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Abstract

Targeting at boosting business revenue, purchase prediction based on user behavior is crucial to
e-commerce. However, it is not a well-explored topic due to a lack of relevant datasets. Specifi-
cally, no public dataset provides both price and discount information varying on time, which play
an essential role in the user’s decision making. Besides, existing learn-to-rank methods cannot
explicitly predict the purchase possibility for a specific user-item pair. In this paper, we propose
a two-step graph-based model, where the graph model is applied in the first step to learn rep-
resentations of both users and items over click-through data, and the second step is a classifier
incorporating the price information of each transaction record. To evaluate the model perfor-
mance, we propose a transaction-based framework focusing on the purchased items and their
context clicks, which contain items that a user is interested in but fails to choose after compari-
son. Our experiments show that exploiting the price and discount information can significantly
enhance prediction accuracy.
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1. Introduction

With the explosive growth of online shopping, predicting customer’s behavior has become
an essential topic in e-commerce customer management, since it provides decisive instructions
for efficient resource allocation, strategy making at sales, and marketing of the online business
[1]. Compared with the traditional click prediction and recommendation task of other online
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applications (e.g., video watching, music listening, and social networking), purchase prediction
is of more special value to the e-commerce as recommending items that are more likely to be
purchased can explicitly boost the revenue of the business. Meanwhile, an accurate demand
forecasting is also helpful to the supply chain management by optimizing operational cost.

Although the research related to customer behavior has received attention for a long time [2],
the purchase prediction task in the deep learning era is not as prevalent as click prediction, mostly
caused by the difficulty of accessing real-world datasets and incomplete information of users and
items. Consequently, existing approaches towards purchase prediction mainly depend on user’s
click data and are based on the learn-to-rank paradigm [3]. The evaluation methods also em-
ploy a ranking-oriented setting by comparing all items and selecting top-N as recommendation
candidates [4, 5, 6].

We argue that the learn-to-rank framework is not suitable for purchase prediction task and re-
strict the application under the real scenario. The ranking-based approaches generate outputs in a
contrastive manner, so the model cannot directly predict the binary label that indicates if an item
will be purchased. Moreover, applying top-N pitching universally to all users overlooks the fact
that users have different levels of purchase desire since it evaluates the model performance with-
out taking the click-context per purchase prediction into account. Consequently, the prediction
results cannot be employed as a reference for demand forecasting.

To address the problems stated above, we reformulate the purchase prediction problem and
propose a new transaction-based modelling and evaluation framework that focuses on each trans-
action’s context instead of the whole click records of each user. The goal is to predict the prob-
ability of a specific item being purchased within the context of each transaction. By setting a
window for each transaction record, we treat the clicked but not purchased items within a time
window as negative samples and drop items out of the windows due to the nature of implicit feed-
back. A model can be built and evaluated under transaction-based settings to correctly classify
the purchased and non-purchased items by explicitly predicting the purchase possibility.

Another challenge of current purchase prediction research is insufficient available informa-
tion, which narrows researchers’ scope down to identifying patterns from click data only. The
representations of user and item learned based on click records encode a user’s interest or taste
towards different items, which is useful for recommending items that the user is also interested
in. However, such a preference does not necessarily mean that the user will eventually place an
order on the items. A natural intuition is that customers do not buy commodities solely based
on interest. On the contrary, they will also consider different aspects and compare it with other
similar items before making a final decision. During the decision making of every user, the price
and available discount are the most decisive factors. However, to the best of our knowledge,
there is no previous study focusing on the pricing strategy due to the lack of relevant information
from the dataset.

Graph Neural Network (GNN) has been verified to be influential in various domain applica-
tions because of its outstanding structural representation learning ability [7, 8, 9], for example,
human pose estimation [10], relation reasoning [11], and multi-modality processing [12]. The
graph-based approach has a potential to integrate and exploit various sources and aspects of infor-
mation in the dataset for identifying some latent relationships for predictions. The node represen-
tations learned by a graph-based method embed aggregated information of local neighbourhood
and topological structure of graph, and have been exploited in various downstream tasks, such as
social recommendation [13], user profile enhancement [14], personalized recommendation [15],
and so on. However, we notice that there is no previous work addressing purchase prediction
via a graph-based approach. The challenge is possibly due to that the sparse purchase data and
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anonymized user-item information make the graph construction more difficult. To address this
issue, we propose a graph-based model for transaction-based purchase prediction by incorporat-
ing the price features of each transaction. We conduct extensive experiments based on a newly
available e-commerce dataset with transactional price information provided to demonstrate the
significance of pricing and promotion information in the purchase prediction.

The main contributions of this paper are summarized as follows:

• To evaluate the model performance under a more realistic scenario, we define a new form
of transaction-based purchase prediction task;

• To the best of our knowledge, we are the first to leverage price and discount features explic-
itly for purchase prediction task;

• To the best of our knowledge, we are the first to exploit the graph-based model for purchase
prediction task;

• We conduct extensive experiments on a real-world e-commerce dataset. The results show
that our proposed model incorporating price information enhances prediction performance
significantly.

2. Related Work

Past researches regarded the purchases and clicks as implicit feedback [4], because the neg-
ative feedback (e.g., viewed but not clicked and clicked but not purchased) was not directly
observed. A common solution was to treat all non-purchased items of an user as negative feed-
back based on the All Missing As Negative (AMAN) assumption [16]. However, the AMAN
assumption neglected the goal-specificity and temporal range of user’s intent [17], which means
the interactions that were chronologically close to a purchase can be more informative towards
understanding the user’s decision making before placing an order. In many recommendation-
related application domains, multiple user-item interactions of different types can be recorded
over time. Therefore, numerous works have leveraged time information, such as session parti-
tion and timestamp, to build session-based sequence-aware recommender system by enriching
individual user models in the recommendation process [18]. Relevant works are surveyed in
[19, 20]. Jannach and Zanker (2018) comprehensively reviewed collaborative filtering models
in session-based recommendation scenarios [21]. These approaches adopt pairwise ranking loss
function and produce Top-N ranked items as output.

Click records with simple user-item interaction have been exploited for various tasks such as
click-through rate (CTR) prediction in online advertising [22] and user intent prediction [23]. On
purchase-relevant datasets, analysis over click records has been the most fundamental component
of purchase prediction model. Several researches focusing on predicting customer’s purchase be-
havior in e-commerce have been made based on click records. Iwata et al. (2009) [24] adopted
a new topic model for tracking time varying consumer purchase behavior , in which consumer
interests and item trends change over time. Liu et al.(2016) [25] proposed a repeat buyer predic-
tion model on sales data of “Double 11” dataset from Tmall, which utilizes different semantic
features generated from user-merchant interactions. Park et al. (2020) [4] presented a model-
based framework that leverages the historical click records of users to compensate for the missing
user-item interactions of purchase records, i.e., non-purchased items.
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Apart from mining the click logs, there have been efforts leveraging knowledge of different
forms. Zhang and Pennacchiotti (2013) [26] predicted user’s purchase behavior on e-commerce
websites employing the user’s social media profile. Zhao et al. (2016) [27] focused on brand-
based purchase prediction using platform-specific feature groups, including click features, pur-
chase features, and collect-and-cart features. Jannach et al. (2017) [28] discussed the role of
discounts in session-based item recommendation in e-commerce, where items in promotion were
marked as being discounted. They found, by doing this, recommended items can be more attrac-
tive to users and lead to higher conversion rates. Chen et al. (2019) [29] presented a context-
based purchase prediction framework based on user’s sequential searching and clicking actions
to improve purchase prediction accuracy, in which the connection between searching and click-
ing were exploited to investigate user’s ultimate intention. Zhao et al. (2020) [30] examined and
interpreted various user inaction factors in recommendation process.

All works stated adopted a learn-to-rank approach to build and test their proposed methods,
and none of them considered that prices and discounts are varying over time and examined the
effect of price factor in purchase prediction due to the availability of price information. Moreover,
no previous effort has leveraged graph-based method for purchase prediction task.

The remainder of this article is organized as follows. In Section 3, we formally define the
proposed transaction-based purchase prediction problem. In Section 4, we present the proposed
graph-based model for purchase prediction. In Section 5, we describe our experiments on an
e-commerce dataset and present the results. The summary and future research directions of this
paper are discussed in Section 7.

3. Problem Statement & Formulation

Symbol Description

G,V, E Graph, Vertices, and Edges
U, I Set of Users, set of Items
n, m Number of users and items
T Set of all Transactions
t<u,i> Transaction with user u and item i involved
dt<u,i> Tuple of price and discount of transaction t<u,i>

Tt<u,i> Timestamp of transaction t<u,i>

pu Items purchased by user u
cu Items clicked by user u

c(+/−)
t<u,i>

Items clicked by user u before transaction t<u,i>,
the superscription denotes the label

K Dimension of “interest” embeddings
M Dimension of “decision” embeddings
α ∈ Rn×K User embedding matrix
β ∈ Rm×K Item embedding matrix
τ Threshold of purchase prediction

Table 1: Notation

We first introduce the notations used throughout the paper (as shown in Table 1). LetU and I
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denote the set of users and items, respectively, and n, m be the number of users and items. Each
user or item is a vertex of the graph G, thus we have (n + m) nodes on the graph. All transaction
records of users in U on items in I are denoted by T . Each transaction record t<u,i> stands for
user u buying item i, additionally with a timestamp Tt<u,i> and a tuple with six elements encoding
price and discount information, which concretely include original unit price, final unit price, and
discount quantity of four promotion strategies, i.e., direct discount, quantity discount, bundle
discount, and coupon discount. pu and cu denote the sets of items purchased and clicked by user
u, respectively.

Especially, we use ct<u,i> to signify items clicked by user u before a transaction t<u,i>, which
includes items purchased within the transaction (as user must click to take further action), denot-
ed as c(+)

t<u,i>, and items clicked-but-not-bought ahead of the transaction, denoted as c(−)
t<u,i>. For

transaction-based purchase prediction task, we regard the purchased item(s) as positive sample(s)
with label 1 and not-purchased items as negative samples with label 0. Intuitively, the negative
samples in c(−)

t<u,i> can be concluded into two types: 1) items that user u is highly interested in,
but decide not to purchase after comparing from different aspects, such as price and available
discounts; and 2) items that user u casually click through without clear purchase intention, which
are less relevant to the purchased item(s). To simplify the scenario without loss of generality and
accelerate both training and testing by making the model parallelizable, we truncate the ct<u,i>

into item sequence of a fixed length according to their reversed click order, which should contain
most of the highly-relevant items and some of the low-relevant items. We believe that 10 is a
suitable length because the ratio of records of purchased item to click records is 1:9. To be spe-
cific, we have 455, 383 records of items being purchased and 3, 986, 902 click records regarding
those purchased items, which leads to an average of 8.755 clicks before a transaction (note that
users with less than 20 click records and items that had never been purchased are removed). For
notation simplicity, we use ct<u,i> to denote the fix-length item sequence in the rest of this paper.

We formally define the research problem of this paper. Under the settings stated above, the
transaction-based purchase prediction task is to correctly predict the label of each item in ct<u,i>

according to their possibilities of getting purchased. The prediction performance is evaluated by
using widely-adopted evaluation metrics, i.e., accuracy and F1 score.

4. Methodology

In this section, we first introduce the price information exploited in the proposed model, and
then demonstrate our two-step framework in terms of its components: in the first step, an undi-
rected graph is constructed based on click data for learning a general representation of both users
and items; the proposed purchase prediction model incorporating price and discount information
as a new feature is presented in the second step.

4.0. Step 0: Discount as Features

Given a transaction record t<u,i>, we can retrieve the corresponding information about product
pricing and promotional activities. As shown in Table 2, the original unit price is the list price of
the item, which is the same for all customers at any given time but can change from time to time;
the final unit price is the actual price paid by the customer, which can vary among customers
even at the same time owing to different discounts or promotions. The gap between the original
price and the final price is the summation of all discounts associated with the item, which are
direct discount, quantity discount, bundle discount and coupon discount. Direct discount is a
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Field Description

order ID Unique identifier for each transaction
user ID Unique identifier for each user
item ID Unique identifier for each item

order time Specific time at which the order gets placed
(format: yyyy-mm-dd HH:MM:SS)

original unit price Original list price
final unit price Final purchase price
direct discount Discount due to direct price deduction
quantity discount Discount due to purchase quantity
bundle discount Discount due to bundle promotion
coupon discount Discount due to coupon used by customer

Table 2: Description of each transaction record

promotion strategy that the seller offers an unconditional price cut regarding the list price, which
reflects the reduction in the original price stated on the product detail page. Quantity discount
is a promotion strategy that the seller provides an extra discount to entice the customer to buy
more, which can have different forms including “get an RMB 100 discount if the total price of
order exceeds RMB 199” or “buy 3 to get an RMB 10 discount on each”. Bundle discount means
that a discount is provided if the customer purchases a pre-specified collection of items. Coupon
discount allows customers to use coupons obtained in advance to gain extra price reduction.

Exploiting the order details elaborated above, we manipulate the price and discount tuple using
the feature engineering technique to generate the transaction-based feature vector containing the
following elements:

• Price-aware attributes, a six-dimension vector, of which the attributes are the proportion of
final price, total discount and discounts of four promotion strategies regarding the original
price, respectively.

• Discount-aware attributes, a four-dimension vector, of which the attributes are the propor-
tion of discounts of four promotion strategies regarding the total price reduction.

Intuitively, the price-aware attributes describe a pricing profile by highlighting the overall
discount percentage, and the discount-aware attributes depict the promotion strategies by using
the weight of each strategy. We concatenate these two vectors to form the final feature vector
dt<u,i>. We visualize a virtual example to better explain the process to generate dt<u,i> in Figure
1.

By doing this, we can construct the price features for all purchased items. However, we can-
not explicitly access the price information of those clicked-but-not-bought items, because click
records do not include the promotion information of the item when it is clicked. An alternative is
to conclude a price pattern based on all orders of an item. It is notable that the price attribute of
an item, including its original price and final price, can fluctuate throughout the period, and the
promotion strategies can be different even within the same day. Considering the fact that dt<u,i> is
a transaction-specific feature regarding such a dynamic situation, we hope the price feature di′

t<u,i>

for i ∈ c(−)
t<u,i> can also be transaction-specific. To address this issue, we collect the transaction
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Figure 1: A virtual example of generating feature vector of discount information. Given a trans-
action record, we extract price-aware attributes and discount-aware attributes accordingly and
then concatenate both vectors to form the feature vector.

records for items i ∈ c(−)
t<u,i> that are chronologically close to the time Tt<u,i> that t(u,i) got placed,

and retrieve the closest record(s) to generate di′
t<u,i> for item i′. If there are multiple transactions

records with different pricing patterns within a reasonable time window, say one hour or one day,
we calculate the average values of the original price and final price, and pick the mode values
of promotional discounts to generate di′

t<u,i′> for item i′. If the closest record is more than one
day away, we will generate the price feature based on all historical transaction records following
the same approach with the previous situation. Note that items without any purchase record are
removed.

In Figure 2, we present a virtual example to illustrate the process of retrieving transactional
price information for itemid002 and itemid003, which are clicked-but-not-purchased items
given a transaction record involving itemid001. For itemid002, we can find a relevant pur-
chase record on the same day. Therefore, we can exploit <info item2> to generate di′

t<u,i′> for
itemid002. As for itemid003, we find all purchase records are chronologically far from the
timestamp. Thus, we generate di′

t<u,i′> for itemid003 based on all available records.
To this end, we successfully produce price feature for all items, which will be utilized in Step 2

(Section 4.2) for purchase prediction. Next, we exploit a graph-based node embedding approach
to map each user and item into a higher-dimensional space as latent representation.

4.1. Step 1: General Embedding Learning

Clicks are the primary user-item interaction, which are informative on profiling user-item re-
lationship and modeling the preference and interests of a user. Especially, frequently repeated
clicking on a certain item is a telltale signal that the user is more likely to buy this item than other
items. To exploit such information, we construct the graph with weighted edges encoding click
frequency. We define the graph as G = (V,E), whereV = U ∪ I is the set of vertices, and E is
the set of edges between the vertices. Each edge e ∈ E represents a user-item pair (u, i) for user u
and item i, which is assigned with a weight wu,i > 0 indicating the relatedness. More concretely,
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Figure 2: A virtual example of retrieving transactional information for clicked items.

for a user u, the weight of edge connecting with item ik ∈ cu is calculated as

wu,ik =
1

1 + e−ε× fu,ik
, (1)

where fu,ik is the normalized clicks on item ik,

fu,ik =
# of clicks on ik∑

j # of clicks on i j for i j ∈ cu
, (2)

and ε is a modulating hyperparameter controlling the range of output value by adjusting the curve
of sigmoid function shown in Figure 3.

Eqn. 1 maps the value of edge weight into the range of [0.5, 1), which can effectively avoid
the situation that a less reasonable representation is learned when the edge weight is too small if
a user has enormous click records. Moreover, the graph G is undirected, which implies that we
have (u, i) ≡ (i, u) and wu,i ≡ wi,u.

Different from social network graphs where a depth-first searching model can work well, in
practice, the click graph focuses on the local pairwise relationship between the vertices that
share similar neighbours. We thus adopt a breadth-first searching method to learn the node
presentation. We assume that users having more co-clicked items tend to share similar interests
or tastes as shown in Figure 4. Therefore, we follow the same way as in [31] to embed the
graph into a low-dimensional space with second-order proximity network structure preserved.
In general, the second-order proximity between a pair of vertices (vi, v j) in the graph measures
the similarity between their neighbourhood network structures and is determined by the pairwise
similarity of first-order proximity. Vertices with similar distributions over the neighbourhood
vertices are assumed to be similar. In order to encode the second-order proximity information,
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Figure 3: Relationship between wu,ik and fu,ik in Eqn. 1 with different values of ε

Figure 4: Graph construction in Step 1, where wu,i is the weight of edge (u, i). In this case, user
u1 have three co-clicks with user u2, where we assume that u1 may share similar interests with
u2, and such a second-order structural information is preserved in our model.

each vertex is assigned with a context vector. Given an edge (i, j), we define the probability of
context vertex v j conditioned on vertex vi as:

p(v j|vi) =
exp(v′Tj · vi)∑|V |

k=1 exp(v′Tk · vi)
, (3)

where v′ is the representation if the vertex is treated as context, and |V | is the number of context
vertices. The objective is to minimize the KL-divergence between the conditional distribution of
the contexts p(·|vi) and the empirical distribution p(·|vi), which is defined as p(v j|vi) =

wi, j

di
, where

di is the degree of vertex i, by minimizing the objective function:

O1 = −
∑

(i, j)∈E

wi, j log p(v j|vi) (4)

However, the computational cost of the loss function in Eqn. 4 is expensive as the summation
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in the denominator needs to cover the entire set of vertices to compute the conditional probability.
To address this issue, a negative sampling method, Noise Contrastive Estimation (NCE) [32], is
employed to approximate the loss term. The negative samples are drawn from the same discrete
distribution by utilizing the alias table method [33] according to the weights of the edges, which
is of O(1) complexity. Given the edge (i, j), the loss term is approximated by

O1 = logσ(v′Tj · vi) +

N∑
n=1

Evn∼Pn(v)

[
logσ(−v′Tn · vi)

]
, (5)

whereσ is a sigmoid function, N is the number of negative samples, and following the suggestion
in [32], the noise distribution Pn(v) is set to be the 3/4rd power of the degree of vertex vi.

By optimizing the model, we obtain α ∈ Rn×K and β ∈ Rn×K as representations for users and
items, respectively. Note that the general representation is obtained by exploiting click frequency
information. Thus, no purchase information is included in this pretraining phase, and it is fair to
use generated embeddings in the next step prediction task.

The time complexity of transiting through the graph is O(nm), i.e., quadratic time. However,
due to the sparsity of the graph, the number of each users interactions can be treated as a constant.
Therefore, the complexity of training node embedding is linear time O(n).

4.2. Step 2: Purchase Prediction Model
In this subsection, we introduce the proposed model for transaction-based purchase prediction.

Figure 5 demonstrates the general framework of this step. In this step, the model is built to extract
latent relationship in a transaction by exploiting the latent first-order proximity. Compared with
second-order proximity, the first-order proximity implies the similarity of two vertices that are
pair-wisely connected. The proposed model measures the first-order proximity in a latent space
to incorporate price features. The motivation is concluded as follows:

In the first step, users and items are mapped into a shared “interest” space according to their
historical interactions. If the similarity between the embedding vectors of a users u and an
item i is high, we can assert that the user u is interested in the item i and would click item
i if i is recommended. However, we cannot simply deduce that the user u is more likely to
buy an item i without other substantial evidence. Intuitively, the decision-making process of
purchasing an item involves multiple factors, which include explicit factors, such as expected
values and available discount options, and implicit factors, such as usefulness, necessity, and
practical applicability. We argue that both explicit factors and implicit factors can contribute to
the final decision, together with the user’s interest. To capture such dependency relationship in
purchase prediction, we subsequently map price features and the embeddings of users and items
into another latent “decision” space as an analogue of exploiting implicit factors. By doing this,
the representations in the “decision” space can better depict the user’s desire to buy a specific
item.

Under the transaction-based setting, as shown in Figure 5a, the model updates weights regard-
ing the inputs relevant to each transaction at each training step. The idea behind is similar to
NCE with negative sampling. However, in the proposed approach, we do not need to sample the
negative samples because items in c(−)

t<u,i> can work as natural negative samples.

4.2.1. Model Input
Given a transaction record t<u,i>, the input of our model consists of the “interest” embedding

αu ∈ RK of user u, the “interest” embedding βi ∈ RK , and the price feature dt<u,i> ∈ R10 of each
10



(a) An illustration of transaction-based approach on the subgraph.

(b) The model proposed for purchase prediction incorporating price
information.

Figure 5: A generic framework for Step 2.

item i ∈ ct<u,i>. Since the input items at each step are of the same length, the model training can
be parallelized.

4.2.2. Model Architecture
To extract purchase-related features of a user, we map the “interest” embedding of the user to

the M-dimension “decision” space through a fully-connected layer as follows:

Hu = f (Wu · αu + bu), (6)

where Hα ∈ RM , and f (·) is the activation function. In this work, we adopt ReLU as the activation
function.

Because the price is as an essential attribute of an item, we merge price feature and item
information first and then map the combined representation to the “decision” space. By doing
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this, the “decision” embedding of an item is integrated with explicit factors when simulating the
decision making process. Concretely, the “interest” embedding and price vector of an item are
projected into a shared space for feature merging,

Hβ = f (Wβ · βi + bβ)

Hd = f (Wd · dt<u,i> + bd)
H′i = Hβ||Hd,

(7)

where Hβ ∈ RM , Hd ∈ RM , and H′i ∈ R2M , and || is the concatenate operation. By mapping
the low-dimension price vectors to a higher-dimensional space, the model can extract essential
and latent features that are decisive to the purchase prediction. Then, we map the concatenated
representation H′i to the “decision” space,

Hi = f (W′i ·H′i + b′i), (8)
where Hi ∈ RM . Ultimately, the model outputs the probability of an item being purchased by a
user by computing the joint probability between the user and the item as follows:

p<u,i> = σ(HT
u ·Hi), (9)

where σ(·) is a sigmoid function.
We will predict that the user u is likely to buy the item i if p<u,i> > τ, where τ is the threshold

value 1. Otherwise, user u will not place an order.
Note that weights of Wβ, Wd, and W′i are shared among all items in the same input. Moreover,

the “interest” embeddings of both users and items are set as “not trainable”, which means only
the weights of fully-connected layers are tuned during training so that the learned classifiers can
be robust even if a user is not in the training set.

4.2.3. Loss and Optimization
To explicitly model the user-item relationship in the “decision” space, a straightforward way

is to minimize the following objective function

O2 = −
∑
u∈U

∑
i∈pu

log p<u,i>. (10)

To optimize the objective in Eqn. 10 and avoid a trivial solution that produces infinite loss term,
we can utilize the negative sampling approach similar in Eqn. 5. We regard the clicked-not-
purchased items as natural negative samples, and the model can therefore be trained by minimiz-
ing the following objective function without extra sampling procedure:

O2 =
∑
t∈T

 ∑
i(+)∈c(+)

t

logσ(p<u,i(+)>) +
∑

i(−)∈c(−)
t

logσ(−p<u,i(−)>)

 , (11)

where c(+)
t and c(−)

t (with < u, i > omitted for concise representation) represent the purchased
items, which are treated as positive samples, and clicked-not-purchased items, which are treated
as negative samples, within a transaction t<u,i>, respectively. The model is optimized by Adam
optimizer. Both the training and testing processes are parallelized by feeding data in batches.

The time complexity of model training is linear time and can be further reduced because of
the parallelizable input.

1In our experiments, we found the model produces best results when τ = 0.4
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5. Experiment

5.1. Dataset
Since our research question is about purchase prediction exploiting price information, it is

necessary to obtain both transaction data and the price records associated with each transaction
from the dataset. To the best of our knowledge, only a newly available dataset provided by
JD.com [34] 2 can fulfill our requirements.

JD.com is China’s largest e-commerce retailer, with over 320 million annual active customers.
The whole dataset contains click records of over 2.5 million customers (457, 298 of among them
placed orders) on 30, 000 items (from one product category) during March in 2018. Though key
identification information such as user ID and item ID is anonymized to ensure confidentiality,
each user and item has a unique identifier as shown in Table 2, so as the interaction history of a
user, including browsing and purchasing, and sales record of an item, such as pricing strategies
and promotion activities, are trackable.

5.2. Data Processing
5.2.1. For Step 1

We present the statistics of the raw data in Figure 3. To keep the size of the click data man-
ageable, we first remove click records of users who have never placed an order, and in total, we
have 1, 200, 000 user-item pairs. Then we assign value to each user-item click pair via Eqn. 1
and Eqn. 2, which forms the click graph used for generating embeddings in Step 1.

Raw Dataset

Characteristic Value

Users 2, 500, 000
Items 31, 868
Clicks 20, 214, 515
Purchases 455, 383

Table 3: Characteristics of raw dataset.

5.2.2. For Step 2
In this work, we focus on the effect of price information on purchase prediction instead of

addressing the sparsity issue. Therefore, we select active users by removing less-active users
who have no more than 20 click records and have not purchased any item. By doing this, we have
54, 756 transaction records involving 49, 142 users and 8, 800 items. For each transaction, the
data that used for model training and evaluation is generated by sorting relevant items according
to timestamp and retrieving promotion information for each item respectively through the process
stated in Section 4.0. Specifically, in this work, we regard each purchase as an independent event,
and the data samples in the generated transaction dataset are also independent with each other.
Thus, we can feed data to the model in parallel, and can conduct 10-fold cross validation. We
present statistics of processed data in Table 4. An example of the final format of the transaction
data after the pre-processing is shown in Table 5.

2More details via https://shen.ieor.berkeley.edu/MSOMData.pdf
13

https://shen.ieor.berkeley.edu/MSOMData.pdf


Processed Dataset

Characteristic Value

Users† 49, 142
Items 8, 800
Purchase record 54, 756
# of purchased items 62, 939
# of clicked-not-purchased items 484, 621
† active users w/ at least 20 clicks and 1 purchase

Table 4: Characteristics of processed dataset.

user c50ae46635

ID Promotion Label

items

2f038132e8 [188.9, 78.0, 30.9, 80.0, 0.0, 0.0] 1
3418d59e22 [28.0, 15.0, 0.0, 13.0, 0.0, 0.0] 0
904fbf8b97 [69.8, 35.4, 4.0, 32.0, 0.0, 0.0] 0
416aed740e [162.9, 11.6, 153.0, 0.0, 0.0, 6.0] 0
5a745fb2ca [109.0, 57.3, 0.0, 50.0, 0.0, 0.0] 0
3c79df1d80 [59.7, 44.0, 15.0, 0.0, 0.0, 0.0] 0
38d636d2a6 [127.3, 106.32, 21.0, 0.0, 0.0, 0.0] 0
5f58bfd286 [79.8, 41.7, 4.0, 37.0, 0.0, 0.0] 0
ac61f4e10e [139.8, 72.6, 7.0, 66.0, 0.0, 0.0] 0
3a64d9667a [94.8, 53.5, 0.0, 47.0, 0.0, 0.0] 0

Table 5: An example of generated transaction data.

5.3. Baselines

To verify the effectiveness of the proposed model, we mainly compare different node embed-
ding learning methods and different variants of the proposed model for ablation study due to very
limited deep learning models for purchase prediction.

We compare the proposed graph-based model with traditional Matrix Factorization [35],
which constructs latent representations for users and items based on a click matrix, and the
following graph node embedding methods:

DeepWalk [36] samples a sequence of nodes using random walk via depth-first searching, and
applies skip-gram model to learn the node representations.

LINE [31] embeds nodes into representation with preserving first-order and/or second-order
proximity. Specifically, LINE-1st with first-order proximity, and LINE-all with both first-order
and second-order proximities are chosen form comparison. Also, we also compare our model
with the above two LINE models under the binary edge setting and weighted edge setting.

Node2Vec [37] is an extension of DeepWalk with the biased random walk, which can control
walking between depth-first strategy and breadth-first strategy using two hyperparameters.

LightGCN [38] is a simplified GCN-based recommender model preserving the neighbour-
hood aggregation component of GCN only. The LightGCN is a ranking-based collaborative
filtering model and is optimized by Bayesian Personalized Ranking loss.
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We implement the baseline methods described above to obtain different user/item embeddings
and test these embeddings in the prediction model, respectively.

To examine the effectiveness of different components of the proposed model, we compare the
following variants:

Ours (w/o price info) is a variant with price information removed. This variant computes pur-
chase probability based on projected embeddings of users and items, which is explicitly trained
with pairwise user-item interaction.

Ours (w/ general price info) is a variant that neglects the price fluctuation of each item during
the whole period, which simulates the situation where we can only access the general pricing
information of each item, instead of each transaction. The general price feature of an item is
obtained by calculating the average price values of all transactions that the item is involved. This
variant can explain why the transaction-based price information is essential.

Ours (random initialization) is a variant that replaces Step 1 with random embedding initial-
ization.

Ours (embedding trainable) is a variant with embedding vectors trainable during training.
Ours (w/o discount-aware) and Ours (w/o price-aware) are variants exploiting only price-

aware attributes and only discount-aware attributes of price features, respectively.

5.4. Evaluation
In this section, we introduce the evaluation method for the proposed purchase prediction mod-

el.

5.4.1. Evaluation Metrics
We evaluate the model performance by using the following metrics.

• F1 score assesses classification performance in a comprehensive manner as it measures both
precision and recall as a whole:

F1 =
2 × Precision × Recall

Precision + Recall
. (12)

We report Macro-average results in this paper.

• Accuracy measures how many instances are correctly classified among all instances.

• T-test reveals how significant the improvements are against the second-best baseline. We
report p-value of the proposed model compared with baselines for each trial.

5.4.2. Classification Results on Positive Label
Even though we have limited the number of negative samples by truncating the length of item

sequence, the positive samples are still too sparse in the dataset. As a consequence, there is a
trivial situation that a failed model can achieve a considerable overall accuracy by predicting
every instance as negative. Therefore, we also report accuracy and F1 results of the positive
label.

5.4.3. Cross Validation
The JD.com datasets have no standard train/test split. Thus, we employ ten-fold cross-

validation as one trial to test the model performance. We run five trials and report average scores.
Based on the five-trial results, we conduct t-test and report p-values.
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Model Hyperparam. Value

DeepWalk Walk length 10

Node2Vec
Walk length 10

Return parameter p 0.8
In-out parameter q 0.4

LINE-based models Modulating factor ε 4

Table 6: Hyperparameter settings

5.5. Grid Search and Hyperparameter Setting

In this work, we set the dimension of embeddings K,M = 100. The prediction model is trained
with a batch size of 100. For models with hyperparameters, such as DeepWalk (walk length),
Node2Vec (walk length, return parameter p, and in-out parameter q), and LINE-based models
(modulating factor ε), we conduct grid search on a validation set, which is a 20% subset of the
training set. We find the settings in Table 6 achieve the best performance on the validation set.

5.6. Experiment Results

Results of comparing different pretrain methods and results of the ablation study are listed in
Table 7 and Table 8, respectively. In general, our proposed model achieves the best accuracy and
F1 score on the purchase prediction task.

Especially, embeddings generated by the proposed method achieves the best results. There-
fore, we conduct ablation experiments based on this pretrain model. Comprehensive discussions
are given in Section 6.

Pretrain Model Overall Label 1

Accu.(%) F1 (%) Accu. (%) F1 (%)

Random init. 89.74 64.05 27.54 37.45
MF 93.22 83.56 70.61 70.28
DeepWalk 93.03 83.39 70.81 70.42
Node2Vec 93.72 83.00 69.42 68.83
Light GCN 92.86 81.03 67.38 68.31
LINE-1st (bin) 93.09 82.27 70.45 70.02
LINE-1st (weighted) 93.16 83.15 71.94 70.28
LINE-all (bin) 93.11 83.39 72.83 70.85
LINE-all (weighted) 94.04 84.24 74.49 71.43
Ours (bin) 94.14 84.38 74.68 72.83
Ours (weighted) 94.33 84.81 76.43‡ 72.54†
†: p < .01, ‡: p < .005.

Table 7: Experiment results of the proposed model with different pretrain methods. Reported
results are obtained with a threshold τ = 0.4.
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Models Overall Label 1

Accu.(%) F1 (%) Accu. (%) F1 (%)

Always negative predictor 88.60 48.59 0.00 0.00
Highest discount predictor 82.41 53.97 16.70 17.79
w/o price info 88.62 48.92 26.28 32.21
w/ general price info 88.63 49.63 49.51 55.84
w/o discount-aware 93.47 82.69 68.32 68.99
w/o price-aware 92.84 78.80 52.98 61.65
Embedding trainable 93.45 82.16 68.24 68.05
Ours 94.33 84.81 76.43 72.54

Table 8: Experiment results of ablation study

6. Discussion

6.1. Effect of Different Pretrain Methods
As shown in Table 7, we compare the prediction performances of the proposed model using

different pretrain methods. The first finding is that, due to label imbalance, the differences in
overall evaluation between models are very marginal, indicating the necessity of evaluating the
model based on each label. Compared with depth-first searching-based methods (DeepWalk and
Node2Vec), the breadth-first searching-based methods, including MF and LINE-based models,
achieve better performance, which validates the hypothesis that the neighbourhood information
is more useful to the click graph.

Moreover, the LINE-based models preserving second-order proximity (Ours and LINE-all)
show improvement when compared with LINE-1st, which focuses on first-order proximity only.
We conclude that this is because the neighbourhood feature, such as co-click activity, is more
informative than the pairwise interaction.

The results of training classifier with embedding vectors generated by non-weighted graph and
weighted graph demonstrate the effectiveness of the frequency feature of a user’s click-through
behavior. We also train the classifier on the randomly initialized embedding vectors. The results
show that the model performance is severely degraded, which suggests that pretraining using
click information is essential to the user-item modelling for purchase prediction task due to the
sparsity issue of the dataset.

In this work, we mainly focus on the feasibility of incorporating discount information in pur-
chase prediction. Mapping user/item to the embedding vector is an intermediate step, and the
embedding size is a fixed empirical value for all pretrain methods, which could be a potential
limitation of this work.

6.2. Importance of Pricing Information
We present the results regarding the utilization of price information in Table 8. The model

without pricing information has only 26.28% of accuracy and 32.21% of F1 score on the pur-
chased items, which validates our argument on the importance of pricing information towards
the purchase prediction task. In our experiments, the model without pricing information only
produces reasonable results at the first epoch and deteriorates quickly, becoming steady as a low
level (3% to 5% of accuracy). We discuss the cause as following.
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When we train the node embedding, the loss function encourages embedding vectors of inter-
acted user/item pair to share more similarity (positive inner product) and those of never interacted
user/item pair to show more divergence (negative inner product). In Step 2, items within a group
all interact with the same user. Therefore, the inner products between user/item pairs are all pos-
itive when training starts. The loss function tends to encourage the classifier to return negative
results for all input, which is similar to always negative predictor and quickly overfits. Moreover,
we conducted undersampling on negative samples and found the difference is not significant.

However, the model still fails to achieve good performance when item-based price information
is added, which is a significant observation because it indicates only the item-based price infor-
mation is not helpful to the transaction-based prediction. We conclude the reason behind as each
item has a unique item-based price vector, so as the price vector cannot provide complement
information to the item feature representation in the “decision” space. As a consequence, the
classifier overfits on the training set and fails to handle any new cases because it cannot capture
additional knowledge that is independent of the user-item representation learned from click data.

This experiment reveals an intriguing fact that the price information of each transaction is a key
to the purchase-relevant tasks, which can also explain the difficulty and limitation of traditional
recommendation tasks that are solely based on user-item interaction.

We also compare the effects of different feature engineering approaches on the price vector.
Notable improvements are observed as both price-aware attributes and discount-aware attributes
are included. When employing two types of attributes separately, the model without discount-
attributes outperforms that without price-attributes, which implies that the price-aware attributes
are more dominant than discount-aware attributes in the prediction task.

To further explore the effect of discount percentage in purchase prediction, we added a simple
baseline, the highest discount predictor (as shown in the second line of Table 8), which returns
the highest discounted item in a sequence as the output. Note that the results are for reference
only and are not comparable with other baselines because such a method cannot properly handle
the multiple-purchase situation in a sequence. Though lower than other methods, the results are
still reasonable for a nave approach and show that the discount plays a non-trivial role in users
decision making.

6.3. Trainable parameter

As a commonly adopted approach in both recommendation and natural language process-
ing, the input embedding vectors are set to be trainable during the training stage. Therefore,
the weights in embeddings can be continuously tuned to capture more domain-dependent or
class-related features and make the feature extraction and decision making of the classifier less
challenging, which can effectively boost the model performance. However, a shortcoming of
this approach is that the model can hardly make a correct prediction on unseen instances due to
the same problem stated in Subsection 6.2. To avoid such a problem, a popular solution adopt-
ed by traditional recommendation models is splitting the dataset into train/test sets by dividing
the records of each user, so as the model can predict the user’s future actions based on his/her
past behavior. However, this strategy is under an unrealistic scenario and cannot address the
cold-starting issue.

In contrast, the transaction-based dataset utilized for purchase prediction task is generated by
sorting transactions grouped by users. In most cases, users in the test set will not appear in the
training set. Therefore, the model will be less robust on test set because users in the training
set and users in the test set are following different distributions if embeddings are trainable.
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Pretrain Model Overall Label 1

Accu.(%) F1 (%) Accu. (%) F1 (%)

MF 93.36 82.24 67.06 68.32
DeepWalk 93.18 82.95 67.28 66.13
Node2Vec 93.58 82.26 67.22 66.25
Light GCN 92.86 80.61 64.32 65.52
LINE-1st (bin) 93.10 81.39 64.32 65.53
LINE-1st (weighted) 93.20 81.58 65.17 66.84
LINE-all (bin) 93.42 81.21 66.00 66.34
LINE-all (weighted) 93.66 82.74 68.57 69.14
Ours (bin) 93.45 82.25 68.66 68.35
Ours (weighted) 93.68 82.38 67.58 68.64

Table 9: Results of different pretrain models with embeddings trainable

In Table 9, we present the prediction performances of models with trainable embeddings. The
results indicate that both accuracy and F1 score plunge compared with models with embedding
constant.

6.4. Comparison with Ranking-based Method
In this section, we further clarify the difference between ranking-based approach and the pro-

posed framework.
As described in [39, 20], given a set of all recommendable items, ranking-based methods com-

pute an ordered list for each user and recommend Top-N items as output. The recommendable
candidates can be all unseen items to increase the coverage of recommendation results. They can
also be restricted to a subset of recently interacted items in a session-based purchase recommen-
dation task, as discussed in [28]. Similar to [28], the proposed framework targets to correctly
identify the purchased items from a particular group of items that are clicked by the user. The
items in such a group have a temporal relationship, which can be easily applied to real-time
session-based purchase prediction.

Furthermore, each data sample may contain multiple purchased items (with label 1). By pre-
dicting the binary label, the proposed method can properly handle such a situation. However, a
ranking-based method cannot explicitly predict the positive label or negative label by setting a
constant threshold.

7. Conclusion & Future Work

In this paper, we proposed a new form of transaction-based purchase prediction task, which
aims to identify the purchased item(s) from recently viewed items. Such a framework can eval-
uate the model performance under a more realistic scenario compared with traditional ranking-
based approach. Based on a real life dataset with detailed price and promotion information,
we discussed the relationship between different pricing strategies and customer’s purchasing
will from price-aware aspect and discount-aware aspect, which previous works did not ad-
dress. Moreover, we proposed a two-step graph-based purchase prediction model incorporat-
ing price and promotion information of each transaction. Extensive experiments conducted on a
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JD.com dataset demonstrated the effectiveness of the graph-based model and the importance of
transaction-based price information in purchase prediction task.

For future work, we plan to focus on (1) processing and utilization of price features, and (2)
addressing the prediction task by using a ranking-based approach. The normalized price vectors
employed in this work may overlook price rage information, which is also a pivotal factor in
customer’s decision making. Complicated models like attention mechanism can be added to
distinguish the effects of different promotion strategies. Besides, there exist similar datasets
providing price information, some of which also provide discount information 3. However, the
prices and discounts from those dataset are not varying over time. Therefore, we will focus on
the model design to well incorporate these static information. Moreover, we will also attempt to
generate outputs in a contrastive manner, so as we can address the purchase prediction task from
a ranking-based perspective.
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