.,
s0, s and k), the fixed shipping fee s0 has the
largest impacts on the retailer’s profit. This
suggests that reducing s0 should be most useful
to increase the retailer’s operating profit, which
is justified by the practice that many online
retailers (e.g., HayHouse.com, HermeticKa.com,
etc.) set their fixed shipping fee to zero. For
more discussion, see section 4.3.1.

(b) If an online retailer’s variable shipping fee is
significantly small, then increasing such a fee
should lead the retailer to slightly raise both
CFS cutoff level and profit margin. However, if
the variable shipping fee is significantly large,
then increasing the fee should result in raising
the CFS cutoff level but decreasing the profit
margin. For our justification, see section 4.3.1.
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(c) If an online retailer treats the shipping fee as a
source of its operating revenue, i.e., ko1, then
we find that, when k increases (that is, the
retailer’s revenue from shipping decreases), the
retailer should reduce its CFS cutoff level but
raise its profit margin. However, if the retailer is
willing to subsidize the shipment for consu-
mers, i.e., k41, then increasing k results in a
higher CFS cutoff level and a higher profit
margin. For our justification, see section 4.3.2.

(d) An online retailer should set a low cutoff level in
a relatively homogeneous market and a high
cutoff level in a relatively heterogeneous market.
Moreover, the retailer can benefit more from
homogeneous markets than from heterogeneous
ones. For more discussion, see section 4.3.3.

(e) In the duopoly structure, if the two retailers
have equal fixed and variable shipping fees,
then they should choose identical equilibrium
decisions. This supports our analytical result (d).
As a result of the competition, both retailers
decrease their profit margins but increase their
CFS cutoff levels. However, if two retailers’
fixed and variable shipping fees are unequal,
then they may not determine identical equili-
brium decisions. For a more detailed discus-
sion, see section 5.

In the future, we may extend this work to consider
some supply chain-related problems. For instance, we
could incorporate inventory costs into our pricing and
CFS decision model and investigate how online
retailers make their ordering, pricing, and shipping
promotion decisions. In addition, considering the
competition between online retailers and brick-and-
mortar stores may be of particular interest because the
presence of physical stores significantly influences the
purchasing decisions of customers. In reality, a
consumer may choose between picking up the
products from a local store and increasing the size
of the online order to qualify for free shipping.
Teltzrow et al. (2003) showed that 75% of customers
prefer the option of picking up their goods at a local
brick-and-mortar store. Furthermore, the retailers
may choose to list their products at some third-party
web sites such as shopping.com or yahoo.com. The
costs of employing third-party web sites and/or third-
party physical stores differ from the costs of using
proprietary web sites, as found by Chen et al. (2007).
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Appendix A Proofs of Theorems

Proof of Theorem 1. We �rst �nd optimal purchase quantities �qi (i = 1; 2; : : : ; n) that maximize

the net surplus function G1 of a consumer with parameters �i (i = 1; 2; : : : ; n) who quali�es for CFS.

Taking the �rst- and second-order derivatives of G1 w.r.t. qi (i = 1; 2; : : : ; n) gives

@G1
@qi

=
�i
2
p
qi
� (1 +m)ci and

@G21
@2qi

= � �i
4qi
p
qi
< 0, (15)

which implies that G1 is concave in the purchase quantity qi. To �nd the optimal quantity �qi that

maximizes G1, we set @G1=@qi to zero, solve the resulting equation, and �nd that

�qi =
�2i

4(1 +m)2c2i
;

and the consumer�s total purchase amount (in terms of �qi, i = 1; 2; : : : ; n) for a single online transaction,

according to (3), is
�A � (1 +m)

Xn

i=1
ci�qi =

1

4(1 +m)
�,

where � �
Pn
i=1 �

2
i =ci denotes the consumer�s random consumer-speci�c utility parameter (for all

products) in his or her net surplus. Note that the consumer-speci�c parameter � is a random variable,

since �i (i = 1; 2; : : : ; n) are random. If the probability distribution functions (p.d.f.) of �i (i =

1; 2; : : : ; n) are given, we can then �nd the p.d.f. of the r.v. �. To compute the maximum net surplus
�G1, we substitute �qi into the function �G1 and �nd

G�1 =
Xn

i=1

�2i
4(1 +m)ci

=
1

4(1 +m)
�,

which is equal to �A.

Next, we maximize the function G2 to �nd optimal purchase quantities q̂i (for i = 1; 2; : : : ; n)

and purchase amount Â, when the consumer doesn�t qualify for the free shipping and thus has to

absorb the shipping fee S(Â) in which Â � (1+m)
Pn
i=1 ciq̂i. We compute the �rst- and second-order

derivatives of G2 w.r.t. qi (i = 1; 2; : : : ; n) as,

@G2
@qi

=
�i
2
p
qi
� (1 + s)(1 +m)ci and

@G22
@2qi

= � �i
4qi
p
qi
< 0,

which implies that G2 is concave in the purchase quantity qi. To �nd the optimal quantity q̂i that

maximizes G2, we set @G2=@qi to zero, solve the resulting equation, and �nd that

q̂i =
�2i

4(1 + s)(1 +m)2c2i
,

1



and corresponding optimal purchase amount as

Â � (1 +m)
Xn

i=1
ciq̂i =

�

4(1 + s)(1 +m)
=

�A

1 + s
.

Substituting q̂i into the function G2 gives

G�2 =
�

4(1 + s)(1 +m)
� s0.

Proof of Theorem 2. We �rst consider the properties of G1 w.r.t. A. Using (3) we take the

second-order derivative of G1 w.r.t. the purchase amount A and �nd

@G21
@2A

= � 1

4(1 +m)2

Xn

i=1

�i
c2i qi

p
qi
< 0,

which means that G1 is concave in the purchase amount A. As indicated by Theorem 1, the optimal

purchase amount �A maximizing G1 is given by (7).

Similarly, taking the second-order derivative of G2 w.r.t. the purchase amount A gives

@G22
@2A

= � 1

4(1 +m)2

Xn

i=1

�i
c2i qi

p
qi
< 0,

which is the same as @G21=@
2A. This means that G2 is also concave in the purchase amount A. As

indicated by Theorem 1, the optimal purchase amount Â maximizing G2 is given by (9).

Proof of Theorem 3. We perform our analysis according to the four cases indicated by Figure 1.

1. In Cases (i) and (ii), x � �A and the consumer�s optimal purchase amount is A� = �A. Therefore,

we can easily �nd that, if � � 4x(1 +m), then A� = �A = �=[4(1 +m)].

2. In Case (iii), x > �A and G�2 � G1jA=x. For this case, if G1jA=x � 0, then the consumer makes
a purchase; but, if G1jA=x < 0, then the consumer leaves the retailer without any purchase.

Hence, when x > �A, G1jA=x � 0 and G�2 � G1jA=x, the consumer�s optimal purchase amount is
A� = x. Next, we specify these three conditions. The condition that x > �A can be re-written as

� < 4x(1 +m). (16)

From (21) we �nd that G1jA=x � 0 when

� � x(1 +m). (17)

According to our above analysis for Case (iii), we �nd that G�2 � G1jA=x depends on the
comparison between x and s0. Speci�cally, if x < s0, then G�2 � G1jA=x when

� � 4(1 +m)(1 + s)[
p
(1 + s)x+

p
sx+ s0]

2; (18)
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otherwise, if x � s0, then G�2 � G1jA=x when

� � 4(1+m)(1+s)[
p
(1 + s)x+

p
sx+ s0]

2, or, � � 4(1+m)(1+s)[
p
(1 + s)x�

p
sx+ s0]

2. (19)

Hence, we consider the following issues: when x < s0, we �nd that, if � satis�es (18), then �

cannot satisfy (16). This means that, if x < s0, then Case (iii) doesn�t happen.

When x � s0, we �nd that Case (iii) applies if and only if

x(1 +m) � 4(1 +m)(1 + s)[
p
(1 + s)x�

p
sx+ s0]

2,

or simply,

0 � sx+ (1 + s)(3x+ 8sx+ 4s0)� 8(1 + s)
p
(1 + s)x

p
sx+ s0,

which requires that

x � 4s0(1 + s).

This means that, if x � 4s0(1 + s), then Case (iii) happens, and the consumer spends $x. But,
from (16) and (19), we �nd that we need to compare x and (1+ s)[

p
(1 + s)x�

p
sx+ s0]

2. Our

comparison shows that, for Case (iii),

x > (1 + s)[
p
(1 + s)x�

p
sx+ s0]

2,

which implies that, if x � 4s0(1 + s), then the consumer spends $x only when

x(1 +m) � � � 4(1 +m)(1 + s)[
p
(1 + s)x�

p
sx+ s0]

2;

otherwise, if x < 4s0(1 + s), then the consumer abandons his or her shopping cart.

3. In Case (iv), x > �A and G�2 > G1jA=x. For this case, if G�2 � 0, then the consumer makes a

purchase; but, if G�2 < 0, then the consumer leaves without any online purchase. Hence, when

x > �A, G�2 � 0 and G�2 > G1jA=x, the consumer�s optimal purchase amount is A� = Â. Next,
we specify these three conditions. The condition that x > �A can be re-written as (16).

From (9) we �nd that G�2 � 0 when

� � 4(1 +m)(1 + s)s0. (20)

Comparing (16) and (20) suggests that x > (1 + s)s0.

Similar to our above analysis, we �nd that G�2 > G1jA=x depends on the comparison between x
and s0. Speci�cally, if x < s0, then G�2 > G1jA=x when

0 � � < 4(1 +m)(1 + s)[
p
(1 + s)x+

p
sx+ s0]

2;

otherwise, if x � s0, then G�2 > G1jA=x when

4(1 +m)(1 + s)[
p
(1 + s)x�

p
sx+ s0]

2 < � < 4(1 +m)(1 + s)[
p
(1 + s)x+

p
sx+ s0]

2.
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Because x > (1 + s)s0, we don�t need to consider the case that x < s0. When x > (1 + s)s0, we

�nd that, if x � 4s0(1 + s), then x > �A, G�2 � 0 and G�2 > G1jA=x when

4(1 +m)(1 + s)[
p
(1 + s)x�

p
sx+ s0]

2 < � < 4x(1 +m),

otherwise, if (1 + s)s0 < x < 4s0(1 + s), then x > �A, G�2 � 0 and G�2 > G1jA=x when

4(1 +m)(1 + s)s0 < � < 4x(1 +m).

In conclusion, we reach the result as shown in this theorem.

Proof of Theorem 4. Given that the r.v. � is distributed with p.d.f. f(�) and c.d.f. F (�), we
can easily �nd from Theorem 3 that the probability that the consumer with the speci�c parameter �

doesn�t make any purchase is

Pr(A = 0) =

8><>:
R x(1+m)
0 f(�)d�, if x � 4s0(1 + s),R 4s0(1+s)(1+m)
0 f(�)d�, if s0(1 + s) < x < 4s0(1 + s),R 4x(1+m)
0 f(�)d�, if 0 � x � s0(1 + s).

Thus, we can compute the probability Pr(A > 0) = 1� Pr(A = 0), as shown in this theorem.

Proof of Theorem 5. The �rst-order derivative of the probability Pr(A > 0) w.r.t. x is

@ Pr(A > 0)

@x

=

8><>:
�(1 +m)f [x(1 +m)], if x � 4s0(1 + s),
0, if s0(1 + s) < x < 4s0(1 + s),

�4(1 +m)f [4x(1 +m)], if 0 � x � s0(1 + s),

which implies that the probability Pr(A > 0) is non-increasing in the CFS cuto¤ level x. We notice

that, when x � 4s0(1+s), the �rst-order derivative is �(1+m)f [x(1+m)]; but when 0 � x � s0(1+s),
the �rst-order derivative is �4(1 + m)f [4x(1 + m)]. Moreover, we �nd that the impacts of x when
x = s0(1 + s) and that when x = 4s0(1 + s) are the same. In order to compare the impact of x

when x > 4s0(1 + s) and that when 0 < x < s0(1 + s), we can arbitrarily consider the CFS cuto¤

level x1 2 (4s0(1 + s);1). If we assume that the p.d.f. of x is unimodal with two tails, then we can
always �nd a corresponding value x2 2 (0; s0(1 + s)) such that f [4x2(1 +m)] = f [x1(1 +m)]. Thus,
�4(1 +m)f [4x2(1 +m)] < �(1 +m)f [x1(1 +m)]; this means that the impact of x when x = x2 is

greater than that when x = x1. Therefore, we have the conclusion as in the �rst item of the theorem.

4



The �rst-order derivative of the probability Pr(A > 0) w.r.t. m is

@ Pr(A > 0)

@m

=

8><>:
�xf [x(1 +m)], if x � 4s0(1 + s),
�4s0(1 + s)f [4s0(1 + s)(1 +m)], if s0(1 + s) < x < 4s0(1 + s),

�4xf [4x(1 +m)], if 0 � x � s0(1 + s),

which implies the decreasing property of the probability Pr(A > 0). We �nd that, as x decreases,

the pro�t margin m�s impact on the conversion rate when x is small [i.e., 0 � x � s0(1 + s)] may be
larger. This di¤ers from our above analysis, because, for any large value m1, we cannot ensure to �nd

a corresponding small value m2 such that f [4x(1 + m2)] = f [x(1 + m1)]. [Note that the minimum

value of m is zero and the corresponding the p.d.f. is f(4x).]

Proof of Theorem 6. From Theorem 4 we can �nd the probability Pr(A > 0), which is the

probability that the consumer buys online. For the Poisson distribution Pr(T = r) in (10), we can

compute the probability of no purchase (i.e., r = 0) as

Pr(T = 0) = exp[��(�)].

Equating exp[��(�)] to the probability Pr(A = 0) = 1�Pr(A > 0) where Pr(A > 0) is obtained from
Theorem 4, we can compute the consumer-speci�c parameter �(�), as shown in this theorem.

Proof of Theorem 7. We denote by �i and ri the parameters for the purchase amount and number

of purchases of consumer i. Let �i(m;xj�i; ri) be the pro�t that the retailer draws from consumer i

for given values of the random parameters �i and ri.

We then compute �(m;x) as,

�(m;x) = E

" BX
i=1

�i(m;xj�i; ri)
#
=

BX
i=1

E[�i(m;xj�i; ri)].

Using the law of iterated expectations, we have

�(m;x) =
BX
i=1

E [E [�i(m;xj�i; ri)j�i]]

=

BX
i=1

E
hX1

ri=0
�i(m;xj�i; ri)� Pr(ri)

i
.
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Then, using the law of conditional probability, we �nd that

�(m;x) =
BX
i=1

Z X1

ri=0
�i(m;x; �ijri)� f(�i)� Pr(ri)d�i,

= B
Z X1

ri=0
�i(m;x; �ijri)� Pr(ri)� f(�i)d�i

=

Z X1

ri=0
�i(m;x; �ijri)� f(�i)d�i � Pr(ri)� B

=
X1

ri=0

Z
�i(m;x; �ijri)� f(�i)d�i � Pr(ri)� B

=
X1

r=0
�(m;xjT = r)� Pr(T = r)� B.

This proves the theorem.

Proof of Theorem 8. We now analyze the two retailers�optimal decisions when the parameters

in their shipping fee functions are equal. For notational simplicity, we set s0 � s
(1)
0 = s

(2)
0 and

s � s(1) = s(2). For the duopoly case, a consumer makes his or her purchasing decision when two

retailers (i.e., Retailer i, i = 1; 2) sell identical products online. Thus, we need to compare the

consumer�s maximum net surpluses from buying at either of the two retailers, and �nd the optimal

purchase amount A� that maximizes the consumer�s overall net surplus. Theorem 3 indicates that,

for a monopoly scenario, the consumer�s purchasing decision depends on the value of x and we thus

need to consider three cases for the monopoly structure. Now, in the duopoly structure, two retailers�

CFS cuto¤ levels x1 and x2 may be di¤erent; as a result, we should analyze the consumer�s decision

for nine cases each corresponding to one of three ranges of x1 and one of three ranges of x2.

We �rst analyze the two retailers�pro�t margin decisions for any given pair of x1 and x2, and show

that, to compete for consumers, the two retailers always set identical pro�t margins for any values of

x1 and x2. As mentioned above, we need to consider nine cases in which x1 and x2 fall in some speci�c

ranges, and for each case examine how the two retailers choose their pro�t margins to compete for

consumer with speci�c parameter �.

Case 1: x1 � 4s0(1 + s) and x2 � 4s0(1 + s). For this case, we �nd that, if � < min[x1(1+m1); x2(1+

m2)], then the consumer doesn�t purchase any product from either retailer, and thus his or her

optimal purchase amount is A� = 0. But, if min[x1(1 + m1); x2(1 + m2)] < � < max[x1(1 +

m1); x2(1 +m2)], then the consumer decides to buy products from the retailer with min[x1(1 +

m1); x2(1+m2)]. In order to compete for the consumer, the retailer with max[x1(1+m1); x2(1+

m2)] should decrease its pro�t margin so that it has the minimum value min[x1(1 +m1); x2(1 +

m2)].

Letting

# � min

(
4(1 + s)(1 +mj)

�q
(1 + s)xj �

p
sxj + s0

�2
; j = 1; 2

)
,

�# � max

(
4(1 + s)(1 +mj)

�q
(1 + s)xj �

p
sxj + s0

�2
; j = 1; 2

)
,
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we �nd that, if max[x1(1+m1); x2(1+m2)] � #, then the consumer with parameter � such that
max[x1(1 +m1); x2(1 +m2)] � � � # can achieve the net surpluses

p
xj�=[1 +mj ] � xj from

Retailer j, j = 1; 2. In order to win the consumer, the two retailers should reduce their pro�t

margins to increase the consumer�s net surplus. Otherwise, if max[x1(1 +m1); x2(1 +m2)] � #,
then we, w.l.o.g., assume that the retailer with �# is Retailer i (i = 1; 2) and the retailer with #

is Retailer j (j = 1; 2, j 6= i), and consider the following two possibilities:
1. If the consumer with parameter � such thatmax[x1(1+m1); x2(1+m2)] � � � �# determines
the purchase amount xi from Retailer i, then the consumer can achieve the net surplusp
xi�=[1 +mi]� xi;

2. If the consumer with parameter � such thatmax[x1(1+m1); x2(1+m2)] � � � �# determines
the purchase amount Âj or �Aj from Retailer j (j = 1; 2, j 6= i), then the consumer can

achieve the net surplus �=[4(1 + s)(1 +mj)]� s0 or �=[4(1 +mj)].

In order to compete for the consumer, each retailer reduces its pro�t margin mi or mj to increase

the consumer�s net surplus. Otherwise, the retailer with a high value of pro�t margin may lose

the consumer.

Next, we �nd that, if � � �#, then the consumer spends $Âi or $ �Ai from Retailer i, or the consumer

spends $Âj or $ �Aj from Retailer j. As a result, the net surplus achieved from Retailer i is

computed as �=[4(1 + s)(1 +mi)] � s0 or �=[4(1 +mi)], and that from Retailer j is calculated

as �=[4(1 + s)(1 +mj)]� s0 or �=[4(1 +mj)]. Like in our above discussion, each retailer should

have an incentive to reduce its pro�t margin so as to win the consumer.

In addition, we notice that, as Retailer i (i = 1; 2) reduces its pro�t margin, the range for no

purchase is smaller and the range for the purchase amount �Ai is greater. That is, as a result of

the competition, each retailer reduces its pro�t margins for this case.

Case 2: x1 � 4s0(1 + s) and s0(1 + s) < x2 < 4s0(1 + s). For this case, we �nd that, if � < min[x1(1+
m1); 4s0(1+s)(1+m2)], then the consumer doesn�t purchase any product from either retailer, and

thus his or her optimal purchase amount is A� = 0. But, if min[x1(1+m1); 4s0(1+s)(1+m2)] <

� < max[x1(1 +m1); 4s0(1 + s)(1 +m2)], then the consumer decides to buy products from the

retailer with min[x1(1+m1); 4s0(1+s)(1+m2)]. To compete for the consumer, the retailer with

max[x1(1+m1); 4s0(1+s)(1+m2)] should decrease its pro�t margin so that it has the minimum

value min[x1(1 +m1); 4s0(1 + s)(1 +m2)].

When � > max[x1(1 + m1); 4s0(1 + s)(1 + m2)], the consumer�s purchase amount from Retailer 1

is x1, Â1 or �A1; and the consumer�s purchase amount from Retailer 2 is Â2 or �A2. Similar

to our analysis for Case 1, the two retailers should reduce their pro�t margins to compete for

the consumer. Therefore, for this case, the two retailers have incentives to decrease their pro�t

margins as a consequence of competition.

Case 3: x1 � 4s0(1 + s) and 0 � x2 < s0(1 + s). For this case, we �nd that, if � < min[x1(1 +

m1); 4x2(1 + m2)], then the consumer doesn�t purchase any product from both retailers, and

thus his or her optimal purchase amount is A� = 0. But, if min[x1(1 + m1); 4x2(1 + m2)] <

� < max[x1(1 + m1); 4x2(1 + m2)], then the consumer decides to buy products from the re-

tailer with min[x1(1 + m1); 4x2(1 + m2)]. To compete for the consumer, the retailer with
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max[x1(1 + m1); 4x2(1 + m2)] should decrease its pro�t margin so that it has the minimum

value min[x1(1 +m1); 4x2(1 +m2)].

When � > max[x1(1 +m1); 4x2(1 +m2)], the consumer�s purchase amount from Retailer 1 is x1, Â1
or �A1; and the consumer�s purchase amount from Retailer 2 is �A2. Therefore, for this case, the

two retailers should decrease their pro�t margins as a consequence of competition.

Case 4: s0(1 + s) < x1 < 4s0(1 + s) and x2 � 4s0(1 + s). The analysis for this case is similar to that
for Case 2.

Case 5: s0(1 + s) < x1 < 4s0(1 + s) and s0(1 + s) < x2 < 4s0(1 + s). For this case, if � < min[4s0(1+
s)(1 + m1); 4s0(1 + s)(1 + m2)], then the consumer doesn�t purchase any product from either

retailer, and thus his or her optimal purchase amount is A� = 0. But, if min[4s0(1 + s)(1 +

m1); 4s0(1 + s)(1 + m2)] < � < max[4s0(1 + s)(1 + m1); 4s0(1 + s)(1 + m2)], then the con-

sumer decides to buy products from the retailer with min[4s0(1+ s)(1+m1); 4s0(1+ s)(1+m2)]

(i.e., the retailer with the smaller pro�t margin). To compete for the consumer, the retailer with

max[4s0(1+s)(1+m1); 4s0(1+s)(1+m2)] (i.e., the retailer with the larger pro�t margin) should

decrease its pro�t margin so that it has the minimum value min[4s0(1+s)(1+m1); 4s0(1+s)(1+

m2)].

If � > max[4s0(1+s)(1+m1); 4s0(1+s)(1+m2)], then the consumer�s purchase amount from Retailer

1 is Â1 or �A1; and the consumer�s purchase amount from Retailer 2 is Â2 or �A2. As discussed for

Case 1, two retailers are likely to reduce their pro�t margins in order to compete for consumers.

Case 6: s0(1 + s) < x1 < 4s0(1 + s) and 0 � x2 < s0(1 + s). For this case, if � < min[4s0(1+s)(1+
m1); 4x2(1 + m2)], then the consumer doesn�t purchase any product from both retailers, and

thus his or her optimal purchase amount A� = 0. But, if min[4s0(1+ s)(1+m1); 4x2(1+m2)] <

� < max[4s0(1 + s)(1 +m1); 4x2(1 +m2)], then the consumer decides to buy products from the

retailer with min[4s0(1 + s)(1 +m1); 4x2(1 +m2)]. To compete for the consumer, the retailer

with max[4s0(1 + s)(1 +m1); 4x2(1 +m2)] should decrease its pro�t margin so that it has the

minimum value min[4s0(1 + s)(1 +m1); 4x2(1 +m2)].

If � > max[4s0(1 + s)(1 +m1); 4x2(1 +m2)], then the consumer�s purchase amount from Retailer 1

is Â1 or �A1; and the consumer�s purchase amount from Retailer 2 is �A2. Comparing them we

�nd that each retailer has an incentive to reduce its pro�t margin.

Case 7: 0 � x1 < s0(1 + s) and x2 � 4s0(1 + s). The analysis for this case is similar to that for Case
3.

Case 8: 0 � x1 < s0(1 + s) and s0(1 + s) < x2 < 4s0(1 + s). The analysis for this case is similar to
that for Case 6.

Case 9: 0 � x1 < s0(1 + s) and 0 � x2 < s0(1 + s). For this case, if � < min[4x1(1 +m1); 4x2(1 +

m2)], then the consumer doesn�t purchase any product from either retailer, and thus his or her

optimal purchase amount A� = 0. But, if min[4x1(1 +m1); 4x2(1 +m2)] < � < max[4x1(1 +

m1); 4x2(1+m2)], then the consumer decides to buy products from the retailer with min[4x1(1+

m1); 4x2(1+m2)]. To compete for the consumer, the retailer with max[4x1(1+m1); 4x2(1+m2)]

should decrease its pro�t margin so that it has the minimum value min[4x1(1+m1); 4x2(1+m2)].

If � > max[4x1(1 +m1); 4x2(1 +m2)], then the consumer�s purchase amount from Retailer 1 is �A1;
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and the consumer�s purchase amount from Retailer 2 is �A2. Each retailer thus has an incentive

to reduce its pro�t margin.

From the above discussion of the nine cases, we conclude that each retailer can reduce its pro�t

margin to win consumers. Then, the two retailers would reduce their pro�t margins to zero; this means

that their prices are set equal to their acquisition costs, as shown by Bertrand [9]. However, we �nd

from Section 4.2 that, if a retailer reduces its pro�t margin to zero, then the retailer�s pro�t would

be negative because it should pay shipping fee to consumers who qualify for free shipping. Thus, in

order to compete for consumers but ensure their pro�tability, the two retailers should choose identical,

nonzero pro�t margins.

When the two retailers set identical pro�t margins, we let m � m1 = m2. We next investigate how

two retailers change their CFS cuto¤ levels to compete for consumers. Like in our above discussion,

we consider the following nine cases:

Case 1: x1 � 4s0(1 + s) and x2 � 4s0(1 + s). For this case, we �nd that consumers don�t make any
online transactions with the retailer with the greater CFS cuto¤ level, because the consumer with

� < xi(1 +mi) doesn�t buy from Retailer i (i = 1; 2). Thus, the two retailers have incentives to

�nally set identical CFS cuto¤ levels. If � > max[x1(1 +m1); x2(1 +m2)], then the consumer�s

purchase amount from Retailer i (i = 1; 2) is xi, Âi or �Ai. We learn from Theorem 1 that

Â1 = Â2 and �A1 = �A2. So, we should compare the consumer�s net surpluses when the consumer

chooses xi at Retailer i. From (21) we �nd that when � > max[x1(1 + m1); x2(1 + m2)], the

consumer�s net surplus is higher when he or she chooses the retailer with the smaller CFS cuto¤

level. Therefore, to compete, two retailers should �nally set identical CFS cuto¤ level.

Case 2: x1 � 4s0(1 + s) and s0(1 + s) < x2 < 4s0(1 + s). For this case, we �nd that, similar to Case
1, consumers don�t make any online transactions with the retailer with the greater CFS cuto¤

level. In addition, we �nd that when � > max[x1(1 +m1); 4s0(1 + s)(1 +m2)], the consumer�s

purchase amount from Retailer 1 is x1, Â1 or �A1, and the consumer�s purchase amount from

Retailer 2 is Â2 or �A2. Since Â1 = Â2 and �A1 = �A2, we need to compare the consumer�s net

surplus in terms of x1 and that in terms of Â2. Note that for this case x2 < x1. Because

G(2)jA=Â2 > G
(2)jA=x2 =

s
x2�

(1 +m)
� x2 >

s
x1�

(1 +m)
� x1 = G(1)jA=x1 ,

which means that Retailer 1 should change its CFS threshold x1 to x2 for this case.

Case 3: x1 � 4s0(1 + s) and 0 � x2 < s0(1 + s). Similarly, we �nd that consumers don�t make any
online transactions with the retailer with the greater CFS cuto¤ level. In addition, we �nd that

when � > max[x1(1 +m1); 4x2(1 +m2)], the consumer�s purchase amount from Retailer 1 is x1,

Â1 or �A1, and the consumer�s purchase amount from Retailer 2 is �A2. Since �A1 = �A2, we need

to compare the consumer�s net surplus in terms of x1, that in terms of Â1 and that in terms of
�A2. We �nd that

G(2)jA= �A2 > G
(2)jA=Â2 =

�

4(1 + s)(1 +m)
� s0 = G(1)jA=Â1 ,
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and

G(2)jA= �A2 > G
(2)jA=Â2 > G

(2)jA=x2 > G(1)jA=x1 ;

thus, the consumer�s net surplus in terms of �A2 is higher. As a result, Retailer 1 should change

its CFS threshold x1 to x2 for this case.

Case 4: s0(1 + s) < x1 < 4s0(1 + s) and x2 � 4s0(1 + s). Similar to Case 2, Retailer 2 should change
its CFS threshold x2 to x1 for this case.

Case 5: s0(1 + s) < x1 < 4s0(1 + s) and s0(1 + s) < x2 < 4s0(1 + s). For this case, we �nd from The-
orem 3 that the consumer with speci�c parameter � has the same purchase amounts at the two

retailers. However, the range for no purchase at the retailer with the larger CFS threshold is

wider; this means that the probability of no purchase at the retailer with the larger CFS thresh-

old is larger. Similarly, we �nd that, if a retailer�s CFS threshold is larger, then the probability

for the larger purchase amount �A at the retailer is smaller. Thus, we conclude that, to compete

for consumers, the two retailers should change their CFS cuto¤ levels until they have identical

CFS thresholds.

Case 6: s0(1 + s) < x1 < 4s0(1 + s) and 0 � x2 < s0(1 + s). For this case, we �nd that x1 > x2.

Similar to Case 3, Retailer 1 should change its CFS threshold x1 to x2 for this case.

Case 7: 0 � x1 < s0(1 + s) and x2 � 4s0(1 + s). Similar to Case 3, Retailer 2 should change its CFS
threshold x2 to x1 for this case.

Case 8: 0 � x1 < s0(1 + s) and s0(1 + s) < x2 < 4s0(1 + s). Similar to Case 6, Retailer 2 should
change its CFS threshold x2 to x1 for this case.

Case 9: 0 � x1 < s0(1 + s) and 0 � x2 < s0(1 + s). For this case, in order to compete for consumers,
the two retailers have incentives to eventually set identical CFS cuto¤ levels.

From the above analysis, we conclude that the two retailers�equilibrium CFS thresholds should

be identical. The theorem is thus proved.

Appendix B A Discussion of Four Cases in Figure 1

We discuss four cases in Figure 1: [Note that, as implies by Theorem 1, �A > Â and G�1 > G
�
2.]

(i): x � Â < �A. According to Theorem 1, we �nd that G�1 = �=[4(1 +m)] � 0. Therefore, for this

case, the consumer quali�es for CFS and his or her optimal purchase quantities are q�i = �qi

(i = 1; 2; : : : ; n), which are given by (6); and his or her optimal purchase amount is A� = �A,

which is given by (7). For this case, see Figure 1(i).

(ii): Â < x � �A. The analytical results for this case are the same as those for Case (i). For this case,
see Figure 1(ii).

(iii): �A < x and G�2 � G1jA=x. Using Figure 1(iii), we �nd that, if G1jA=x � 0, then the optimal

purchase amount is A� = x and the consumer quali�es for CFS; otherwise, the net surplus is

negative, and the consumer abandons his or her shopping cart. It, however, follows from (5) that

we must determine the consumer�s purchase quantities q�i (i = 1; 2; : : : ; n) when the consumer�s

purchase amount A = x. Otherwise, if we don�t have any information about purchase quantities

but only have purchase amount A = x, we cannot compute the consumer�s net surplus G1jA=x.
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To �nd the purchase quantities, we should maximize G1 subject to A = x; that is,

max
qi

Xn

i=1
�i
p
qi � (1 +m)

Xn

i=1
ciqi, s.t. (1 +m)

Xn

i=1
ciqi = x.

Solving the problem gives

q�i =
�2i
c2i

x

(1 +m)�
,

and the resulting maximum net surplus

G1jA=x =

s
x�

(1 +m)
� x. (21)

Hence, when � � x(1 + m), G1jA=x � 0 and the consumer makes his or her purchase; when

� < x(1+m), G1jA=x < 0 and the consumer abandons his or her online shopping cart. Moreover,
the condition that G�2 � G1jA=x can be written as

�

4(1 + s)(1 +m)
� s0 �

s
x�

(1 +m)
� x.

Solving the inequality we �nd that, if x < s0, then G�2 � G1jA=x when

� � 4(1 +m)(1 + s)[
p
(1 + s)x+

p
sx+ s0]

2;

otherwise, if x � s0, then G�2 � G1jA=x when

� � 4(1 +m)(1 + s)[
p
(1 + s)x+

p
sx+ s0]

2, or, � � 4(1 +m)(1 + s)[
p
(1 + s)x�

p
sx+ s0]

2.

(iv): �A < x and G�2 > G1jA=x. Using Figure 1(iv), we �nd that, if G�2 � 0, then q�i = q̂i (i =

1; 2; : : : ; n), which are given by (8); and the optimal purchase amount is A� = Â, which is

given by (9). For this case the consumer buys but doesn�t qualify for free shipping. Otherwise,

if G�2 < 0, the net surplus is then negative, and the consumer abandons his or her shopping

cart. According to (9), we �nd that, if � � 4s0(1 + s)(1 + m), then G�2 � 0; otherwise, if

� < 4s0(1 + s)(1 +m), then G�2 < 0. In addition, if x < s0, then G
�
2 > G1jA=x only when

0 � � < 4(1 +m)(1 + s)[
p
(1 + s)x+

p
sx+ s0]

2;

otherwise, if x � s0, then G�2 > G1jA=x when

4(1 +m)(1 + s)[
p
(1 + s)x�

p
sx+ s0]

2 < � < 4(1 +m)(1 + s)[
p
(1 + s)x+

p
sx+ s0]

2.

Appendix C An Online Retailer�s Expected Pro�t Function

We now specify an online retailer�s expected pro�t function (14) for the following three scenarios.
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C.1 Scenario 1: x � 4s0(1 + s)

In this scenario, we �nd from Theorem 3 that, if � < x(1+m), the consumer with parameter � doesn�t

purchase any product online and the retailer�s pro�t is thus zero. If x(1 + m) � � � 4(1 + s)(1 +

m)[
p
(1 + s)x �

p
sx+ s0]

2, the consumer then spends $x in a single transaction, and quali�es for

free shipping. To satisfy the consumer, the online retailer needs to absorb the shipping fee. When

x(1+m) � � � 4(1+s)(1+m)[
p
(1 + s)x�

p
sx+ s0]

2, �(m;x) should be computed as revenue minus

acquisition and shipping costs. Because the consumer spends $x for each of r transactions, the sale

revenue per transaction is $x. Since the pro�t margin is m, the retailer�s acquisition cost is computed

as x=(1 +m).

Therefore, when x(1+m) � � � 4(1+s)(1+m)[
p
(1 + s)x�

p
sx+ s0]

2, �(m;x) can be computed

as

�(m;x) = x� x

1 +m
�K(x) = mx

1 +m
� k(s0 + sx) =

�
m� (1 +m)ks

1 +m

�
x� ks0,

where K(x) is de�ned in (13)

Next, when 4(1 + s)(1 +m)[
p
(1 + s)x �

p
sx+ s0]

2 < � < 4x(1 +m), the consumer spends $Â

and pays for the shipping fee S(Â); as a result, the retailer�s per transaction pro�t �(m;x) is

�(m;x) =
mÂ

1 +m
� (k � 1)(s0 + sÂ) =

[m� (k � 1)(1 +m)s]�
4(1 + s)(1 +m)2

� (k � 1)s0,

where if k < 1, then (k � 1)(s0 + sx) < 0 and the retailer�s pro�t increases.
When � � 4x(1 +m), the consumer spends $ �A and obtains the free-shipping service. Hence, the

retailer�s pro�t �(m;x) is found as

�(m;x) =

�
m� (1 +m)ks

1 +m

�
�A� ks0 =

[m� (1 +m)ks]�
4(1 +m)2

� ks0.

In conclusion, for the �rst scenario [i.e., x � 4s0(1 + s)], we can compute

�(m;x) =

Z 4(1+s)(1+m)[
p
(1+s)x�

p
sx+s0]2

x(1+m)

��
m� (1 +m)ks

1 +m

�
x� ks0

�
f(�)d�

+

Z 4x(1+m)

4(1+s)(1+m)[
p
(1+s)x�

p
sx+s0]2

�
[m� (k � 1)(1 +m)s]�
4(1 + s)(1 +m)2

� (k � 1)s0
�
f(�)d�

+

Z 1

4x(1+m)

�
[m� (1 +m)ks]�

4(1 +m)2
� ks0

�
f(�)d�.

and use (14) to �nd

�(m;x) = �(m;x)� �(�)� B =�(m;x)� lnf1=F [x(1 +m)]g � B,

where �(�) = lnf1=F [x(1 +m)]g for the scenario, as shown in Theorem 6.
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C.2 Scenario 2: s0(1 + s) < x < 4s0(1 + s)

For this scenario, as Theorem 3 indicates, the consumer may not buy, may spend $Â but pay for

shipping cost K(Â), or may spend $ �A without shipping payment. Similar to Section C.1, we can

compute the retailer�s expected pro�t �(m;x) as follows:

�(m;x) = �(m;x)� lnf1=F [4s0(1 + s)(1 +m)]g � B,

where

�(m;x) =

Z 4x(1+m)

4s0(1+s)(1+m)

�
[m� (k � 1)(1 +m)s]�
4(1 + s)(1 +m)2

� (k � 1)s0
�
f(�)d�

+

Z 1

4x(1+m)

�
[m� (1 +m)ks]�

4(1 +m)2
� ks0

�
f(�)d�.

C.3 Scenario 3: 0 � x < s0(1 + s)

For this scenario the consumer may not buy or may buy products worth $ �A. We can similarly compute

the retailer�s expected pro�t �(m;x) as follows:

�(m;x) = �(m;x)� lnf1=F [4x(1 +m)]g � B,

where

�(m;x) =

Z 1

4x(1+m)

�
[m� (1 +m)ks]�

4(1 +m)2
� ks0

�
f(�)d�.

Appendix D Numerical Results for the Sensitivity Analysis in Sec-

tion 4.3
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Appendix E A Simulation Approach for the Game Analysis in Sec-

tion 5

In our simulation model, consumers in the base B arrive to the two retailers and make their purchasing
decisions. We develop a �ow chart in Figure 3 to show the simulation of a consumer�s behavior in

a single transaction. Given the p.d.f. of the parameter �, we randomly generate a speci�c value for

an arriving consumer, and use Theorem 3 to compute the consumer�s optimal purchase amount A(i)

and maximum net surplus G(i) if the consumer buys from Retailer i, i = 1; 2. Then, we compare G(1)

and G(2) to �nd at which retailer the consumer should buy. If G(i) = G(j), then the consumer spends

A(1) to buy products from Retailer 1 with the probability , and spends A(2) to buy products from

Retailer 2 with the probability (1 � ). If G(i) > G(j) (i; j = 1; 2; i 6= j), then the consumer gains

more from purchasing at Retailer i, and decides to buy from the retailer. Otherwise, if G(i) < G(j)

(i; j = 1; 2; i 6= j), then the consumer buys from Retailer j. Next, we compare the purchase amount

of the consumer and the CFS cuto¤ level of the retailer from which the consumer buys, in order to

�nd whether the consumer quali�es for the free shipping. We can then compute both retailers�pro�ts

from the consumer, as shown in Figure 3. Note that, if the consumer chooses Retailer i, then Retailer

j�s pro�t from the consumer is zero; otherwise, if the consumer chooses Retailer j, then Retailer i�s

pro�t from the consumer is zero.

Figure 3: The �ow chart of a consumer�s online purchase in our simulation model.

From the simulation for the consumer with � in a single transaction, we can �nd at which online

retailer the consumer buys. If the consumer chooses Retailer i (i = 1; 2), then we can use Theorem
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6 and the retailer�s decisions xi and mi to compute �(�), i.e., the consumer�s expected number of

repeated purchases. Thus, the total pro�t that Retailer i earns from the consumer�s purchases is

calculated as the pro�t in a single transaction times �(�).

We use �Arena�� a primary simulation software in industry� to develop a simulation model. Arena

provides a variety of modules for simulation. For example, we can use the module �Create�to generate

a new consumer in Figure 3. In our simulation we generate 10; 000 consumers, as in Lewis et al. [33].

Moreover, we can use the module �Decide� to determine at which retailer a consumer buys. For

more information regarding how to use Arena for simulation, see, e.g., Kelton et al. [28]. After

all consumers leave, we can compute the total pro�t that each retailer achieves during the single

period. Denote Retailer 1�s and Retailer 2�s total pro�ts by �1(m1; x1;m2; x2) and �2(m2; x2;m1; x1),

respectively. Given the values of mi and xi (i = 1; 2), we can use the above simulation approach to

�nd �1(m1; x1;m2; x2) and �2(m2; x2;m1; x1).

In order to �nd a Nash equilibrium, we should compute a retailer�s best-response function in terms

of the other retailer�s decisions. However, due to the complexity of our game, we have to use simulation

to �nd a retailer�s best response when the other retailer�s decisions are given. We develop the following

procedure to search for Nash equilibrium.

1. We �rst use our method to compute Retailer i�s optimal pro�t margin m�
i and CFS cuto¤ level

x�i , for i = 1; 2.

2. Given that Retailer 2�s decisions arem�
2 and x

�
2, we maximize Retailer 1�s pro�t�1(m1; x1;m

�
2; x

�
2)

to �nd its best-response solutions mB
1 (m

�
2; x

�
2) and x

B
1 (m

�
2; x

�
2). To maximize �1(m1; x1;m

�
2; x

�
2)

in our Arena simulation model, we use �OptQuest�� which is an optimization add-in for Arena�

to search for mB
1 (m

�
2; x

�
2) and x

B
1 (m

�
2; x

�
2).

3. Given that Retailer 1�s best-response decisions are mB
1 (m

�
2; x

�
2) and x

B
1 (m

�
2; x

�
2), we use �Op-

tQuest� to maximize Retailer 2�s pro�t �2(m2; x2;m
B
1 (m

�
2; x

�
2); x

B
1 (m

�
2; x

�
2)) and �nd its best-

response solutions mB
2 (m

B
1 (m

�
2; x

�
2); x

B
1 (m

�
2; x

�
2)) and x

B
2 (m

B
1 (m

�
2; x

�
2); x

B
1 (m

�
2; x

�
2)).

4. If

m�
1 = mB

1 (m
�
2; x

�
2), x

�
1 = x

B
1 (m

�
2; x

�
2);

m�
2 = mB

2 (m
B
1 (m

�
2; x

�
2); x

B
1 (m

�
2; x

�
2)), x

�
2 = x

B
2 (m

B
1 (m

�
2; x

�
2); x

B
1 (m

�
2; x

�
2)),

then we arrive to Nash equilibrium (mN
i ; x

N
i ) = (m

�
i ; x

�
i ), for i = 1; 2. Otherwise, we let

m�
2 � mB

2 (m
B
1 (m

�
2; x

�
2); x

B
1 (m

�
2; x

�
2)) and x

�
2 � xB2 (mB

1 (m
�
2; x

�
2); x

B
1 (m

�
2; x

�
2)),

and then go to Step 2 to continue with our search.
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Appendix F Simulation Results for two Examples in Section 5

F.1 Simulation Results for Example 2

Simulations Retailer 1 Retailer 2
m�
1 x�1 m�

2 x�2
Starting Point � � 0.9311 4.704

Simulation 1 (Retailer 1�s best response) 0.9308 4.705 � �

Simulation 2 (Retailer 2�s best response) � � 0.9187 4.737

Simulation 3 (Retailer 1�s best response) 0.9182 4.739 � �

Simulation 4 (Retailer 2�s best response) � � 0.8907 4.807

Simulation 5 (Retailer 1�s best response) 0.8894 4.810 � �

Simulation 6 (Retailer 2�s best response) � � 0.8761 4.844

Simulation 7 (Retailer 1�s best response) 0.8759 4.845 � �

Simulation 8 (Retailer 2�s best response) � � 0.8751 4.846

Simulation 9 (Retailer 1�s best response) 0.8750 4.846 � �

Simulation 10 (Retailer 2�s best response) � � 0.8750 4.846

Simulation 11 (Retailer 1�s best response) 0.8750 4.846 � �

F.2 Simulation Results for Example 3

Simulations Retailer 1 Retailer 2
m�
1 x�1 m�

2 x�2
Starting Point � � 0.2417 9.600

Simulation 1 (Retailer 1�s best response) 0.5685 10.202 � �

Simulation 2 (Retailer 2�s best response) � � 0.1331 10.839

Simulation 3 (Retailer 1�s best response) 0.4179 9.517 � �

Simulation 4 (Retailer 2�s best response) � � 0.0679 10.958

Simulation 5 (Retailer 1�s best response) 0.3314 7.811 � �

Simulation 6 (Retailer 2�s best response) � � 0.0200 12.101

Simulation 7 (Retailer 1�s best response) 0.2639 8.653 � �

Simulation 8 (Retailer 2�s best response) � � 0.6737 16.307

Simulation 9 (Retailer 1�s best response) 0.6938 13.971 � �

Simulation 10 (Retailer 2�s best response) � � 0.6898 16.139

Simulation 11 (Retailer 1�s best response) 0.6591 10.114 � �

Simulation 12 (Retailer 2�s best response) � � 0.6898 16.139

Simulation 13 (Retailer 1�s best response) 0.6591 10.114 � �
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