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Abstract: Accurate prediction of photovoltaic power generation is vital to guarantee smooth 

operation of photovoltaic power stations and ensure the electricity consumption of end users. As a 

good forecasting tool, Gated Recurrent Unit method has been widely used in different forecasting 

areas. However, the existing studies ignore the impact of data fluctuations on prediction accuracy 

since photovoltaic power generation is intermittent and uncertain, then the prediction results of 

Gated Recurrent Unit are facing challenges. To fill the gaps and enhance prediction accuracy, this 

paper develops an improved Gated Recurrent Unit photovoltaic generation prediction method. 

Several different data smoothing techniques are introduced and compared to reduce fluctuations, 

Random Forest method is used for feature selection, and RepeatVector layer extended by attribute 

dimensions and TimeDistributed layer with full connectivity are utilized to optimize the Gated 

Recurrent Unit model. A real-world case from the photovoltaic power plant in Xuhui District, 

Shanghai, China, is adopted to evaluate the performance of proposed method. After comparing with 

the prediction results of Recurrent Neural Networks and Long Short-Term Memory, and the actual 

data as well, it is found that the proposed prediction method can effectively improve the prediction 

accuracy of photovoltaic power generation.  

Keywords: Photovoltaic Power Generation; Prediction; Locally Weighted Scatterplot Smoothing; 

Random Forest; Gated Recurrent Unit 

 

1 Introduction  

Energy saving and carbon emission reduction is a topic of common concern all over the world. In 

China, the government has drawn the historic lessons from the failure of energy saving and carbon 

emission and sought a climate governance road with Chinese characteristics. Moreover, the clean 

air action plan, carbon peaking and carbon neutral strategies to achieve energy conservation and 

environment protection goals were claimed in 2021 [1]. Other countries are also making 

contributions to environment protection now. For instance, UK announced a policy for its Net Zero 

Strategy to support the transition of British businesses and consumers to clean energy and green 

technologies [2]. 

In particular, as a complementary and multi-system coordinated energy supply and 

consumption mode, renewable energy (wind energy, water energy, solar energy, geothermal energy, 

etc.) in the electricity market has become an important means to improve the efficiency of energy 

utilization and make great contributions to energy saving and carbon emission reduction in recent  
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Nomenclature kNN k-Nearest Neighbor algorithm 

 MAE Mean Absolute Error 

ˆ( , )x y  Center value of regression line  MAPE Mean Absolute Percentage Error 

i  Smoothing window ML Machine Learning 

ih  Smoothing coefficient MLP Multilayer Perceptron 

( , )w i j  Weight value MSE Mean Square Error 

( , )f i j  Original data LOESS Locally Estimated Scatterplot 

Smoothing 

( , )g x y  Smoothed data LOWESS Locally Weighted Scatterplot 

Smoothing 
t

x  Current input  LR Linear Regression 

1t
h


,

t
h  Hidden state LSTM Long-Short Term Memory 

t
y  Output NN Neural Network 

i
y ,

'

iy  real value, predicted value NRMSE Normalized Root Mean Squared Error 

max min
y y  Full distance of real value OOB Out Of Bag 

AAv Adjacent Average method  PCA Principal Component Analysis 

AI Artificial Intelligence PF Percentile Filtering 

ARD Automatic Relevance Determination 

method 

R2 R-Squared 

CNN Convolutional Neural Network RMSE Root Mean Square Error 

DEM Digital Elevation Model RMSPE Root-Mean-Square Percentage Error 

EANN Evolutionary Artificial Netural Network RNN Recurrent Neural Networks 

ES Exponential Smoothing SG Savitzky-Golay Smoothing 

GRA Grey Relational Analysis SVM Support Vector Machine 

GRU Gated Recurrent Unit Var Variance value 

    

years. Compared with other renewable energy sources, solar energy has the advantages of high 

flexibility, superior adaptability, and low development cost, which has broaden the social 

development potentials and prospects [3]. Photovoltaic power generation then has been a priority 

since it can convert solar energy into electricity. With the popularity of photovoltaic power 

generation, more and more countries and regions have been implementing their initiatives of 

integrating photovoltaic power generation into power grids, which has resulted in an increase in 

daily power supply and a reduction in carbon emissions. Nevertheless, the development of 

renewable energy is a combination of opportunities and challenges. One of the major challenges is 

that renewable energy is affected by natural factors and can be unstable when connected to the power 

grid [4]. The photovoltaic power generation is greatly affected by weather factors. This results in its 

intermittent defects, which, in turn, is not conducive to the stable operation of power grid. Therefore, 

accurate prediction results of photovoltaic power generation can make appropriate operations and 

scheduling efforts and alleviate the instability issues.  

Existing studies have shown that the length of prediction period has an important impact on 

the prediction accuracy and application scenarios. According to the length of prediction period, 

forecasting methods can be divided into three types: very short-term [5], short-term [6], and medium 

and long-term [7]. For very short-term forecasting, it is accurate in seconds to minutes and is suitable 

for real-time dispatching different sizes grids, so as to reserve spare capacity for power grid in a 

timely manner [6]. In terms of short-term forecasting with the range from hour to day, it concerns 

economic dispatch and decision making of power grid to balance power market transactions whose 

meaning is adjusting the unit combination scheme and optimizing the generation plan [5]. In 
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addition, medium and long-term prediction focuses on day to week/month/year based on the very 

short-term and short-term forecasting, which provides a long range plan for power grid and shows 

the ability for the equipment maintenance and the siting of new energy base stations. Many facts 

have shown that medium and long-term forecasting is filled with the big picture concept, which is 

also the development direction of forecasting in many economic and industrial areas [7]. In general, 

the three different prediction methods are adopted according to the characteristics of power grid in 

terms of time scale, application scope, and purpose. Since short-term prediction concerns the 

economic dispatch and decision making of power grid to balance power market transactions, our 

paper focuses more on short-term prediction of photovoltaic power generation in order to make 

better generation planning and more timely power plant offers to the dispatch center, as well as to 

improve the security and economy of power grid [8].  

The short-term prediction process of photovoltaic power generation mainly includes data 

processing and model prediction [9]. Data processing is an important prerequisite for prediction, 

which is shown as data cleaning, data integration, data transformation, and data protocol [10-12]. 

However, existing literatures ignore the importance of data fluctuations, there are still fewer analysis 

of data fluctuation in the prediction of photovoltaic power generation [13]. Therefore, it is necessary 

to pay more attention to the research on these smoothing methods. To the best of our knowledge, 

Locally Weighted Scatterplot Smoothing (LOWESS), Locally Estimated Scatterplot Smoothing, 

LOESS) [14], Savitzky-Golay Smoothing (SG) [15], Adjacent Average method (AAv) [16], and 

Percentile Filtering (PF) [17] have been representative smoothing methods with convenient 

operation and rapid arithmetic in recent years and have not been applied to the prediction of 

photovoltaic power generation [10,18]. Accordingly, our paper applies LOWESS, LOESS, SG, AAv, 

and PF smoothing methods to the data processing in the prediction of photovoltaic power generation 

to improve the data quality. We also compare the above five smoothing methods based on different 

evaluation metrics, and then filter out the best method with the lowest prediction error, so as to 

achieve the goal of improving prediction accuracy. 

In addition, we also use feature selection in the data processing. Feature selection refers to the 

process of selecting some effective features from existing features to reduce the data dimension, 

mainly including filter, embedded, and wrapper [19]. For example, in the filter method, Ref. [20] 

used the Automatic Relevance Determination method (ARD) to point out the most relevant input 

for the accurate monthly average daily solar radiation prediction, Ref. [21] used ridge regression 

algorithm in the embedded method. These feature selection methods improve the prediction 

accuracy of the model, but the performance and calculation speed are not as good as the wrapper 

method. Wrapper method mainly includes Random Forest, SVM(Support Vector Machine), and k-

Nearest Neighbor algorithm (kNN) [19]. Compared with SVM and kNN algorithm, Random Forest 

can process high-dimensional data, deal with many problems such as classification, feature selection, 

and regression [22]. Existing research and experimental results on Random Forest have exposed 

that Random Forest feature selection can effectively improve the prediction accuracy [22]. Then, 

this paper also applies Random Forest for data processing to analyze the factors that affect power 

generation and obtain higher input data quality. 

The next step after data processing is the prediction with a suitable model. At present, the 

prediction models of photovoltaic power generation are mainly divided into four categories: 

persistence forecast of "today equals tomorrow" [23], physical model based on terrain research [24], 

statistical techniques related to time series [25], and Artificial Intelligence (AI) prediction 
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represented by Machine Learning (ML) [26]. The first three categories possess some prediction 

flaws because of an increase in time span and abnormal sudden changes in weather [27]. ML mainly 

includes Linear Regression (LR), SVM, and Neural Network (NN). Especially, NN can efficiently 

process a large amount of data, improve the prediction accuracy and solve the defects in persistence 

forecast, physical model, and statistical techniques [26]. Today, NN has become the primary choice 

of prediction methods in many fields. 

As one of NN, Gated Recurrent Unit (GRU) can solve gradient disappearance and explosion 

of Recurrent Neural Networks (RNN), simplify parameters of Long-Short Term Memory (LSTM) 

[7,29], which shows excellent performance in prediction and obtains some further improvement 

[30]. However, the impact of data smoothing on prediction accuracy is not considered, the input 

data in multiple dimensions is not analyzed, and the information is shared diversely. There is still 

much room for the improvement of GRU model. Therefore, we develop an improved GRU model 

by introducing RepeatVector layer and TimeDistributed layer to optimize the GRU model, which is 

different from other optimized GRU models without diverse and multidimensional improvements 

in term of model hierarchy. To provide an improved reflection made to the GRU model in this paper 

and indicate the differences with other NN-based literatures, we have made a comprehensive 

comparison in Table 1. Moreover, our paper introduces data smoothing techniques while none of 

the remaining references introduces them. For feature selection, we use Random Forest for feature 

analysis which is similar to [11,30,32] while the other literatures do not perform feature selection. 

In summary, compared to other NN-based references, the innovation of this paper mainly includes 

the application of data smoothing techniques and the optimization of GRU model.  

Based on the above analysis, we first introduce LOWESS, LOESS, SG, PF, and AAv data 

smoothing methods and compare them to filter the best method with the least error. Secondly, 

considering the variety of natural factors that affect photovoltaic power generation, we use Random 

Forest for feature selection. Finally, we optimize the GRU model for prediction by using 

RepeatVector layer and TimeDistributed layer. The main contributions of this paper are as follows:  

(1) We consider different data smoothing technologies to reduce the data fluctuation of daily 

photovoltaic power generation. We also compare these data smoothing techniques to find the best 

smoothing method that has the least prediction error.  

(2) We use Random Forest to extract the characteristics of natural factors affecting daily 

photovoltaic power generation. 

(3) We add RepeatVector layer and TimeDistributed layer into the GRU model to improve its 

prediction accuracy. 

(4) We utilize the dataset from Shanghai, China and three prediction models to verify the 

accuracy and feasibility of our proposed method.  

The remainder of this paper is arranged as follows: Section 2 introduces the basic concepts of 

the five smoothing methods mentioned in this paper, the generation process of Random Forest, and 

original GRU model. Section 3 describes the structure of optimized GRU with the addition of 

RepeatVector layer and TimeDistributed layer. Section 4 gives the specific forecasting steps. In 

Section 5, we provide details for our case study, which include a description of experimental data, 

the selection of evaluation metrics, the setting of model parameters, and our comprehensive analysis 

of experimental results. Section 6 presents a summary of our works in this paper. 
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Table 1. Comparison between this paper and other NN-based references. 

Study Year 
Prediction 

period 

Data 

source 

Data 

processing 

Prediction 

model 

Optimization 

method 
Prediction error 

This 

paper 

 

2021 
Short-

term 
China 

Data 

smoothing 

and Random 

Forest feature 

selection 

GRU 

Use 

RepeatVector 

layer and 

TimeDistribut

ed layer to 

optimize GRU 

RMSE: 2.352                

MAE: 1.851 

MAPE: 19.715 

MSE: 5.530 

R2: 0.955 

NRMSE: 0.102 

[5] 2021 
Very 

short-term 
Basque 

N-nearest-

station model 

 

MLP 

(Multilayer 

Perceptron) 

Optimize the 

length of the 

input window 

RMSE: 0.2515 

R2: 0.9985 

[9] 2020 
Short-

term 
Spain 

Pearson 

correlation 

EANN 

(Evolutionary 

Artificial 

Netural 

Network) 

Evolutionary 

algorithm 

MBE: 0.30 

MAE: 33.46 

RMSE: 0.9709 

[26] 2020 

Medium 

and long-

term 

Korea 

DEM 

(Digital 

Elevation 

Model) 

LSTM-RNN 

Use LSTM 

layer to 

optimize 

stacked RNN 

R2: 0.724 

RMSE: 14.003 

NRMSE: 7.416 

MAPE: 10.805 

[28] 2019 

Medium 

and long-

term 

China 

American 

Copula 

function 
LSTM 

Joint 

prediction 

(wind and 

photovoltaic 

power 

generation) 

MAPE: 6.65 

RMSPE: 8.43 

[30] 2021 
Short-

term 
Australia 

Remove 

outliers and 

feature 

normalization 

Conv-GRU 

 

Use 

convolutional 

layers to 

optimize GRU 

R2: 0.8938 

RMSE: 2.630 

 

[31] 2021 
Very 

short-term 
American 

Data 

augmentation 

techniques 

CNN 

(Convolutional 

Neural 

Network) 

Adam 

algorithm 
RMSE: 3.259 

[32] 2021 
Short-

term 
Vietnam 

Pearson 

correlation 

and remove 

outliers 

 

LSTM 

Replace the 

historical 

weather data 

entered into 

the model 

with forecast 

weather data 

MSE: 56.348 

RMSE: 7.507 

MAE: 4.743 

MAPE: 9.881 

 

2 Theoretical basis 

This section presents the base methods used in data processing and prediction. The data 

processing mainly includes LOWESS, LOESS, SG, AAv and PF in data smoothing and Random 

Forest in feature selection. We specify the original GRU model as a base prediction model.  

2.1 Data smoothing 

2.1.1 LOWESS smoothing  

① Definition: take point x  as the center, intercept a section of proportional data forward and 

backward respectively, make weighted linear regression with weight function W for this section of 

data, ˆ( , )x y  is the center value of the regression line, ŷ  represents the corresponding value after 

fitting the curve, all n  data can make n  weighted regression lines. The connection of the central 

value of each regression line is the LOWESS smooth curve of this data [14]. 

② Weight function W 

The commonly used weight function is the cubic function ( )W x . 
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3

( )

(1 ) ,   1;

0,  1.
x

x if x
W

if x

  
 

     
………….………………………(1) 

2.1.2 LOESS smoothing 

LOESS smoothing divides the samples into multiple cells, performs polynomial fitting on the 

interval samples, repeats the fitting process continuously, and obtains multiple weighted regression 

curves, finally connects the center of the curve to obtain the smooth curve [14]. 

2.1.3 Savitzky-Golay smoothing 

Savitzky-Golay smoothing is based on the least square principle and performs k -order 

polynomial fitting for data points in a certain length window [15]. In formula (2), i  represents the

i th smoothing window, ih  represents the smoothing coefficient, ih H  is solved by the least 

square method. 

,

1 w

k ik smooth k i
i w

x x x h
H






   ………………………………(2) 

2.1.4 AAv smoothing 

  AAv smoothing is a smoothing method for calculating the arithmetic mean of several adjacent 

data [16], use neighborhood average (formula (3)) or weighted average (formula (4)) for smoothing.  

( , )w i j represents weight value, ( , )f i j  represents the original data, M  denotes the number of 

adjacent data, ( , )g x y is the smoothed data. 

,

1
( , ) ( , )

i j s

g x y f i j
M 

  …………………………………….. (3) 

,

1
( , ) ( , ) ( , )

i j s

g x y w i j f i j
M 

  ..…………………………………(4) 

2.1.5 PF smoothing 

PF smoothing is a non-linear smoothing method that calculates a specified quantile value for 

local data and replaces the original data with this quantile value, which is suitable for signal 

smoothing with pulse characteristics [17]. 

2.2 Random Forest 

The generation process of Random Forest is to put back samples from the original training 

samples to obtain numerous subsets. These subsets train different base classifiers, and the optimal 

classification results are determined by the voting of the base classifier [33]. The evaluation of 

Random Forest performance mainly uses Out Of Bag error (OOB error). When the total number of 

samples=N, the importance of features is calculated by formula (5), errOOB1 represents the Out Of 

Bag data error of each decision tree, errOOB2 represents the Out Of Bag data error after adding 

noise interference.  

                      
2 1err -errOOB OOB

N
 ………………………………………(5) 

2.3 GRU prediction model 

The realization process of GRU is as follows: combine the current input t
x  and the hidden 

state 1t
h

  passed down from the previous node to obtain the output 
t

y  of the current hidden node 

and the hidden state t
h  passed to the next node [7]. The basic GRU model has only one layer, and 

there is room for optimization. Fig.1 shows the network structure of GRU model, and Fig.2 shows 

the module internal structure of GRU model. 
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Fig.1. GRU model network structure.               Fig.2. GRU model internal structure. 

The procedure of GRU is as follows [29]: 

Step 1: Calculate the gate: obtain the weight and parameter status of the update gate and reset 

gate through 1t
h

  and t
x ,   represents the sigmoid activation function. 

① Update gate: 
1( , )t t

t zW h xz       …………………………………..(6) 

The parameter representation of the update gate: 

                            dim dim dim dimx h h h （ + ） ………………………………….(7) 

② Reset gate: 
1( , )t t

t rW h xr       ……………………………….......(8) 

The parameter representation of the reset gate: 

 2 dim dim dim dimx h h h  （ + ） ……………………………......(9) 

③ Total parameter formula expression: it is obtained by adding formula (7) and formula (9): 

 3 dim dim dim dimx h h h  （ + ） ……………………….……...(10) 

Step 2: Capture information: directly extract the local information 
'1t

h
  from the long-term 

information t
h  through tr . 

'1 1t t
th h r

   …………………………………...(11) 

Step 3: Obtain the current information '
h : splice 

'1t
h

  and t
x , and use tan h  to form 

compression. 
' 1tan ( , )t th Wh h x

     ……………………………......(12) 

Step 4: Generate a new output t
h : fuse 1t

h
  and '

h  by taking a part of each weight. Among 

them, 1(1 ) t
t hz

   is the selective “forgetting” of 1t
h

  unimportant information, '
t hz   is the 

selective memory of '
h . 

1 '(1 )t t
t th h hz z

     ………………………………..(13) 

 

3 Multi-layer optimized GRU model with RepeatVector layer and 

TimeDistributed layer 

Original GRU model has a GRU layer only, which possesses randomness and uncertainty. We 

add RepeatVector layer and TimeDistributed layer to make the GRU layer more diversified.  

First, we add the RepeatVector layer to the GRU hierarchy to ensure the same vector in each 

time step, which specifically refers to increase the dimension of input data and add attribute 

dimension, then the model can be analyzed in all aspects from various dimensions [34]. The 

parameter is represented by n. For example, when n=3, it means that the dimension of input data 

increases to 2 dimensions; 

Secondly, we add the TimeDistributed layer using time series for tensor operations to obtain a 

better weight information sharing, and the same fully connected layer can be applied to each time 
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step, thus achieving full connectivity in the time dimension [34]. The structure layer and setting 

basis are shown in Table 2. 

Table 2. GRU model structure layer and setting basis. 

Model layer 

(in order) 
Input and output 

Number of 

parameters 

(201216+3

94752+102

8=596996) 

Calculation method 

(obtained according 

to formula (10)) 

Setting basis 

GRU_1 
Input:(None, 256) 

Output: (None, 256) 
201216 3*[256*(256+5)+256] 

Layer 1 GRU prediction 

model 

RepeatVector 

Input:(None, 256) 

Output:(None, 2, 

256) 

0 0 

Repeated input of potential 

vectors can increase attribute 

dimensions, which is 

beneficial to multi-

dimensional analysis of the 

model. 

GRU_2 

Input:(None, 256) 

Output:(None,2, 

256) 

394752 3*[256*(256+257)+256] 

The second layer GRU 

prediction model, double-

layer GRU to some extent 

improves the model 

prediction performance. 

TimeDistribu

ted 

Input:(None, 2, 256) 

Output: (None, 2, 4) 
1028 

256*4+4 

(Input*Output+Output) 

The distributed temporal 

feature representation is 

mapped to the sample marker 

space for full connection in 

the temporal dimension. 

 

4 Multi-layer optimized GRU prediction method based on LOWESS smoothing 

and Random Forest 

The prediction method developed in this paper mainly includes four steps: data smoothing, 

feature selection, prediction, and outcome analysis.  

Step1: Data smoothing. Five different smoothing methods of origin software, LOWESS, 

LOESS , PF, SG, and AAv smoothing, are respectively used to process the daily power generation, 

so as to compare the prediction results. Sort the root mean square error between the smoothed data 

and the actual data in descending order. 

Step2: Random Forest feature selection. Random Forest is introduced for feature selection, 

Python is used to sort and screen the importance of factors affecting photovoltaic power generation. 

Step3: Model prediction. The data set is divided into train set and test set, the results of 

Random Forest feature selection are combined with smoothed data to form a new set of high-quality 

data set, i.e., the results of Random Forest feature selection are used as the input features of the 

model. On the basis of GRU model, the RepeatVector and TimeDistributed layers are added for 

optimization. The optimized GRU model is then employed for prediction. 

Step4: Model evaluation and comparison. The experimental results are split into vertical 

comparison and horizontal comparison for analysis.  

(1) Vertical comparison: The smoothing method with the least error is first selected. We 

compare this smoothing method with the prediction results with no smoothing. 

(2) Horizontal comparison: Under the GRU model, we conduct the comparison between 

smoothed and unsmoothed, the comparison between optimized and un-optimized, and the 

comparison between the accuracies of GRU, RNN, and LSTM prediction models.  

The flow chart of prediction steps is shown in Fig.3. 
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Start

Data collection

Data 

smoothing

LOESS

Random Forest

Feature selection

GRU
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Fig.3. Flow chart of photovoltaic power generation prediction.  

5 Case study 

5.1 The experimental data 

This experiment uses the daily power generation data of the photovoltaic power station of 

Xuhui District Government in Shanghai, China from January 1, 2015, to December 31, 2016 (train 

set) and January 2017 (test set) in smart PV website (https://www.lvsedianli.com/perHome.html) 

[35], with an interval of 24 hours.  

The natural factors affecting the daily photovoltaic power generation are the data of Shanghai 

meteorological station from the national greenhouse system website, and the interval is also 24 hours. 

11 natural factors affecting photovoltaic power generation are cumulative precipitation from 20 to 

20 o'clock (mm) (hereafter, referred to as cumulative precipitation), average wind speed (m/s), 

maximum wind speed (m/s), average temperature (℃), daily maximum temperature (℃), daily 

minimum temperature (℃), sunshine hours (h), daily cumulative radiation (MJ/m2), average relative 

humidity (%), minimum relative humidity (%), evaporation (mm). 

5.2 Evaluation metrics 

Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE),  

Mean Absolute Percentage Error (MAPE), NRMSE (Normalized Root Mean Squared Error) and R2 

(R-Squared) are selected as the metrics for evaluating the GRU model. Among these six evaluation 

metrics, the value of R2 ranges from 0 to 1; and, the closer it is to 1, the better the fit of the model 

is. A smaller value of the remaining five evaluation criteria implies a higher prediction accuracy. 

Where 
iy  of formula (14-17) represents the real value, 

'

iy  of formula (14-17) refers to the 

predicted value. In formula (18), max miny y means the full distance of the true value. Var  denotes 

the variance value of formula (19), 31n  . 

'

1

1 n

i i

i

MAE y y
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5.3 Experimental setup 

(1) Parameter settings of Random Forest  

The accuracy of the Random Forest is mainly determined by the number of decision trees, the 

maximum depth of decision trees, the setting of random numbers, and the minimum sample number 

of leaf nodes. The parameter settings of Random Forest are shown in Table 3.   

Table 3. Parameter settings of Random Forest. 

Algorithm 
Parameter 

meaning 
Parameter 

The 

parameter 

value 

Setting basis 

Random 

Forest 

the number of 

decision trees 
n_estimators 200 

Specify the number of classifiers. If the number 

is too small, it is not fitted, and the training rate 

is too much, it needs to be compromised. 

the maximum 

depth of 

decision trees 

max_depth 3 

The common value range is 10~100, which can 

be modified appropriately when there are many 

sample sizes and characteristic quantities. 

the setting of 

random 

numbers 

random_state 42 

It is used to ensure that the experiment is 

divided into the same training set and test set 

every time. 

the minimum 

sample number 

of leaf nodes 

min_samples_leaf 2 

It is related to decision tree pruning, which is 

generally set to 1, it can be increased under the 

condition of a large sample size. 

the number of 

unit layers 
num_layers 2 

The default is 1 layer, if there are 2 layers, two 

GRUs are stacked together to form a unit. 

(2) Parameter settings of GRU 

The accuracy of GRU prediction model mainly depends on the number of neurons, the number 

of unit layers, time step, hidden layer width, and iteration times. The parameter settings of GRU are 

shown in Table 4. 

Table 4. Parameter setting of GRU. 

Model 
Parameter 

meaning 
Parameter 

The parameter 

value 
Setting basis 

GRU 

the number of 

neurons 
unit 256 

It is a key parameter affecting the accuracy and 

cannot be increased indefinitely. 

the number of 

unit layers 
num_layers 2 

The default is 1 layer, if there are 2 layers, two 

GRUs are stacked together to form a unit. 

time step time_step 2 

The difference between the two-time points 

before and after, and this experiment is the 

prediction of daily power generation. 

hidden layer 

width 
batch_size 256 

The number of statements entered into the GRU 

at one time, there is no fixed value. 

iteration times epochs 50 

It is related to the computing capacity of the 

computer, and too many iterations are time-

consuming and labor-intensive. 

5.4 Experiment Results  

In our experiments, the results are divided into vertical comparison and horizontal comparison. 

The vertical comparison refers to the comparison between the introduction of data smoothing and 

the non-introduction of data smoothing. For the prediction resulting from the involvement of data 
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smoothing, the specific steps including LOWESS, LOESS, PF, SG, and AAv can smooth the actual 

data, then utilize Random Forest to select the features of smoothed data, and finally combine the 

smoothed data with the results of feature selection and substitute them into the GRU model for 

prediction. The non-introduction of data smoothing indicates that the actual data is directly featured 

through Random Forest and then is substituted in the GRU prediction model. 

The horizontal comparison is divided into the internal comparison of GRU and the external 

comparison between GRU, RNN and LSTM. The internal comparison based on GRU model is the 

comparison between prediction results from smoothed and unsmoothed data under the same feature 

selection results. In addition, the internal comparison also includes the compared results of 

optimized GRU and un-optimized GRU models. Moreover, three prediction models with the same 

data processing results are compared in terms of prediction accuracy. 

5.4.1 Vertical comparison 

(1) The comparison with different data smoothing methods 

Considering that the daily photovoltaic power generation is subject to solar radiation, 

temperature, and other factors, which have a large fluctuation ranges, the data smoothing 

technologies are introduced to reduce the noise and fluctuation range. We use LOWESS, LOESS, 

PF, SG, and AAv to process the daily power generation data. Then, we use Random Forest for 

feature selection. Since different data smoothing methods have different results of feature selection 

and prediction, it is necessary to compare and analyze the final prediction results, which are shown 

in Table 5. (Aim to find the smoothing method with the best prediction results by adopting four 

evaluation metrics)  

Table 5. Comparison of prediction errors of five data smoothing methods. 

Smoothing 

methods 
RMSE Random Forest feature selection 

results (in order of importance) 

GRU model prediction results 

  RMSE MSE MAE MAPE 

Savitzky-Golay 6.271 

① daily cumulative radiation 

② daily maximum temperature 

③ average relative humidity 

7.263 52.750 6.589 120.148 

LOWESS 6.472 

① daily maximum temperature 

② daily cumulative radiation 

③ daily minimum temperature 

2.352 5.530 1.851 19.715 

LOESS 6.993 

① daily maximum temperature 

② daily cumulative radiation 

③ daily minimum temperature 

④ evaporation 

5.163 26.658 4.182 Inf 

AAv 7.339 

① daily cumulative radiation 

② daily maximum temperature 

③ evaporation 

4.486 20.120 3.630 29.321 

PF 8.998 

① daily cumulative radiation 

② daily maximum temperature 

③ evaporation 

4.910 24.109 3.822 27.343 

According to Table 5, we find that when LOWESS smoothing method and three features (daily 

maximum temperature, daily cumulative radiation, and daily minimum temperature) are selected by 

Random Forest, GRU prediction model can obtain the lowest experimental error. In fact, RMSE, 

MSE, MAE and MAPE represent the smoothed prediction error values. We find that MSE, MAE 

and MAPE are all lowest under LOWESS smoothing method. The RMSE values in the second 

column of Table 5 represent the error between the smoothed data and actual data. It is obvious that 

SG smoothing with the lowest RMSE has the largest prediction error. At this time, the prediction 

error of PF smoothing with highest RMSE is relatively low. Therefore, improving the accuracy of 
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GRU prediction model but not changing the attributes and authenticity of actual data as much as 

possible is the key to this experiment. Compared with other smoothing methods, the RMSE of 

LOWESS smoothing ranks second, which has less error with the actual data and the lowest 

prediction error, LOWESS smoothing method then reasonably become our experiment selection. 

(2) Comparison of unsmoothed and smoothed experimental results  

In this section, we discuss the comparison between smoothed and unsmoothed experimental 

results under three different contexts (Random Forest feature selection, prediction results, and 

prediction errors) to reflect the importance of data processing.  

A. Comparison analysis in Random Forest feature selection 

We use Random Forest to rank and filter the feature importance of actual data and smoothed 

data. The results of feature importance ranking are presented in Fig.4 and Fig.5. 

 

Fig.4. Random Forest feature selection results (Data after LOWESS smoothing). 

 

Fig.5. Random Forest feature selection results (Actual data). 
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As shown in Fig.4, for the LOWESS smoothed data, the results of Random Forest feature 

selection indicate a hierarchical gradient downward effect with a stepwise nature. According to the 

order of importance, the filtered features are daily maximum temperature, daily cumulative radiation 

and daily minimum temperature. As for the feature selection results considering actual data in Fig.5, 

the seven features filtered are daily cumulative radiation, maximum wind speed, average 

temperature, daily maximum temperature, sunshine hours, average relative humidity and minimum 

relative humidity, which filters out more features than smoothed data. The ratio of daily cumulative 

radiation is very high, and the remaining impact factors are extremely low, even to 0, with no 

stepwise. Therefore, the feature selection results considering actual data are obviously not as good 

as that considering smoothed data, which not only proves the effectiveness of Random Forest feature 

selection but also demonstrates the improvement of data smoothing on Random Forest performance. 

B. Comparison analysis between prediction results and actual data 

This part is about the prediction results comparison using smoothed data, unsmoothed data and 

actual data. We learn from Part A that the feature selection results are distinct using the smoothed 

and unsmoothed data. After the smoothed data with the filtered features are combined to form a 

high quality data set, this data set is substituted into GRU model for prediction. The same steps are 

followed for the unsmoothed prediction. We note from Table 5 that the prediction error of LOWESS 

smoothing is the smallest. Then, we select the prediction results using LOWESS smoothed data for 

analysis and comparison. Fig.6 represents the comparison results between actual data and GRU 

prediction model. From the interval of data distribution, the interval of actual data is 0~27.5 kw  h, 

the interval of unsmoothed prediction results is 5~17.5 kw  h, while the interval of smoothed 

prediction results ranges from 2.5~27.5 kw  h. Obviously, the smoothed prediction results are more 

consistent with the interval of actual data. In terms of the goodness of fit, the trend of smoothed 

prediction results and actual data are basically the same, but the trend of unsmoothed prediction 

results has almost no correlation with actual data, then the goodness of fit and prediction effect of 

smoothed prediction results are much better than unsmoothed prediction results. In conclusion, 

LOWESS smoothing can effectively reduce the fluctuation range of data, Random is applicable to 

feature selection, which shows that the combination of LOWESS smoothing and Random Forest 

can improve quality of input data and prediction accuracy of GRU. 

 

Fig.6. Comparison of actual data with prediction results. 

C. Comparison analysis in GRU prediction errors 

Different prediction results produce diverse prediction errors. In Table 6, smoothed prediction 

error is significantly smaller than unsmoothed prediction error, and the R2 value of smoothed 

prediction is higher. A higher value of R2 means a better goodness of fit for prediction model. The 

R2 value of smoothed prediction is 0.955, which is close to 1, representing the high fitting ability of 
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prediction method proposed in this paper. The R2 value of unsmoothed prediction is 0.874, which is 

lower than that of smoothed prediction. The MAPE of unsmoothed prediction even reached infinity. 

Moreover, the RMSE of unsmoothed prediction is five times higher than smoothed prediction, and 

the MSE reaches 20 times. Then, smoothed prediction can result in a lower prediction error and a 

higher prediction validity.  

Table 6. Comparison of unsmoothed and LOWESS smoothed prediction errors. 

Evaluation metrics Unsmoothed LOWESS smoothing 

RMSE 10.005 2.352 

MSE 100.105 5.530 

MAE 8.435 1.851 

MAPE Inf 19.715 

NRMSE 0.370 0.102 

R2 0.874 0.955 

After comparing the results of above three contexts, we find that data smoothing can 

effectively reduce the prediction error and improve the model prediction accuracy. Especially, Table 

5 indicates that all five smoothing methods used in our experiment can effectively improve the 

prediction accuracy of the GRU prediction model. However, the unsmoothed prediction 

performance is poor because of the uncertainty and fluctuation of photovoltaic power generation 

from the influence of solar radiation and temperature.  

5.4.2 Horizontal comparison 

(1) Internal comparison of GRU model 

A. Comparison analysis of smoothed and un-smoothed prediction errors 

This section compares the prediction errors of GRU model using smoothed and unsmoothed 

data under the same LOWESS smoothed feature selection results. Table 7 shows that the 

unsmoothed prediction error is higher than that under smoothed prediction, the value of R2 is 

significantly lower. The MSE of unsmoothed prediction is much larger than that of smoothed 

prediction, and its MAPE is also infinite. Although we use the same feature selection results, the 

unsmoothed prediction result is worse than that under smoothed prediction, which indicates that 

data smoothing techniques are meaningful for improving prediction accuracy. 

Table 7. Comparison of smoothed and unsmoothed GRU internal prediction errors. 

Evaluation metrics LOWESS smoothing Unsmoothed 

RMSE 2.352 9.112 

MSE 5.530 83.022 

MAE 1.851 7.837 

MAPE 19.715 Inf 

NRMSE 0.102 0.337 

R2 0.955 0.824 

 

B. Comparison analysis of optimized and un-optimized GRU prediction errors 

Based on the consistent data processing results, the un-optimized GRU with only one layer is 

compared with the optimized GRU added RepeatVector layer and TimeDistributed layers. It can be 

seen from Table 8 that the prediction error of optimized GRU model is evidently less than that of 

un-optimized GRU model, the value of R2 is higher than un-optimized GRU, the NRMSE is much 

lower than un-optimized, the RMSE and MAPE of optimized GRU is several times less than that of 

un-optimized GRU, so as to show that the optimization of prediction model is also a momentous 

mean to improve prediction accuracy.  
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Table 8. Comparison of optimized and un-optimized GRU prediction errors. 

Evaluation metrics Optimized GRU Un-optimized GRU 

RMSE 2.352 34.901 

MSE 5.530 5.908 

MAE 1.851 4.634 

MAPE 19.715 82.858 

NRMSE 0.102 0.872 

R2 0.955 0.831 

(2) External comparison of GRU model 

A. Comparison analysis of prediction results 

Based on same data processing results, GRU, RNN and LSTM models are used for comparison. 

We first analyze the prediction results of three prediction models. As can be seen in Fig.7, although 

the trends of three models are roughly the same as the actual data, the prediction results of GRU are 

closer to the actual data than those of LSTM and RNN, and have the best goodness of fit with the 

actual data. Especially, both RNN and LSTM are significantly far from the actual data since January 

21, 2017. Therefore, under the consistent data processing results, it is also particularly momentous 

to choose one appropriate prediction model.  

 

Fig.7. Comparison among prediction results of LSTM, RNN, GRU and actual data. 

B. Comparison analysis of prediction errors 

Finally, we compare the prediction errors of three models. Table 9 shows that GRU has the 

smallest prediction error and the highest accuracy. The RMSE, MSE and MAPE of these three 

models have little difference, but the gap in MAPE is slightly larger. Based on R2 value, GRU is 

0.950, RNN is 0.931, LSTM is 0.860, which prove that GRU has the best goodness of fit, followed 

by RNN, and LSTM has the worst fit. 

Table 9. Comparison of prediction errors of LSTM, RNN, and GRU. 

Evaluation metrics GRU LSTM RNN 

RMSE 2.352 3.131 2.602 

MSE 5.530 9.801 6.771 

MAE 1.851 2.794 2.241 

MAPE 19.715 29.056 22.207 

NRMSE 0.102 0.221 0.128 

R2 0.950 0.860 0.931 

 

5.4.3 Impact of uncertainty 

To fully analyze the impact of uncertainty on model performance, we consider both data 

processing and prediction models. In general, the uncertainty in data processing mainly refers to the 

unavoidable errors in the data due to the limitations of measurement means and machine anomalies. 

The uncertainty in prediction model mainly includes the model’s own structure as well as the 
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optimization algorithm [36]. In addition, the factors affecting the uncertainty of data processing also 

include natural climatic conditions. 

A. Data processing 

Fig.5 shows the uncertainty of actual data leads to the lack of ladder nature in the feature 

selection results. With the data smoothing technology, the results of feature selection are clearly 

enhanced. Therefore, data smoothing can effectively reduce the negative impact of uncertainty. As 

seen in Fig.6, the uncertainty of data causes serious deviations between actual data and prediction 

results, and the prediction accuracy is too low. However, the prediction accuracy is significantly 

improved after data smoothing and feature selection. Then data processing is meaningful to reduce 

the adverse effects of uncertainty on the prediction accuracy. 

B. Prediction model 

For prediction model, Table 9 demonstrates the importance of choosing a suitable prediction 

model. RNN and LSTM have slightly lower prediction accuracy than GRU due to their own gradient 

problem and complex parameters. Table 8 shows the model performance of optimized GRU added 

RepeatVector and TimeDistributed layers is clearly better than that of un-optimized GRU. Thus, 

choosing the appropriate prediction model and optimization method is also beneficial to reduce the 

influence of uncertainty. 

In summary, data smoothing techniques reduce the fluctuation of data, Random Forest filters 

out reasonable feature selection results, which solve the uncertainty in data processing to some 

extent. Furthermore, the GRU model added RepeatVector and TimeDistributed layers improves the 

prediction accuracy of GRU model. Therefore, the developed forecasting method can effectively 

reduce the uncertainty impact of photovoltaic power generation on the prediction performance. 

6 Conclusion  

Aiming to enhance the accuracy and stability of forecasting, this paper considers the impact of 

data fluctuations on the prediction of photovoltaic power generation, and develops an optimized 

GRU forecasting method which includes data smoothing technology, feature selection, and 

optimization of GRU. Firstly, we uses different data smoothing technologies to reduce the 

fluctuation of actual data and choose the best one with the least prediction error. Secondly, to obtain 

higher-quality input data, Random Forest method is used to select natural factors affecting 

photovoltaic power generation. Finally, the RepeatVector layer and TimeDistributed layer are used 

to optimize the GRU model. Through case studies and experimental results, the conclusions are 

obtained as follows:  

(1) Five different smoothing methods can all improve the prediction performance of GRU 

model. Among them, the LOWESS smoothing can generate the smallest prediction error. 

(2) The Random Forest feature selection can simplify the number of features and optimize the 

prediction performance of GRU model.  

(3) Under the consistent results of data processing, GRU model is more suitable for the 

prediction of photovoltaic power generation than LSTM and RNN. 

(4) The GRU model with RepeatVector layer and Timedistributed layer has a better prediction 

performance than the un-optimized single-layer GRU.  

In summary, compared with original GRU model, the proposed forecasting method in this 

paper improves data processing and optimizes GRU model. The applications of different data 

smoothing techniques reduce the fluctuation of daily power generation and improve the quality of 

input data. Random Forest selects the characteristics of natural factors affecting photovoltaic power 
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generation. The optimized GRU with RepeatVector and TimeDistributed layers not only enriches 

GRU layer structure, but also effectively improves the prediction accuracy. In terms of practical 

application value, high-precision generation forecasting method is an effective approach for 

integrating solar energy resources into power grid. Our results show that the proposed method could 

be a useful tool to forecast the short-term photovoltaic power generation with an acceptable degree 

of accuracy. Besides, according to the prediction results, photovoltaic power plants can arrange 

future power generation, adjust electrovalence, and provide technical support to make timely and 

reasonable scheduling decision for power grid.  

The integration of photovoltaics into the power grid present both opportunities and challenges. 

The instability of photovoltaic power generation has caused challenges and impacts on the power 

grid though it can reduce the pollution and loss caused by traditional power generation. Accurate 

prediction is conducive to the safe and stable and economic operation of photovoltaic plants after 

grid connection. Compared with the original GRU, the developed prediction method in this paper 

improves the prediction accuracy through smoothing technology, feature selection and optimized 

GRU, but there are still some limitations. For example, the loss of prediction accuracy, the reduction 

of error between smoothed data and actual data, the unity of the feature selection method, the 

feasibility of interval prediction, and better improvement of GRU prediction performance. These 

are all problems we intend to solve. In addition, the profound development of photovoltaic power 

generation needs the support of medium and long-term forecasting. In the future, we collect data 

suitable for medium and long-term forecasting, study relevant forecasting technologies, and use 

medium and long-term forecasting to make scientific decisions and plans for the development of 

photovoltaic power.  
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 7 

Abstract: Accurate prediction of photovoltaic power generation is vital to guarantee smooth 8 

operation of photovoltaic power stations and ensure the electricity consumption of end users. As a 9 

good forecasting tool, Gated Recurrent Unit method has been widely used in different forecasting 10 

areas. However, the existing studies ignore the impact of data fluctuations on prediction accuracy 11 

since photovoltaic power generation is intermittent and uncertain, then the prediction results of 12 

Gated Recurrent Unit are facing challenges. To fill the gaps and enhance prediction accuracy, this 13 

paper develops an improved Gated Recurrent Unit photovoltaic generation prediction method. 14 

Several different data smoothing techniques are introduced and compared to reduce fluctuations, 15 

Random Forest method is used for feature selection, and RepeatVector layer extended by attribute 16 

dimensions and TimeDistributed layer with full connectivity are utilized to optimize the Gated 17 

Recurrent Unit model. A real-world case from the photovoltaic power plant in Xuhui District, 18 

Shanghai, China, is adopted to evaluate the performance of proposed method. After comparing with 19 

the prediction results of Recurrent Neural Networks and Long Short-Term Memory, and the actual 20 

data as well, it is found that the proposed prediction method can effectively improve the prediction 21 

accuracy of photovoltaic power generation.  22 

Keywords: Photovoltaic Power Generation; Prediction; Locally Weighted Scatterplot Smoothing; 23 

Random Forest; Gated Recurrent Unit 24 

 25 

1 Introduction  26 

Energy saving and carbon emission reduction is a topic of common concern all over the world. In 27 

China, the government has drawn the historic lessons from the failure of energy saving and carbon 28 

emission and sought a climate governance road with Chinese characteristics. Moreover, the clean 29 

air action plan, carbon peaking and carbon neutral strategies to achieve energy conservation and 30 

environment protection goals were claimed in 2021 [1]. Other countries are also making 31 

contributions to environment protection now. For instance, UK announced a policy for its Net Zero 32 

Strategy to support the transition of British businesses and consumers to clean energy and green 33 

technologies [2]. 34 

In particular, as a complementary and multi-system coordinated energy supply and 35 

consumption mode, renewable energy (wind energy, water energy, solar energy, geothermal energy, 36 

etc.) in the electricity market has become an important means to improve the efficiency of energy 37 

utilization and make great contributions to energy saving and carbon emission reduction in recent  38 
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Nomenclature kNN k-Nearest Neighbor algorithm 

 MAE Mean Absolute Error 

ˆ( , )x y  Center value of regression line  MAPE Mean Absolute Percentage Error 

i  Smoothing window ML Machine Learning 

ih  Smoothing coefficient MLP Multilayer Perceptron 

( , )w i j  Weight value MSE Mean Square Error 

( , )f i j  Original data LOESS Locally Estimated Scatterplot 

Smoothing 

( , )g x y  Smoothed data LOWESS Locally Weighted Scatterplot 

Smoothing 
t

x  Current input  LR Linear Regression 

1t
h


,

t
h  Hidden state LSTM Long-Short Term Memory 

t
y  

Output NN Neural Network 

i
y ,

'

iy  
real value, predicted value NRMSE Normalized Root Mean Squared Error 

max min
y y  Full distance of real value OOB Out Of Bag 

AAv Adjacent Average method  PCA Principal Component Analysis 

AI Artificial Intelligence PF Percentile Filtering 

ARD Automatic Relevance Determination 

method 

R2 R-Squared 

CNN Convolutional Neural Network RMSE Root Mean Square Error 

DEM Digital Elevation Model RMSPE Root-Mean-Square Percentage Error 

EANN Evolutionary Artificial Netural Network RNN Recurrent Neural Networks 

ES Exponential Smoothing SG Savitzky-Golay Smoothing 

GRA Grey Relational Analysis SVM Support Vector Machine 

GRU Gated Recurrent Unit Var Variance value 

    

years. Compared with other renewable energy sources, solar energy has the advantages of high 2 

flexibility, superior adaptability, and low development cost, which has broaden the social 3 

development potentials and prospects [3]. Photovoltaic power generation then has been a priority 4 

since it can convert solar energy into electricity. With the popularity of photovoltaic power 5 

generation, more and more countries and regions have been implementing their initiatives of 6 

integrating photovoltaic power generation into power grids, which has resulted in an increase in 7 

daily power supply and a reduction in carbon emissions. Nevertheless, the development of 8 

renewable energy is a combination of opportunities and challenges. One of the major challenges is 9 

that renewable energy is affected by natural factors and can be unstable when connected to the power 10 

grid [4]. The photovoltaic power generation is greatly affected by weather factors. This results in its 11 

intermittent defects, which, in turn, is not conducive to the stable operation of power grid. Therefore, 12 

accurate prediction results of photovoltaic power generation can make appropriate operations and 13 

scheduling efforts and alleviate the instability issues.  14 

Existing studies have shown that the length of prediction period has an important impact on 15 

the prediction accuracy and application scenarios. According to the length of prediction period, 16 

forecasting methods can be divided into three types: very short-term [5], short-term [6], and medium 17 

and long-term [7]. For very short-term forecasting, it is accurate in seconds to minutes and is suitable 18 

for real-time dispatching different sizes grids, so as to reserve spare capacity for power grid in a 19 

timely manner [6]. In terms of short-term forecasting with the range from hour to day, it concerns 20 

economic dispatch and decision making of power grid to balance power market transactions whose 21 

meaning is adjusting the unit combination scheme and optimizing the generation plan [5]. In 22 
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addition, medium and long-term prediction focuses on day to week/month/year based on the very 1 

short-term and short-term forecasting, which provides a long range plan for power grid and shows 2 

the ability for the equipment maintenance and the siting of new energy base stations. Many facts 3 

have shown that medium and long-term forecasting is filled with the big picture concept, which is 4 

also the development direction of forecasting in many economic and industrial areas [7]. In general, 5 

the three different prediction methods are adopted according to the characteristics of power grid in 6 

terms of time scale, application scope, and purpose. Since short-term prediction concerns the 7 

economic dispatch and decision making of power grid to balance power market transactions, our 8 

paper focuses more on short-term prediction of photovoltaic power generation in order to make 9 

better generation planning and more timely power plant offers to the dispatch center, as well as to 10 

improve the security and economy of power grid [8].  11 

The short-term prediction process of photovoltaic power generation mainly includes data 12 

processing and model prediction [9]. Data processing is an important prerequisite for prediction, 13 

which is shown as data cleaning, data integration, data transformation, and data protocol [10-12]. 14 

However, existing literatures ignore the importance of data fluctuations, there are still fewer analysis 15 

of data fluctuation in the prediction of photovoltaic power generation [13]. Therefore, it is necessary 16 

to pay more attention to the research on these smoothing methods. To the best of our knowledge, 17 

Locally Weighted Scatterplot Smoothing (LOWESS), Locally Estimated Scatterplot Smoothing, 18 

LOESS) [14], Savitzky-Golay Smoothing (SG) [15], Adjacent Average method (AAv) [16], and 19 

Percentile Filtering (PF) [17] have been representative smoothing methods with convenient 20 

operation and rapid arithmetic in recent years and have not been applied to the prediction of 21 

photovoltaic power generation [10,18]. Accordingly, our paper applies LOWESS, LOESS, SG, AAv, 22 

and PF smoothing methods to the data processing in the prediction of photovoltaic power generation 23 

to improve the data quality. We also compare the above five smoothing methods based on different 24 

evaluation metrics, and then filter out the best method with the lowest prediction error, so as to 25 

achieve the goal of improving prediction accuracy. 26 

In addition, we also use feature selection in the data processing. Feature selection refers to the 27 

process of selecting some effective features from existing features to reduce the data dimension, 28 

mainly including filter, embedded, and wrapper [19]. For example, in the filter method, Ref. [20] 29 

used the Automatic Relevance Determination method (ARD) to point out the most relevant input 30 

for the accurate monthly average daily solar radiation prediction, Ref. [21] used ridge regression 31 

algorithm in the embedded method. These feature selection methods improve the prediction 32 

accuracy of the model, but the performance and calculation speed are not as good as the wrapper 33 

method. Wrapper method mainly includes Random Forest, SVM(Support Vector Machine), and k-34 

Nearest Neighbor algorithm (kNN) [19]. Compared with SVM and kNN algorithm, Random Forest 35 

can process high-dimensional data, deal with many problems such as classification, feature selection, 36 

and regression [22]. Existing research and experimental results on Random Forest have exposed 37 

that Random Forest feature selection can effectively improve the prediction accuracy [22]. Then, 38 

this paper also applies Random Forest for data processing to analyze the factors that affect power 39 

generation and obtain higher input data quality. 40 

The next step after data processing is the prediction with a suitable model. At present, the 41 

prediction models of photovoltaic power generation are mainly divided into four categories: 42 

persistence forecast of "today equals tomorrow" [23], physical model based on terrain research [24], 43 

statistical techniques related to time series [25], and Artificial Intelligence (AI) prediction 44 
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represented by Machine Learning (ML) [26]. The first three categories possess some prediction 1 

flaws because of an increase in time span and abnormal sudden changes in weather [27]. ML mainly 2 

includes Linear Regression (LR), SVM, and Neural Network (NN). Especially, NN can efficiently 3 

process a large amount of data, improve the prediction accuracy and solve the defects in persistence 4 

forecast, physical model, and statistical techniques [26]. Today, NN has become the primary choice 5 

of prediction methods in many fields. 6 

As one of NN, Gated Recurrent Unit (GRU) can solve gradient disappearance and explosion 7 

of Recurrent Neural Networks (RNN), simplify parameters of Long-Short Term Memory (LSTM) 8 

[7,29], which shows excellent performance in prediction and obtains some further improvement 9 

[30]. However, the impact of data smoothing on prediction accuracy is not considered, the input 10 

data in multiple dimensions is not analyzed, and the information is shared diversely. There is still 11 

much room for the improvement of GRU model. Therefore, we develop an improved GRU model 12 

by introducing RepeatVector layer and TimeDistributed layer to optimize the GRU model, which is 13 

different from other optimized GRU models without diverse and multidimensional improvements 14 

in term of model hierarchy. To provide an improved reflection made to the GRU model in this paper 15 

and indicate the differences with other NN-based literatures, we have made a comprehensive 16 

comparison in Table 1. Moreover, our paper introduces data smoothing techniques while none of 17 

the remaining references introduces them. For feature selection, we use Random Forest for feature 18 

analysis which is similar to [11,30,32] while the other literatures do not perform feature selection. 19 

In summary, compared to other NN-based references, the innovation of this paper mainly includes 20 

the application of data smoothing techniques and the optimization of GRU model.  21 

Based on the above analysis, we first introduce LOWESS, LOESS, SG, PF, and AAv data 22 

smoothing methods and compare them to filter the best method with the least error. Secondly, 23 

considering the variety of natural factors that affect photovoltaic power generation, we use Random 24 

Forest for feature selection. Finally, we optimize the GRU model for prediction by using 25 

RepeatVector layer and TimeDistributed layer. The main contributions of this paper are as follows:  26 

(1) We consider different data smoothing technologies to reduce the data fluctuation of daily 27 

photovoltaic power generation. We also compare these data smoothing techniques to find the best 28 

smoothing method that has the least prediction error.  29 

(2) We use Random Forest to extract the characteristics of natural factors affecting daily 30 

photovoltaic power generation. 31 

(3) We add RepeatVector layer and TimeDistributed layer into the GRU model to improve its 32 

prediction accuracy. 33 

(4) We utilize the dataset from Shanghai, China and three prediction models to verify the 34 

accuracy and feasibility of our proposed method.  35 

The remainder of this paper is arranged as follows: Section 2 introduces the basic concepts of 36 

the five smoothing methods mentioned in this paper, the generation process of Random Forest, and 37 

original GRU model. Section 3 describes the structure of optimized GRU with the addition of 38 

RepeatVector layer and TimeDistributed layer. Section 4 gives the specific forecasting steps. In 39 

Section 5, we provide details for our case study, which include a description of experimental data, 40 

the selection of evaluation metrics, the setting of model parameters, and our comprehensive analysis 41 

of experimental results. Section 6 presents a summary of our works in this paper. 42 
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Table 1. Comparison between this paper and other NN-based references. 1 

Study Year 
Prediction 

period 

Data 

source 

Data 

processing 

Prediction 

model 

Optimization 

method 
Prediction error 

This 

paper 

 

2021 
Short-

term 
China 

Data 

smoothing 

and Random 

Forest feature 

selection 

GRU 

Use 

RepeatVector 

layer and 

TimeDistribut

ed layer to 

optimize GRU 

RMSE: 2.352                

MAE: 1.851 

MAPE: 19.715 

MSE: 5.530 

R2: 0.955 

NRMSE: 0.102 

[5] 2021 
Very 

short-term 
Basque 

N-nearest-

station model 

 

MLP 

(Multilayer 

Perceptron) 

Optimize the 

length of the 

input window 

RMSE: 0.2515 

R2: 0.9985 

[9] 2020 
Short-

term 
Spain 

Pearson 

correlation 

EANN 

(Evolutionary 

Artificial 

Netural 

Network) 

Evolutionary 

algorithm 

MBE: 0.30 

MAE: 33.46 

RMSE: 0.9709 

[26] 2020 

Medium 

and long-

term 

Korea 

DEM 

(Digital 

Elevation 

Model) 

LSTM-RNN 

Use LSTM 

layer to 

optimize 

stacked RNN 

R2: 0.724 

RMSE: 14.003 

NRMSE: 7.416 

MAPE: 10.805 

[28] 2019 

Medium 

and long-

term 

China 

American 

Copula 

function 
LSTM 

Joint 

prediction 

(wind and 

photovoltaic 

power 

generation) 

MAPE: 6.65 

RMSPE: 8.43 

[30] 2021 
Short-

term 
Australia 

Remove 

outliers and 

feature 

normalization 

Conv-GRU 

 

Use 

convolutional 

layers to 

optimize GRU 

R2: 0.8938 

RMSE: 2.630 

 

[31] 2021 
Very 

short-term 
American 

Data 

augmentation 

techniques 

CNN 

(Convolutional 

Neural 

Network) 

Adam 

algorithm 
RMSE: 3.259 

[32] 2021 
Short-

term 
Vietnam 

Pearson 

correlation 

and remove 

outliers 

 

LSTM 

Replace the 

historical 

weather data 

entered into 

the model 

with forecast 

weather data 

MSE: 56.348 

RMSE: 7.507 

MAE: 4.743 

MAPE: 9.881 

 2 

2 Theoretical basis 3 

This section presents the base methods used in data processing and prediction. The data 4 

processing mainly includes LOWESS, LOESS, SG, AAv and PF in data smoothing and Random 5 

Forest in feature selection. We specify the original GRU model as a base prediction model.  6 

2.1 Data smoothing 7 

2.1.1 LOWESS smoothing  8 

① Definition: take point x  as the center, intercept a section of proportional data forward and 9 

backward respectively, make weighted linear regression with weight function W for this section of 10 
data, ˆ( , )x y  is the center value of the regression line, ŷ  represents the corresponding value after 11 

fitting the curve, all n  data can make n  weighted regression lines. The connection of the central 12 

value of each regression line is the LOWESS smooth curve of this data [14]. 13 

② Weight function W 14 

The commonly used weight function is the cubic function ( )W x . 15 
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( )

(1 ) ,   1;

0,  1.
x

x if x
W

if x

  
 

     
………….………………………(1) 1 

2.1.2 LOESS smoothing 2 

LOESS smoothing divides the samples into multiple cells, performs polynomial fitting on the 3 

interval samples, repeats the fitting process continuously, and obtains multiple weighted regression 4 

curves, finally connects the center of the curve to obtain the smooth curve [14]. 5 

2.1.3 Savitzky-Golay smoothing 6 

Savitzky-Golay smoothing is based on the least square principle and performs k -order 7 

polynomial fitting for data points in a certain length window [15]. In formula (2), i  represents the8 

i th smoothing window, ih  represents the smoothing coefficient, ih H  is solved by the least 9 

square method. 10 

,

1 w

k ik smooth k i
i w

x x x h
H






   ………………………………(2) 11 

2.1.4 AAv smoothing 12 

  AAv smoothing is a smoothing method for calculating the arithmetic mean of several adjacent 13 
data [16], use neighborhood average (formula (3)) or weighted average (formula (4)) for smoothing.  14 

( , )w i j  represents weight value, ( , )f i j  represents the original data, M  denotes the number of 15 

adjacent data, ( , )g x y is the smoothed data. 16 

,

1
( , ) ( , )

i j s

g x y f i j
M 

  …………………………………….. (3) 17 

,

1
( , ) ( , ) ( , )

i j s

g x y w i j f i j
M 

  ..…………………………………(4) 18 

2.1.5 PF smoothing 19 

PF smoothing is a non-linear smoothing method that calculates a specified quantile value for 20 

local data and replaces the original data with this quantile value, which is suitable for signal 21 

smoothing with pulse characteristics [17]. 22 

2.2 Random Forest 23 

The generation process of Random Forest is to put back samples from the original training 24 
samples to obtain numerous subsets. These subsets train different base classifiers, and the optimal 25 
classification results are determined by the voting of the base classifier [33]. The evaluation of 26 
Random Forest performance mainly uses Out Of Bag error (OOB error). When the total number of 27 
samples=N, the importance of features is calculated by formula (5), errOOB1 represents the Out Of 28 
Bag data error of each decision tree, errOOB2 represents the Out Of Bag data error after adding 29 
noise interference.  30 

                      
2 1err -errOOB OOB

N
 ………………………………………(5) 31 

2.3 GRU prediction model 32 

The realization process of GRU is as follows: combine the current input t
x  and the hidden 33 

state 1t
h

  passed down from the previous node to obtain the output 
t

y  of the current hidden node 34 

and the hidden state t
h  passed to the next node [7]. The basic GRU model has only one layer, and 35 

there is room for optimization. Fig.1 shows the network structure of GRU model, and Fig.2 shows 36 
the module internal structure of GRU model. 37 
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      1 

Fig.1. GRU model network structure.               Fig.2. GRU model internal structure. 2 

The procedure of GRU is as follows [29]: 3 

Step 1: Calculate the gate: obtain the weight and parameter status of the update gate and reset 4 

gate through 1t
h

  and t
x ,   represents the sigmoid activation function. 5 

① Update gate: 6 
1( , )t t

t zW h xz       …………………………………..(6) 7 

The parameter representation of the update gate: 8 

                            dim dim dim dimx h h h （ + ） ………………………………….(7) 9 

② Reset gate: 10 
1( , )t t

t rW h xr       ……………………………….......(8) 11 

The parameter representation of the reset gate: 12 

 2 dim dim dim dimx h h h  （ + ） ……………………………......(9) 13 

③ Total parameter formula expression: it is obtained by adding formula (7) and formula (9): 14 

 3 dim dim dim dimx h h h  （ + ） ……………………….……...(10) 15 

Step 2: Capture information: directly extract the local information 
'1t

h
  from the long-term 16 

information t
h  through tr . 17 

'1 1t t
th h r

   …………………………………...(11) 18 

Step 3: Obtain the current information '
h : splice 

'1t
h

  and t
x , and use tan h  to form 19 

compression. 20 
' 1tan ( , )t th Wh h x

     ……………………………......(12) 21 

Step 4: Generate a new output t
h : fuse 1t

h
  and '

h  by taking a part of each weight. Among 22 

them, 1(1 ) t
t hz

   is the selective “forgetting” of 1t
h

  unimportant information, '
t hz   is the 23 

selective memory of '
h . 24 

1 '(1 )t t
t th h hz z

     ………………………………..(13) 25 

 26 

3 Multi-layer optimized GRU model with RepeatVector layer and 27 

TimeDistributed layer 28 

Original GRU model has a GRU layer only, which possesses randomness and uncertainty. We 29 

add RepeatVector layer and TimeDistributed layer to make the GRU layer more diversified.  30 

First, we add the RepeatVector layer to the GRU hierarchy to ensure the same vector in each 31 

time step, which specifically refers to increase the dimension of input data and add attribute 32 

dimension, then the model can be analyzed in all aspects from various dimensions [34]. The 33 

parameter is represented by n. For example, when n=3, it means that the dimension of input data 34 

increases to 2 dimensions; 35 

Secondly, we add the TimeDistributed layer using time series for tensor operations to obtain a 36 

better weight information sharing, and the same fully connected layer can be applied to each time 37 
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step, thus achieving full connectivity in the time dimension [34]. The structure layer and setting 1 

basis are shown in Table 2. 2 

Table 2. GRU model structure layer and setting basis. 3 

Model layer 

(in order) 
Input and output 

Number of 

parameters 

(201216+3

94752+102

8=596996) 

Calculation method 

(obtained according 

to formula (10)) 

Setting basis 

GRU_1 
Input:(None, 256) 

Output: (None, 256) 
201216 3*[256*(256+5)+256] 

Layer 1 GRU prediction 

model 

RepeatVector 

Input:(None, 256) 

Output:(None, 2, 

256) 

0 0 

Repeated input of potential 

vectors can increase attribute 

dimensions, which is 

beneficial to multi-

dimensional analysis of the 

model. 

GRU_2 

Input:(None, 256) 

Output:(None,2, 

256) 

394752 3*[256*(256+257)+256] 

The second layer GRU 

prediction model, double-

layer GRU to some extent 

improves the model 

prediction performance. 

TimeDistribu

ted 

Input:(None, 2, 256) 

Output: (None, 2, 4) 
1028 

256*4+4 

(Input*Output+Output) 

The distributed temporal 

feature representation is 

mapped to the sample marker 

space for full connection in 

the temporal dimension. 

 4 

4 Multi-layer optimized GRU prediction method based on LOWESS smoothing 5 

and Random Forest 6 

The prediction method developed in this paper mainly includes four steps: data smoothing, 7 

feature selection, prediction, and outcome analysis.  8 

Step1: Data smoothing. Five different smoothing methods of origin software, LOWESS, 9 

LOESS , PF, SG, and AAv smoothing, are respectively used to process the daily power generation, 10 

so as to compare the prediction results. Sort the root mean square error between the smoothed data 11 

and the actual data in descending order. 12 

Step2: Random Forest feature selection. Random Forest is introduced for feature selection, 13 

Python is used to sort and screen the importance of factors affecting photovoltaic power generation. 14 

Step3: Model prediction. The data set is divided into train set and test set, the results of 15 

Random Forest feature selection are combined with smoothed data to form a new set of high-quality 16 

data set, i.e., the results of Random Forest feature selection are used as the input features of the 17 

model. On the basis of GRU model, the RepeatVector and TimeDistributed layers are added for 18 

optimization. The optimized GRU model is then employed for prediction. 19 

Step4: Model evaluation and comparison. The experimental results are split into vertical 20 

comparison and horizontal comparison for analysis.  21 

(1) Vertical comparison: The smoothing method with the least error is first selected. We 22 

compare this smoothing method with the prediction results with no smoothing. 23 

(2) Horizontal comparison: Under the GRU model, we conduct the comparison between 24 

smoothed and unsmoothed, the comparison between optimized and un-optimized, and the 25 

comparison between the accuracies of GRU, RNN, and LSTM prediction models.  26 

The flow chart of prediction steps is shown in Fig.3. 27 
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 1 

Fig.3. Flow chart of photovoltaic power generation prediction.  2 

5 Case study 3 

5.1 The experimental data 4 

This experiment uses the daily power generation data of the photovoltaic power station of 5 

Xuhui District Government in Shanghai, China from January 1, 2015, to December 31, 2016 (train 6 

set) and January 2017 (test set) in smart PV website (https://www.lvsedianli.com/perHome.html) 7 

[35], with an interval of 24 hours.  8 

The natural factors affecting the daily photovoltaic power generation are the data of Shanghai 9 

meteorological station from the national greenhouse system website, and the interval is also 24 hours. 10 

11 natural factors affecting photovoltaic power generation are cumulative precipitation from 20 to 11 

20 o'clock (mm) (hereafter, referred to as cumulative precipitation), average wind speed (m/s), 12 

maximum wind speed (m/s), average temperature (℃), daily maximum temperature (℃), daily 13 

minimum temperature (℃), sunshine hours (h), daily cumulative radiation (MJ/m2), average relative 14 

humidity (%), minimum relative humidity (%), evaporation (mm). 15 

5.2 Evaluation metrics 16 

Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE),  17 
Mean Absolute Percentage Error (MAPE), NRMSE (Normalized Root Mean Squared Error) and R2 18 
(R-Squared) are selected as the metrics for evaluating the GRU model. Among these six evaluation 19 
metrics, the value of R2 ranges from 0 to 1; and, the closer it is to 1, the better the fit of the model 20 
is. A smaller value of the remaining five evaluation criteria implies a higher prediction accuracy. 21 

Where 
iy  of formula (14-17) represents the real value, 

'

iy  of formula (14-17) refers to the 22 

predicted value. In formula (18), max miny y means the full distance of the true value. Var  denotes 23 

the variance value of formula (19), 31n  . 24 

'

1

1 n

i i

i

MAE y y
n 

  …………………………………….(14) 25 

 
2

'

1

1 n

i i

i

MSE y y
n 

  …………………………………...(15) 26 
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1

1
=

n

i i

i

RMSE y y
n 

 …………………………………...(16) 1 

'

1

1
100%

n
i i

i i

y y
MAPE

n y


  ……………………………...(17) 2 

max min

RMSE
NRMSE

y y



…………………………………...(18) 3 

2 1
RMSE

R
Var

  ……………………………………...(19) 4 

5.3 Experimental setup 5 

(1) Parameter settings of Random Forest  6 

The accuracy of the Random Forest is mainly determined by the number of decision trees, the 7 

maximum depth of decision trees, the setting of random numbers, and the minimum sample number 8 

of leaf nodes. The parameter settings of Random Forest are shown in Table 3.   9 

Table 3. Parameter settings of Random Forest. 10 

Algorithm 
Parameter 

meaning 
Parameter 

The 

parameter 

value 

Setting basis 

Random 

Forest 

the number of 

decision trees 
n_estimators 200 

Specify the number of classifiers. If the number 

is too small, it is not fitted, and the training rate 

is too much, it needs to be compromised. 

the maximum 

depth of 

decision trees 

max_depth 3 

The common value range is 10~100, which can 

be modified appropriately when there are many 

sample sizes and characteristic quantities. 

the setting of 

random 

numbers 

random_state 42 

It is used to ensure that the experiment is 

divided into the same training set and test set 

every time. 

the minimum 

sample number 

of leaf nodes 

min_samples_leaf 2 

It is related to decision tree pruning, which is 

generally set to 1, it can be increased under the 

condition of a large sample size. 

the number of 

unit layers 
num_layers 2 

The default is 1 layer, if there are 2 layers, two 

GRUs are stacked together to form a unit. 

(2) Parameter settings of GRU 11 

The accuracy of GRU prediction model mainly depends on the number of neurons, the number 12 

of unit layers, time step, hidden layer width, and iteration times. The parameter settings of GRU are 13 

shown in Table 4. 14 

Table 4. Parameter setting of GRU. 15 

Model 
Parameter 

meaning 
Parameter 

The parameter 

value 
Setting basis 

GRU 

the number of 

neurons 
unit 256 

It is a key parameter affecting the accuracy and 

cannot be increased indefinitely. 

the number of 

unit layers 
num_layers 2 

The default is 1 layer, if there are 2 layers, two 

GRUs are stacked together to form a unit. 

time step time_step 2 

The difference between the two-time points 

before and after, and this experiment is the 

prediction of daily power generation. 

hidden layer 

width 
batch_size 256 

The number of statements entered into the GRU 

at one time, there is no fixed value. 

iteration times epochs 50 

It is related to the computing capacity of the 

computer, and too many iterations are time-

consuming and labor-intensive. 

5.4 Experiment Results  16 

In our experiments, the results are divided into vertical comparison and horizontal comparison. 17 

The vertical comparison refers to the comparison between the introduction of data smoothing and 18 

the non-introduction of data smoothing. For the prediction resulting from the involvement of data 19 
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smoothing, the specific steps including LOWESS, LOESS, PF, SG, and AAv can smooth the actual 1 

data, then utilize Random Forest to select the features of smoothed data, and finally combine the 2 

smoothed data with the results of feature selection and substitute them into the GRU model for 3 

prediction. The non-introduction of data smoothing indicates that the actual data is directly featured 4 

through Random Forest and then is substituted in the GRU prediction model. 5 

The horizontal comparison is divided into the internal comparison of GRU and the external 6 

comparison between GRU, RNN and LSTM. The internal comparison based on GRU model is the 7 

comparison between prediction results from smoothed and unsmoothed data under the same feature 8 

selection results. In addition, the internal comparison also includes the compared results of 9 

optimized GRU and un-optimized GRU models. Moreover, three prediction models with the same 10 

data processing results are compared in terms of prediction accuracy. 11 

5.4.1 Vertical comparison 12 

(1) The comparison with different data smoothing methods 13 

Considering that the daily photovoltaic power generation is subject to solar radiation, 14 

temperature, and other factors, which have a large fluctuation ranges, the data smoothing 15 

technologies are introduced to reduce the noise and fluctuation range. We use LOWESS, LOESS, 16 

PF, SG, and AAv to process the daily power generation data. Then, we use Random Forest for 17 

feature selection. Since different data smoothing methods have different results of feature selection 18 

and prediction, it is necessary to compare and analyze the final prediction results, which are shown 19 

in Table 5. (Aim to find the smoothing method with the best prediction results by adopting four 20 

evaluation metrics)  21 

Table 5. Comparison of prediction errors of five data smoothing methods. 22 

Smoothing 

methods 
RMSE Random Forest feature selection 

results (in order of importance) 

GRU model prediction results 

  RMSE MSE MAE MAPE 

Savitzky-Golay 6.271 

① daily cumulative radiation 

② daily maximum temperature 

③ average relative humidity 

7.263 52.750 6.589 120.148 

LOWESS 6.472 

① daily maximum temperature 

② daily cumulative radiation 

③ daily minimum temperature 

2.352 5.530 1.851 19.715 

LOESS 6.993 

① daily maximum temperature 

② daily cumulative radiation 

③ daily minimum temperature 

④ evaporation 

5.163 26.658 4.182 Inf 

AAv 7.339 

① daily cumulative radiation 

② daily maximum temperature 

③ evaporation 

4.486 20.120 3.630 29.321 

PF 8.998 

① daily cumulative radiation 

② daily maximum temperature 

③ evaporation 

4.910 24.109 3.822 27.343 

According to Table 5, we find that when LOWESS smoothing method and three features (daily 23 

maximum temperature, daily cumulative radiation, and daily minimum temperature) are selected by 24 

Random Forest, GRU prediction model can obtain the lowest experimental error. In fact, RMSE, 25 

MSE, MAE and MAPE represent the smoothed prediction error values. We find that MSE, MAE 26 

and MAPE are all lowest under LOWESS smoothing method. The RMSE values in the second 27 

column of Table 5 represent the error between the smoothed data and actual data. It is obvious that 28 

SG smoothing with the lowest RMSE has the largest prediction error. At this time, the prediction 29 

error of PF smoothing with highest RMSE is relatively low. Therefore, improving the accuracy of 30 
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GRU prediction model but not changing the attributes and authenticity of actual data as much as 1 

possible is the key to this experiment. Compared with other smoothing methods, the RMSE of 2 

LOWESS smoothing ranks second, which has less error with the actual data and the lowest 3 

prediction error, LOWESS smoothing method then reasonably become our experiment selection. 4 

(2) Comparison of unsmoothed and smoothed experimental results  5 

In this section, we discuss the comparison between smoothed and unsmoothed experimental 6 

results under three different contexts (Random Forest feature selection, prediction results, and 7 

prediction errors) to reflect the importance of data processing.  8 

A. Comparison analysis in Random Forest feature selection 9 

We use Random Forest to rank and filter the feature importance of actual data and smoothed 10 

data. The results of feature importance ranking are presented in Fig.4 and Fig.5. 11 

 12 

Fig.4. Random Forest feature selection results (Data after LOWESS smoothing). 13 

 14 

Fig.5. Random Forest feature selection results (Actual data). 15 
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As shown in Fig.4, for the LOWESS smoothed data, the results of Random Forest feature 1 

selection indicate a hierarchical gradient downward effect with a stepwise nature. According to the 2 

order of importance, the filtered features are daily maximum temperature, daily cumulative radiation 3 

and daily minimum temperature. As for the feature selection results considering actual data in Fig.5, 4 

the seven features filtered are daily cumulative radiation, maximum wind speed, average 5 

temperature, daily maximum temperature, sunshine hours, average relative humidity and minimum 6 

relative humidity, which filters out more features than smoothed data. The ratio of daily cumulative 7 

radiation is very high, and the remaining impact factors are extremely low, even to 0, with no 8 

stepwise. Therefore, the feature selection results considering actual data are obviously not as good 9 

as that considering smoothed data, which not only proves the effectiveness of Random Forest feature 10 

selection but also demonstrates the improvement of data smoothing on Random Forest performance. 11 

B. Comparison analysis between prediction results and actual data 12 

This part is about the prediction results comparison using smoothed data, unsmoothed data and 13 

actual data. We learn from Part A that the feature selection results are distinct using the smoothed 14 

and unsmoothed data. After the smoothed data with the filtered features are combined to form a 15 

high quality data set, this data set is substituted into GRU model for prediction. The same steps are 16 

followed for the unsmoothed prediction. We note from Table 5 that the prediction error of LOWESS 17 

smoothing is the smallest. Then, we select the prediction results using LOWESS smoothed data for 18 

analysis and comparison. Fig.6 represents the comparison results between actual data and GRU 19 

prediction model. From the interval of data distribution, the interval of actual data is 0~27.5 kw  h, 20 

the interval of unsmoothed prediction results is 5~17.5 kw  h, while the interval of smoothed 21 

prediction results ranges from 2.5~27.5 kw  h. Obviously, the smoothed prediction results are more 22 

consistent with the interval of actual data. In terms of the goodness of fit, the trend of smoothed 23 

prediction results and actual data are basically the same, but the trend of unsmoothed prediction 24 

results has almost no correlation with actual data, then the goodness of fit and prediction effect of 25 

smoothed prediction results are much better than unsmoothed prediction results. In conclusion, 26 

LOWESS smoothing can effectively reduce the fluctuation range of data, Random is applicable to 27 

feature selection, which shows that the combination of LOWESS smoothing and Random Forest 28 

can improve quality of input data and prediction accuracy of GRU. 29 

 30 

Fig.6. Comparison of actual data with prediction results. 31 

C. Comparison analysis in GRU prediction errors 32 

Different prediction results produce diverse prediction errors. In Table 6, smoothed prediction 33 

error is significantly smaller than unsmoothed prediction error, and the R2 value of smoothed 34 

prediction is higher. A higher value of R2 means a better goodness of fit for prediction model. The 35 

R2 value of smoothed prediction is 0.955, which is close to 1, representing the high fitting ability of 36 
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prediction method proposed in this paper. The R2 value of unsmoothed prediction is 0.874, which is 1 

lower than that of smoothed prediction. The MAPE of unsmoothed prediction even reached infinity. 2 

Moreover, the RMSE of unsmoothed prediction is five times higher than smoothed prediction, and 3 

the MSE reaches 20 times. Then, smoothed prediction can result in a lower prediction error and a 4 

higher prediction validity.  5 

Table 6. Comparison of unsmoothed and LOWESS smoothed prediction errors. 6 

Evaluation metrics Unsmoothed LOWESS smoothing 

RMSE 10.005 2.352 

MSE 100.105 5.530 

MAE 8.435 1.851 

MAPE Inf 19.715 

NRMSE 0.370 0.102 

R2 0.874 0.955 

After comparing the results of above three contexts, we find that data smoothing can 7 

effectively reduce the prediction error and improve the model prediction accuracy. Especially, Table 8 

5 indicates that all five smoothing methods used in our experiment can effectively improve the 9 

prediction accuracy of the GRU prediction model. However, the unsmoothed prediction 10 

performance is poor because of the uncertainty and fluctuation of photovoltaic power generation 11 

from the influence of solar radiation and temperature.  12 

5.4.2 Horizontal comparison 13 

(1) Internal comparison of GRU model 14 

A. Comparison analysis of smoothed and un-smoothed prediction errors 15 

This section compares the prediction errors of GRU model using smoothed and unsmoothed 16 

data under the same LOWESS smoothed feature selection results. Table 7 shows that the 17 

unsmoothed prediction error is higher than that under smoothed prediction, the value of R2 is 18 

significantly lower. The MSE of unsmoothed prediction is much larger than that of smoothed 19 

prediction, and its MAPE is also infinite. Although we use the same feature selection results, the 20 

unsmoothed prediction result is worse than that under smoothed prediction, which indicates that 21 

data smoothing techniques are meaningful for improving prediction accuracy. 22 

Table 7. Comparison of smoothed and unsmoothed GRU internal prediction errors. 23 

Evaluation metrics LOWESS smoothing Unsmoothed 

RMSE 2.352 9.112 

MSE 5.530 83.022 

MAE 1.851 7.837 

MAPE 19.715 Inf 

NRMSE 0.102 0.337 

R2 0.955 0.824 

 24 

B. Comparison analysis of optimized and un-optimized GRU prediction errors 25 

Based on the consistent data processing results, the un-optimized GRU with only one layer is 26 

compared with the optimized GRU added RepeatVector layer and TimeDistributed layers. It can be 27 

seen from Table 8 that the prediction error of optimized GRU model is evidently less than that of 28 

un-optimized GRU model, the value of R2 is higher than un-optimized GRU, the NRMSE is much 29 

lower than un-optimized, the RMSE and MAPE of optimized GRU is several times less than that of 30 

un-optimized GRU, so as to show that the optimization of prediction model is also a momentous 31 

mean to improve prediction accuracy.  32 
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Table 8. Comparison of optimized and un-optimized GRU prediction errors. 1 

Evaluation metrics Optimized GRU Un-optimized GRU 

RMSE 2.352 34.901 

MSE 5.530 5.908 

MAE 1.851 4.634 

MAPE 19.715 82.858 

NRMSE 0.102 0.872 

R2 0.955 0.831 

(2) External comparison of GRU model 2 

A. Comparison analysis of prediction results 3 

Based on same data processing results, GRU, RNN and LSTM models are used for comparison. 4 

We first analyze the prediction results of three prediction models. As can be seen in Fig.7, although 5 

the trends of three models are roughly the same as the actual data, the prediction results of GRU are 6 

closer to the actual data than those of LSTM and RNN, and have the best goodness of fit with the 7 

actual data. Especially, both RNN and LSTM are significantly far from the actual data since January 8 

21, 2017. Therefore, under the consistent data processing results, it is also particularly momentous 9 

to choose one appropriate prediction model.  10 

 11 

Fig.7. Comparison among prediction results of LSTM, RNN, GRU and actual data. 12 

B. Comparison analysis of prediction errors 13 

Finally, we compare the prediction errors of three models. Table 9 shows that GRU has the 14 

smallest prediction error and the highest accuracy. The RMSE, MSE and MAPE of these three 15 

models have little difference, but the gap in MAPE is slightly larger. Based on R2 value, GRU is 16 

0.950, RNN is 0.931, LSTM is 0.860, which prove that GRU has the best goodness of fit, followed 17 

by RNN, and LSTM has the worst fit. 18 

Table 9. Comparison of prediction errors of LSTM, RNN, and GRU. 19 

Evaluation metrics GRU LSTM RNN 

RMSE 2.352 3.131 2.602 

MSE 5.530 9.801 6.771 

MAE 1.851 2.794 2.241 

MAPE 19.715 29.056 22.207 

NRMSE 0.102 0.221 0.128 

R2 0.950 0.860 0.931 

 20 

5.4.3 Impact of uncertainty 21 

To fully analyze the impact of uncertainty on model performance, we consider both data 22 

processing and prediction models. In general, the uncertainty in data processing mainly refers to the 23 

unavoidable errors in the data due to the limitations of measurement means and machine anomalies. 24 

The uncertainty in prediction model mainly includes the model’s own structure as well as the 25 
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optimization algorithm [36]. In addition, the factors affecting the uncertainty of data processing also 1 

include natural climatic conditions. 2 

A. Data processing 3 

Fig.5 shows the uncertainty of actual data leads to the lack of ladder nature in the feature 4 

selection results. With the data smoothing technology, the results of feature selection are clearly 5 

enhanced. Therefore, data smoothing can effectively reduce the negative impact of uncertainty. As 6 

seen in Fig.6, the uncertainty of data causes serious deviations between actual data and prediction 7 

results, and the prediction accuracy is too low. However, the prediction accuracy is significantly 8 

improved after data smoothing and feature selection. Then data processing is meaningful to reduce 9 

the adverse effects of uncertainty on the prediction accuracy. 10 

B. Prediction model 11 

For prediction model, Table 9 demonstrates the importance of choosing a suitable prediction 12 

model. RNN and LSTM have slightly lower prediction accuracy than GRU due to their own gradient 13 

problem and complex parameters. Table 8 shows the model performance of optimized GRU added 14 

RepeatVector and TimeDistributed layers is clearly better than that of un-optimized GRU. Thus, 15 

choosing the appropriate prediction model and optimization method is also beneficial to reduce the 16 

influence of uncertainty. 17 

In summary, data smoothing techniques reduce the fluctuation of data, Random Forest filters 18 

out reasonable feature selection results, which solve the uncertainty in data processing to some 19 

extent. Furthermore, the GRU model added RepeatVector and TimeDistributed layers improves the 20 

prediction accuracy of GRU model. Therefore, the developed forecasting method can effectively 21 

reduce the uncertainty impact of photovoltaic power generation on the prediction performance. 22 

6 Conclusion  23 

Aiming to enhance the accuracy and stability of forecasting, this paper considers the impact of 24 

data fluctuations on the prediction of photovoltaic power generation, and develops an optimized 25 

GRU forecasting method which includes data smoothing technology, feature selection, and 26 

optimization of GRU. Firstly, we uses different data smoothing technologies to reduce the 27 

fluctuation of actual data and choose the best one with the least prediction error. Secondly, to obtain 28 

higher-quality input data, Random Forest method is used to select natural factors affecting 29 

photovoltaic power generation. Finally, the RepeatVector layer and TimeDistributed layer are used 30 

to optimize the GRU model. Through case studies and experimental results, the conclusions are 31 

obtained as follows:  32 

(1) Five different smoothing methods can all improve the prediction performance of GRU 33 

model. Among them, the LOWESS smoothing can generate the smallest prediction error. 34 

(2) The Random Forest feature selection can simplify the number of features and optimize the 35 

prediction performance of GRU model.  36 

(3) Under the consistent results of data processing, GRU model is more suitable for the 37 

prediction of photovoltaic power generation than LSTM and RNN. 38 

(4) The GRU model with RepeatVector layer and Timedistributed layer has a better prediction 39 

performance than the un-optimized single-layer GRU.  40 

In summary, compared with original GRU model, the proposed forecasting method in this 41 

paper improves data processing and optimizes GRU model. The applications of different data 42 

smoothing techniques reduce the fluctuation of daily power generation and improve the quality of 43 

input data. Random Forest selects the characteristics of natural factors affecting photovoltaic power 44 
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generation. The optimized GRU with RepeatVector and TimeDistributed layers not only enriches 1 

GRU layer structure, but also effectively improves the prediction accuracy. In terms of practical 2 

application value, high-precision generation forecasting method is an effective approach for 3 

integrating solar energy resources into power grid. Our results show that the proposed method could 4 

be a useful tool to forecast the short-term photovoltaic power generation with an acceptable degree 5 

of accuracy. Besides, according to the prediction results, photovoltaic power plants can arrange 6 

future power generation, adjust electrovalence, and provide technical support to make timely and 7 

reasonable scheduling decision for power grid.  8 

The integration of photovoltaics into the power grid present both opportunities and challenges. 9 

The instability of photovoltaic power generation has caused challenges and impacts on the power 10 

grid though it can reduce the pollution and loss caused by traditional power generation. Accurate 11 

prediction is conducive to the safe and stable and economic operation of photovoltaic plants after 12 

grid connection. Compared with the original GRU, the developed prediction method in this paper 13 

improves the prediction accuracy through smoothing technology, feature selection and optimized 14 

GRU, but there are still some limitations. For example, the loss of prediction accuracy, the reduction 15 

of error between smoothed data and actual data, the unity of the feature selection method, the 16 

feasibility of interval prediction, and better improvement of GRU prediction performance. These 17 

are all problems we intend to solve. In addition, the profound development of photovoltaic power 18 

generation needs the support of medium and long-term forecasting. In the future, we collect data 19 

suitable for medium and long-term forecasting, study relevant forecasting technologies, and use 20 

medium and long-term forecasting to make scientific decisions and plans for the development of 21 

photovoltaic power.  22 
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