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A B S T R A C T

Researchers have been aware that emotion is not one-hot encoded in emotion-relevant clas-
sification tasks, and multiple emotions can coexist in a given sentence. Recently, several
works have focused on leveraging a distribution label or a grayscale label of emotions in the
classification model, which can enhance the one-hot label with additional information, such as
the intensity of other emotions and the correlation between emotions. Such an approach has
been proven effective in alleviating the overfitting problem and improving the model robustness
by introducing a distribution learning component in the objective function. However, the effect
of distribution learning cannot be fully unfolded as it can reduce the model’s discriminative
ability within similar emotion categories. For example, ‘‘Sad’’ and ‘‘Fear’’ are both negative
emotions. To address such a problem, we proposed a novel emotion extension scheme in the
prior work (Li, Chen, Xie, Li, and Tao, 2021). The prior work incorporated fine-grained emotion
concepts to build an extended label space, where a mapping function between coarse-grained
emotion categories and fine-grained emotion concepts was identified. For example, sentences
labeled ‘‘Joy’’ can convey various emotions such as enjoy, free, and leisure. The model can further
benefit from the extended space by extracting dependency within fine-grained emotions when
yielding predictions in the original label space. The prior work has shown that it is more
apt to apply distribution learning in the extended label space than in the original space. A
novel sparse connection method, i.e., Leaky Dropout, is proposed in this paper to refine the
dependency-extraction step, which further improves the classification performance. In addition
to the multiclass emotion classification task, we extensively experimented on sentiment analysis
and multilabel emotion prediction tasks to investigate the effectiveness and generality of the
label extension schema.
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1. Introduction

Understanding people’s opinions and sentiments from online posts and comments can benefit stakeholders, such as social media
dvertisements and e-commerce (Chen, Xie, Cheng, & Li, 2022; Yang & Wang, 2003, 2007). The advent of natural language
rocessing (NLP) technologies has empowered stakeholders to analyze online-generated content with a volume far exceeding the
uman reading ability. Deep learning-based emotion detection and sentiment analysis can improve service quality and create
ew business opportunities. Among various tasks concerning users’ emotions, two emotion-relevant text classification tasks have
eceived tremendous attention from academia and industry. The first task is sentiment analysis, which mines user-generated content’s
entiment orientation and intensity. The other is emotion classification which aims to identify the specific emotion categories.

When attending to classification tasks, whether for images or texts, it is common to utilize the one-hot label for computing the
ross-entropy loss function. Such a methodology works perfectly well in a task where the labels are objective things or categories.
f an image is labeled ‘‘Cat’’, there is a cat in the image; if a news article is categorized as ‘‘Sport News’’, then the content
ill be related to sports events. However, emotion is all about subjectiveness. A different audience can indistinctly perceive the

ategories and intensities of emotion expressed by the same sentence. The recognition of mixed emotions, or fuzzy emotions, has
een examined under both image and multimodal settings (Aly & Tapus, 2015; Liliana, Basaruddin, & Widyanto, 2017; Liliana,
asaruddin, Widyanto, & Oriza, 2019). In text emotion classification, researchers have discerned that mapping texts to labels in the
onventional one-hot encoding approach is inadequate as the relation between texts and labels is not adequately revealed. Recently,
any works have followed the idea of employing distribution learning in a classification task to address the emotion classification

ask (Fei, Zhang, Ren, & Ji, 2020; Guo, Han, Han, Huang, & Lu, 2021; Lee, 2022; Li, Li, Xie, Li and Tao, 2021; Qin et al., 2021; Xu,
iu, & Geng, 2020; Zhang et al., 2018; Zhao & Ma, 2019; Zhou, Zhang, Zhou, Zhao, & Geng, 2016, inter alia).

We categorize the existing efforts into two genres. The first genre focuses on distribution prediction instead of single-label
rediction. The works under this genre adopt a machine learning approach to learn an emotion distribution explicitly, such as Qin
t al. (2021), Xu et al. (2020), Zhou et al. (2016), and Zhu et al. (2017), where a distribution label has already been annotated in
he corresponding datasets. The models aim to optimize the divergence between the predicted distribution and distribution label.
his kind of work is limited in quantity, as the datasets with distribution labels are scarce in the community due to expensive
nnotation. The second category (Fei et al., 2020; Guo et al., 2021; Lee, 2022; Zhang et al., 2018) attends to the label ambiguity
ssue brought by training with one-hot labels. Label ambiguity refers to the challenge caused by the unreliability, deficiency, and
ven errors in the ground-truth labels (Gao, Xing, Xie, Wu, & Geng, 2017). Incorporating distribution learning into a classification
ramework has been proven beneficial. Although it is not practical to deal with wrong labels, we can address the ambiguity issue
y enhancing the incomplete label information. Existing works generate a distribution label by generating weights for all label
lasses based on text input. Such a distribution label encompasses additional features that can make up for the missing information
n one-hot labels. Furthermore, training with smoothly distributed labels prevents overconfidence in the model and enhances its
obustness. The research described in this article follows the second genre.

Despite the recent success, leveraging a generated distribution label in the classification framework causes two potential
roblems.

1. First, it is contradictory to introduce a distribution label into a single-label prediction task, even if an accurate distribution
label is available. Intuitively, we hope the signal of the ground-truth label can be as prominent as possible in training to
differentiate instances with the same label from others, but the distribution label does the opposite. Among all the emotion
labels, a subset could have comparable weights in the distribution label. For example, given sentences narrating the event
‘‘failing an examination’’, the generated distribution may share similar weights for negative emotions, such as ‘‘Shame’’,
‘‘Guilty’’, and ‘‘Fear’’. On the other hand, positive emotions ‘‘Joy’’ and ‘‘Surprise’’ will have similar weights when a student
‘‘passes the examination’’. Employing such an emotion distribution will confuse the classifier in the multiclass classification
task where a single-label prediction is expected. Consequently, the classifier will struggle to differentiate the labels of similar
emotions. This is the problem that we refer as interclass confusion of applying the distribution learning in the classification
task.

2. Second, improper values in the distribution introduce noise in the distribution learning and harm the classification model.
Since most datasets do not have ground-truth distribution labels, researchers have to define the meaning of the distribution
and produce distributions with unsupervised methods from texts, such as model-based methods (Guo et al., 2021; Lee,
2022) and rule-based methods using lexicons (Li, Li, Xie, Li, Tao, 2021; Li, Xie, Cheng and Li, 2021; Zhang et al., 2018).
However, it is intractable for these unsupervised methods to precisely profile the sentence-level representation due to semantic
compositionality and sentiment deviation within the sentence. Consequently, the obtained distribution label could be far
from a reasonable label with undesirable values. The training stage will take in the noisy signal and deteriorate classification
performance.

3. Thirdly, because of the previous two pointers, existing works, intentionally or unintentionally, take the edge off distribution
learning in the framework, although they claim to leverage the goodness of distribution learning. The learning of single-label
classification plays a dominant role in the overall learning stage, and distribution learning works as an auxiliary component
in the loss function.

he abovementioned problems pose genuine restrictions on applying distribution learning in the classification task.
We argue that generating emotion distributions from the original label space accounts for the limitations. Thus, a label extension

pproach exploiting fine-grained emotions was proposed in our prior work to create an extended label space (Li, Li, Xie, Li, Tao,
2
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Fig. 1. To facilitate the understanding, we present examples of the generated emotion distribution adopted from Li, Xie et al. (2021). By extending the label
pace with fine-grained concepts, we can generate the extended emotion distribution for sentences by using a rule-based method. In the pseudo distribution, we
ask the concepts of non-dominant emotions as 0.

2021), promising to address these challenges. Due to the subjective nature, extending labels for emotion task is more difficult than
other tasks like image classification, as emotions cannot be objectively and quantitatively characterized. Therefore, we need domain
knowledge to identify the fine-grained emotion categories and their relationship with each emotion label in the dataset. However, no
such work has studied this issue, so we have to find a feasible approach based on the available knowledge, such as domain theory,
emotion lexicon, and dictionary, which are essential to our task. Viewing the descriptions on the annotation process from the papers
of popular emotion classification datasets, such as ISEAR (Scherer & Wallbott, 1994) and SemEval (Mohammad, Bravo-Marquez,
Salameh, & Kiritchenko, 2018), the annotating works start from finding an apt emotion theory as the theoretical foundation. The
commonly adopted emotion theories are the six basic emotions (Ekman, 1992), wheel of emotions (Plutchik, 1980), and hourglass
odel (Susanto, Livingstone, Ng, & Cambria, 2020). These theories categorize the emotions universally perceived by people from
ifferent cultural backgrounds, such as ‘‘Sadness’’, ‘‘Anger’’, and ‘‘Joy’’, which are general emotion categories. Nevertheless, we
otice that each emotion category has broad coverage and can breakdown into subtle concepts. Sentences under the same emotion
ategory can express delicate meaning from a fine-grained perspective. For example, we label the sentences portraying the following
ituations as ‘‘Joy’’: ‘‘playing video games with friends’’, ‘‘petting the dog with families on the weekend’’, and ‘‘getting promoted
n the company’’. However, different fine-grained emotions can be identified: ‘‘playing games’’ makes people feel happy,1 ‘‘getting
romoted in the company’’ is an exciting moment, and ‘‘petting the dog with families on the weekend’’ is an enjoyable thing, in
hich people feel leisure. Regarding ‘‘Sadness’’, people may feel helpless when their houses are destroyed by a tornado and feel
nguished if they suffer from deadly cancers. We exploit three-factor theory (Russell & Mehrabian, 1977), a classic psychology
omain knowledge that identifies and describes 151 fine-grained emotion concepts, to create the mapping between coarse-grained
motion ‘‘Categories’’ and fine-grained emotion concepts. Concretely, for each emotion category, which has been used as a label
n a dataset, we have established a set of fine-grained emotions associated with it. We consolidate the existing lexicon knowledge
s the theoretical foundation, such as SenticNet 62 (Cambria, Li, Xing, Poria, & Kwok, 2020) and NRC Word-Emotion Association
exicon3 (Mohammad & Turney, 2013), with manual deliberation.

Furthermore, inspired by Li, Li, Xie, Li, Tao (2021), Li, Xie et al. (2021) generated an extended distribution representation for
ords. The sentence-level distribution is produced with an unsupervised method. In particular, the pseudolabel only covers the
istribution of the ground-truth label, and the remaining entries of the pseudolabel are masked as 0. We provide two examples to
acilitate understanding, as shown in Fig. 1. We propose that the model first learns the distribution at the extended label space and
ecides from the original labels based on the extended distribution. To serve this purpose, we employ the generated pseudolabel
nd the ground-truth label at the penultimate layer and the output layer of the classifier as constraints, respectively. Learning the
xtended label space is deemed more challenging than learning the original labels, so the model can extract and exploit more
nformative features. Subsequently, the learned distribution is projected back to the original label space with a fully-connected
ayer. In this process, the output layer can learn a refined transformation guided by the ground-truth label. If the model learns a less
recise distribution in the penultimate layer, it is possible to make corrections in the output layer. Training with such a pseudolabel
enefits the classification task from two perspectives:

1. Interclass confusion is shifted to innocuous intraclass confusion. Learning a distribution for all emotion labels raises the risk
of making a wrong decision among similar labels, which will be considered a false prediction in the evaluation metrics.
Nevertheless, in the extended label space, there is only the distribution of fine-grained emotion concepts from the same
emotion ‘‘Category’’. Even if the model yields a wrong prediction within these fine-grained concepts, the final output is still
correct.

1 For concise writing and easy understanding to the audience, we use ‘‘Title Case’’ to refer to the emotion category, and use italics to refer to fine-grained
motion concepts in the whole manuscript.

2 https://sentic.net/api/.
3 http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm.
3
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2. Noises are avoided from nondominant emotions. The masking operation removes the information of nondominant emotion
categories from the pseudo distribution. Therefore, no noise from other labels is introduced in the training stage.

Hence, the model can tolerate errors in the generated distribution.
We enhance the label extension schema by proposing an innovative sparse connection mechanism, yielding substantial improve-

ents to our model. A Dropout layer was found to be helpful in refining the prediction when the model projected back to the
riginal label space (Li, Li, Xie, Li, Tao, 2021). We note that the sparse connection is an important component in our proposed
xtension framework, as the transformation from the extended label space to the original space is a self-correction process for
he classification model. Particularly, this self-correction process is where the improvements come from. However, we notice that
he conventional Dropout mechanism can reduce the effect of exploiting dependencies in the extended label space as additional
nformation. Moreover, when the dropout rate is relatively large, the essential information of concerned fine-grained concepts can
e deactivated, compromising the classification performance. We propose a Leaky Dropout mechanism to reduce the value of a
elected neuron instead of abandoning it, which is proven to be highly effective in our experiments. Although Leaky Dropout is a
imple mechanism, we have shown that it is helpful to stabilize the training process with extensive experiments.

Our initial focus is on the multiclass classification task. At the same time, we carried out subsequent work to validate the
ffectiveness of sentiment analysis and multilabel classification tasks. This work’s contributions can be concluded as follows:

• We recognize a mapping function between emotion labels widely adopted in datasets and fine-grained emotion concepts from
domain knowledge.

• We devise a novel emotion extension schema based on the identified mapping.
• We design an emotion classification framework incorporating distribution learning in the extended label space. In addition to

a multiclass dataset, this framework is proven effective for tasks such as sentiment analysis and multilabel classification.
• We propose a new sparse connection method to boost model performance and conduct experiments to investigate how the

leaky factor affects the classification model.

Preliminary research of this work was published in Li, Li, Xie, Li, Tao (2021). This manuscript extends the prior work from
oth methodological and experimental perspectives. The new enhancements include the following: (1) we suggest a novel sparse
onnection, i.e., Leaky Dropout, to refine the conversion from the extended to the original space; (2) in addition to the multiclass
lassification task, we also experiment with the sentiment analysis task and multilabel classification task, which shows the generality
f the proposed framework in emotion-relevant NLP tasks; and (3) we conduct an extensive investigation and provide more insights
nto the proposed Leaky Dropout from empirical studies. To be consistent with the prior publication and maintain the integrity of
ogic, we reused some content from the conference version.

. Related works

Our research addresses a domain-specific text classification using a deep learning technique and leverages domain knowledge to
ncorporate additional information in the learning. Therefore, we review the works and studies in the relevant fields in this section.

.1. Text classification and text mining

Neural networks have been extensively employed as semantic feature extractors for different purposes. Kim (2014) proposed a
lassic text convolutional neural network (TextCNN), which extracts local and position-invariant features from the word embedding
atrix. Numerous works have been conducted to leverage TextCNN as a feature extractor. In addition to CNNs, recurrent neural
etworks (RNNs) are also mainstream feature extractors for semantic mining. Socher et al. (2013) employed recursive networks
o model time-series features from the text. Various works have diversified the recurrent model with different variants, such
s bidirectional long short-term memory (BiLSTM) and gated recurrent units (GRUs), with more complex gate mechanisms. A
reakthrough occurred in 2017 when Vaswani et al. (2017) from Google presented Transformer by stacking multiple self-attention
locks together. Transformer has an encoder-to-decoder framework and can learn powerful sentence-level representations. Devlin,
hang, Lee, and Toutanova (2019) revisited the language model and proposed a pre-trained language model, Bert, by incorporating
self-attention-based architecture and an enormous text corpus. The resultant language model presented a powerful capacity by

enchmarking the state-of-the-art performance in a wide spectrum of downstream tasks. Inspired by Bert, the family of large-scale
re-trained language models has grown with new variants.

The applications of text mining have gained significant attention from academia and industry (Altınel & Ganiz, 2018; Huang,
ie, Rao, Feng, & Wang, 2020; Li et al., 2016; Tubishat, Idris, & Abushariah, 2018). A number of models have yielded competitive
esults on benchmark datasets, which can be done in two ways: machine learning-based approaches and lexicon-based approaches.
achine learning methods extract and utilize semantic or linguistic patterns from texts for classification. Huang, Rao, Xie, Wong,

nd Wang (2017) proposed a topic-based machine learning model for cross-domain sentiment classification. Ali et al. (2019)
mployed an ontology-based topic modeling model to analyze online-generated contents related to traffic enhancing transportation
anagement services. Liang, Xie, Rao, Lau, and Wang (2018) proposed a topic model-based universal affective method for short text

lassification. Feng, Rao, Xie, Wang, and Li (2020) presented a user group-based topic modeling for short text emotion mining. Li, Li,
ie and Li (2021) proposed merging traditional statistical information into the deep learning framework. The corpus-level statistics
4

re encoded as feature vectors by a variational autoencoder. A well-designed adaptive gate network (AGN) is used to consolidate
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semantic features with additional information selectively, according to their confidence toward the prediction. Apart from supervised
models, some clustering-based (Guan et al., 2022) and contrastive-based (Fu & Liu, 2022) self-supervised models have recently
been proposed to address NLP tasks. Lexicon-based methods incorporate handcrafted lexicon knowledge into the decision making
process. Some works have proposed homemade lexicons for specific purposes. Li, Chen, Xie, Li, and Tao (2020) encoded the intensity
variation of emotions, with the help of domain knowledge, in the sentence as an EmoChannel vector and exploited a simple attention
layer to leverage the dependency within fine-grained emotions in the classification framework. Li, Chen, Zhong, Gong, and Han
(2022) integrated social cognitive theory and the dedicated Intent-Indicator sentiment lexicon for emotional analysis of online
dating services’ comments. The other works that fall into this field adopt public emotion and sentiment lexicons, which will be
elaborated in the next subsection.

2.2. Emotion theory and emotional lexicon

Since we incorporate various emotion theories and lexicons, reviewing relevant knowledge and works is necessary. Ekkekakis
nd Russell (2013) suggested that the existing emotion theories characterize emotions from either categorical or dimensional
erspectives. Categorical theories define emotions as discrete classes, that is, each emotion is an individual category and independent
rom other categories, and develop a set of terms to ‘‘characterize the state of mind’’, such as the six basic emotions (Ekman, 1992),
heel of emotion (Plutchik, 1980), and hourglass model (Susanto et al., 2020). These theories identify the most prominent and

epresentative emotion concepts humans can universally recognize. A lexicon dictionary annotates each word according to the theory
t follows. For example, SenticNet (Cambria et al., 2020) adopts eight emotion tags following hourglass model theory, and the NRC
motion Lexicon (also known as EmoLex) (Mohammad & Turney, 2013) follows the wheel of emotion (Plutchik, 1980) and adopts
ight prototypical emotions. Lexicon-based approaches have been widely used in domain-dependent text classification tasks. Muñoz
nd Iglesias (2022) proposed a machine learning-based framework to detect psychological stress from texts by combining various
exicon resources. Although such lexicons explicitly associate words with emotions, it is inflexible to employ these lexicons in
ractice (Li, Xie et al., 2021), as the tags in the lexicon may be inconsistent with the dataset labels, and the binary indication
oes not provide the intensity of emotion. On the other hand, dimensional theories build a system to profile emotions with different
actors, such as three-factor theory (Russell & Mehrabian, 1977) and the circumplex model (Posner, Russell, & Peterson, 2005).
imensional lexicons, such as NRC-VAD (Mohammad, 2018), provide a tuple of three values. The values denote the information
f valence, arousal, and dominance (VAD), respectively. Such information quantitatively portrays the word with three factors in the
AD space. The setbacks come as they can associate a concept with emotion categories. A recent study (Li, Xie et al., 2021) devised
method to generate a general emotional representation of words combining three-factor theory and the NRC-VAD lexicon. We

dopt a similar method to quantitatively calculate the intensity of each emotion expressed in a sentence.

.3. Emotion distribution learning

More attention has focused on addressing emotion classification with the distribution learning approach. In particular, Geng
2016) devised the label distribution learning framework primarily for computer vision applications, where the distribution
epresents the corresponding entities’ proportion in an image. Zhou et al. (2016) first identified both emotion categories and
heir corresponding intensities with a ground-truth emotion distribution as the target in the distribution learning framework.
omain knowledge is incorporated as a constraint to improve learning accuracy. Xu et al. (2020) proposed a new partial multilabel

earning strategy to enhance the label information by using multilabel data. Topological information in the feature space and label
ependencies are used to reconstruct the label distributions. An important preface of the works mentioned above is that the ground-
ruth emotion distribution is available in the dataset, so these works can concentrate on building the machine learning framework.
owever, such datasets are rare in the NLP community. Thus, a compromising research direction is generating pseudo distributions

o facilitate single-label classification. Biddle, Joshi, Liu, Paris, and Xu (2020) leveraged sentiment distributions for health mention
lassification from literal health reports on Twitter. Zhang et al. (2018) was the first work to leverage distribution learning into text
motion classification. They used a categorical lexicon and devised a naïve increment strategy to produce a pseudo distribution.
he generated distribution label is exploited under a multitask learning framework. Following a similar philosophy, Li, Xie et al.
2021) focused on the generation of distribution and proposed a rule-based strategy based on the word emotion distribution. The
epresentation is optimized by minimizing the Kullback–Leibler divergence in the latent space. Lee (2022) was also aware that
motion is not one-hot in the sentences; hence, five methods were conceived to generate grayscale emotion labels automatically. A
imilar conclusion was drawn that introducing a distribution label is helpful to the classification task.

These works generate emotion distributions based on the original label space, or the coarse-grained emotion categories.
xpanding the label space with fine-grained concepts was not studied due to two limitations: (1) there was no way to find the
onnections between words and emotion concepts, and (2) there was not a general mapping that identifies the relationship between
motion categories and fine-grained emotion concepts. The first limitation was addressed in Li, Xie et al. (2021) by the word emotion
istribution model, which will be elaborated in Section 3. Furthermore, our prior work (Li, Li, Xie, Li, Tao, 2021) provided a mapping
5

unction and extended the label for distribution generation.
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Fig. 2. Visualization of fifteen selected fine-grained emotion concepts (Russell, 1980), grouped by the associated emotion category. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

3. Preliminary

To facilitate the proposed method, we need to create the extended label space and generate the emotion distribution. No previous
ork has ever addressed the extension of the emotion label space, and no such tool or resource is available for us to complete these

rucial steps. Nevertheless, our previous research on emotion models makes this task achievable. To deliver the full picture of what
e intend to do, this section briefly introduces the adopted domain knowledge and the method for generating the word-level emotion
istribution. The details can be found in our previous work (Li, Xie et al., 2021).

.1. Domain knowledge

Russell and Mehrabian (1977) established an emotion complex with three perpendicular dimensions in their three-factor theory.
he dimensions that used to measure emotions are valence, arousal, and dominance. In this theory, 151 fine-grained emotion
oncepts were identified, and the mean and variance of VAD factors characterized. We adopt the three-factor theory as the Knowledge
of Emotions (KoE). Fifteen concepts, together with the respective emotion categories that identified by our mapping function are
listed in Table 1. To deliver an overall picture of three-factor theory, we visualize these concepts in three-dimensional space, as
shown in Fig. 2.

3.2. Lexicon dictionary

We adopt a dimensional lexicon in this work. The NRC-VAD lexicon (Mohammad, 2018) provides a VAD tuple for more than
0,000 English words. Li, Xie et al. (2021) confirmed the consistency between three-factor theory and NRC-VAD by scattering the
uples of emotions and words in the same space. Therefore, we leverage the NRC-VAD lexicon as the Knowledge of Words (KoW).

Furthermore, in Table 1, we compare the information of emotion concepts from three-factor theory and the VAD tuples queried
rom NRC-VAD with the respective word, which could be helpful for us to understand the relation between the domain knowledge
nd the lexicon knowledge. By comparing the numbers, we notice that the two sets of values do not perfectly match. Essentially, these
erms have distinguished meanings in three-factor theory and the NRC-VAD lexicon. In three-factor theory, they are characterized by
sphere with mean and variance in the space and represent the general definition of the emotion from a higher level. In contrast, like
ther words, the tuples from lexicon exclusively represent a semantic term, which are considered dots in the space. More specifically,
6

he concept of disgusted tries to cover as many terms as possible that refers to disgusted feeling, such as ‘‘blood’’, ‘‘vomit’’, and
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Table 1
Fifteen fine-grained emotion concepts (Russell, 1980) and the associated emotion category. Meanwhile, we also present the VAD tuple of the corresponding word
in NRC-VAD.

Concept Label Three-factor theory NRC-VAD

Valence Arousal Dominance Valence Arousal Dominance

Mean SD Mean SD Mean SD

happy
Joy

.81 .21 .51 .26 .46 .38 1.000 0.470 0.544
hoyful .76 .22 .48 .26 .35 .31 0.980 0.480 0.334
Leisure .58 .35 −.32 .33 .11 .33 0.262 −0.142 −0.158

anger
Anger

−.51 .20 .59 .33 .25 .39 −0.666 0.730 0.314
irritated −.58 .16 .40 .37 .01 .40 −0.580 0.632 −0.438
annoyed −.28 .16 .17 .28 .04 .31 −0.792 0.566 −0.444

fearful
Fear

−.64 .20 .60 .32 −.43 .30 −0.834 0.680 −0.444
terrified −.62 .20 .82 .25 −.43 .34 −0.820 0.804 −0.226
insecure −.57 .34 .14 .42 −.42 .29 −0.772 0.076 −0.736

sadness
Sad

−.63 .23 −.27 .34 −.33 .22 −0.896 −0.424 −0.672
frustrated −.64 .18 .52 .37 −.35 .30 −0.840 0.302 −0.490
distressed −.61 .17 .28 .46 −.36 .21 −0.714 0.542 −0.352

disgusted
Disgust

−.60 .20 .35 .41 .11 .34 −0.898 0.546 −0.452
nauseated −.61 .25 −.01 .28 −.36 .33 −0.876 0.320 −0.648
disdainful −.32 .32 −.11 .27 .05 .33 −0.806 −0.040 −0.474

‘‘extrusion’’. In contrast, the word ‘‘disgusted’’ is pinpointed to its semantic meaning, i.e., feeling or expressing revulsion or strong
disapproval, which is different from ‘‘disgusting’’ referring to arousing revulsion or strong indignation. Therefore, we used the
information from three-factor theory, in lieu of a lexicon dictionary, as the knowledge of emotions.

3.3. Word-level emotion distribution

We generate the word-level emotion distribution (WED) (Li, Xie et al., 2021) leveraging the domain theory and lexicon
nowledge. Given 𝐾 emotions, {𝐸1, 𝐸2,… , 𝐸𝐾}, we calculate a word’s soft assignment to each emotion, which can be regarded as

the intensity of the emotion. Concretely, given a pair of emotion 𝐸𝑘 and word 𝑤, we retrieve the VAD mean 𝝁𝐸𝑘
= [𝑉 𝑚

𝐸𝑘
, 𝐴𝑚

𝐸𝑘
, 𝐷𝑚

𝐸𝑘
]

and standard deviation 𝝈𝐸𝑘
= [𝑉 𝑠𝑑

𝐸𝑘
, 𝐴𝑠𝑑

𝐸𝑘
, 𝐷𝑠𝑑

𝐸𝑘
] from the three-factor theory and the VAD tuple 𝐰 = [𝑉 𝑤, 𝐴𝑤, 𝐷𝑤] if 𝑤 appears in

NRC-VAD. The intensity of the emotion 𝐸𝑘, 𝐝𝐸𝑘
𝑤 is modeled as the probability measurement in a multivariate Gaussian distribution,

considering VADs as independent variables:

𝐝𝐸𝑘
𝑤 =

exp (− 1
2 (𝝁𝐸𝑘

− 𝐰)T𝜮−1(𝝁𝐸𝑘
− 𝐰))

√

(2𝜋)3|𝜮|

, (1)

where 𝜮 = 𝑑𝑖𝑎𝑔(𝝈𝐸𝑘
). For the 𝐾 emotions, the WED of word 𝑤 is 𝐝𝑤 = [𝑑𝐸1

𝑤 , 𝑑𝐸2
𝑤 ,… , 𝑑𝐸𝐾

𝑤 ]. To this end, we can generate a distribution
representation by measuring the distance with a set of emotions in the three-dimensional Gaussian space.

4. Methodology

The generic flowchart of the framework is depicted in Fig. 3. This section introduces how to create the mapping function to
expand the label space and generate the pseudo sentence emotion distribution.

4.1. Mapping fine-grained concepts with the emotion category

The significance of using three-factor theory as KoE has been discussed. However, no available resource can help us build
the relationship between fine-grained concepts and emotion categories, which is the major challenge that we have to overcome.
Therefore, we have to find a feasible approach based on the available knowledge, such as lexicons and dictionaries. This section will
elaborate on how we create the mappings between emotion categories and fine-grained concepts. The first step is preprocessing,
which aims to remove the compounded concepts and those linked with mixed emotions. Then, manual deliberation is incorporated.
Emotion itself is very subjective and fuzzy, and subjective manual deliberation must be implemented to comprehensively build the
mapping. We invite volunteers from different backgrounds to annotate each concept based on their common-sense knowledge. The
annotation results from volunteers are consolidated to produce the final mapping.
7
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Fig. 3. Generic framework. Compared with Li, Xie et al. (2021), a Leaky Dropout is applied at the penultimate layer. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

4.1.1. Preprocessing of fine-grained concepts
A total of 151 emotion concepts were identified in the KoE. However, not all of these concepts are suitable in our task. The

selected concepts are expected to be representative of an emotion category and should be widely recognized in the contemporary
language environment. In the preprocessing stage, we aim to narrow the manual annotation scope by filtering out compounded emo-
tion concepts and trivial ones. Eleven compounded concepts, such as snobbish_and_lonely, hostile_but_controlled, and angry_but_detached
are removed as they are too delicate to precisely characterize. Besides, language is constantly changing over time, and the way and
frequency that we use some words also shift. Three-factor theory was proposed in 1977, so some of the concepts may no longer be
tangible in the era we live. We turn to recent emotion lexicons, such as SenticNet 6 and EmoLex, to filter out potentially outdated
concepts. In the end, we retained 132 out of 151 concepts for further deliberation.

4.1.2. Creating the mapping function
We intend to create a mapping function between fine-grained emotion concepts and emotion category:

𝐌𝐚𝐩(𝑐𝑜𝑛𝑐𝑒𝑝𝑡) → Category. (2)

This step invokes the emotion lexicons, i.e., SenticNet 6 and EmoLex, to facilitate the manual deliberation of mapping. However,
these lexicons are not regarded as the gold standard, as lexicon knowledge pinpoints a specific word, rather than referring to the
concept, similar to what we have argued in Section 3.2.

Another major setback of lexicon-based method is the inconsistency between dataset labels and lexicon annotations. For example,
neither SenticNet 6 nor EmoLex is fully compatible with the datasets used in this work. Special treatment is needed for the emotion
categories that are rarely used in lexicons, such as ‘‘Guilty’’ and ‘‘Shame’’. Moreover, the accuracy of large-scale annotations in
both SenticNet 6 and EmoLex cannot be guaranteed. SenticNet was automatically constructed by using deep learning methods, and
EmoLex was built by crowdsourcing on Mechanical Turk. Therefore, it is necessary to include manual deliberation in the mapping
construction.

Manual deliberation is incorporated to guarantee that the mapping can be widely acknowledged and recognized. Five volunteers
(or annotators), two males and three females, from different linguistic environments and cultural backgrounds, were invited to
complete the manual annotation process. They speak different languages: two native speakers of Mandarin, two native speakers of
Cantonese, and one native speaker of French and English. The volunteers received English-medium education on diverse subjects in
top universities of Hong Kong. They all have a master’s degree or above. For each concept, the annotators were provided with the
tags retrieved from both SenticNet 6 and EmoLex for their reference. A general guideline was provided to the volunteers to facilitate
their annotation:
8
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Table 2
Our identified mapping function between emotion categories and emotion concepts.

Coarse-grained emotion label Dataset(s) Fine-grained emotion concepts

‘‘Anger’’ ISEAR + TEC + SemEval enraged, irritated, anger, insolent, annoyed
‘‘Disgust’’ ISEAR + TEC + SemEval scornful, disdainful, nauseated, disgusted, arrogant
‘‘Fear’’ ISEAR + TEC + SemEval awed, confused, terrified, domineering, insecure, fearful, aggressive
‘‘Joy’’ ISEAR + TEC + SemEval vigorous, joyful, enjoyment, fascinated, lucky, leisurely, reserved, dignified
‘‘Sadness’’a ISEAR + TEC + SemEval helpless, burdened, anguished, upset, sad, defeated
‘‘Guilt’’ ISEAR sinful, regretful, guilty, selfishb

‘‘Shame’’ ISEAR shamed, humiliated, embarrassedb

‘‘Surprise’’ TEC + SemEval wonderb, surprised, astonished, curious
‘‘Anticipation’’ SemEval activated, hopeful, anxiousb
‘‘Love’’ SemEval loved, in_loveb, affectionateb

‘‘Optimism’’ SemEval strong, bold, freeb, grateful, appreciative
‘‘Pessimism’’a SemEval depressed, distressed, frustrated
‘‘Trust’’ SemEval secure, responsible, friendly

aThe fine-grained concepts under ‘‘Sadness’’ and ‘‘Pessimism’’ can be combined when a dataset only has the emotion label ‘‘Sadness’’.
bThe mappings added by the final review. These mappings can be agreed upon by at least one annotator but cannot be agreed upon by all.

1. They are allowed to exploit any additional resources, such as other available lexicons, authoritative dictionaries, and related
examples, to understand the semantic meaning and common usage in daily life. From the literal perspective, the words
of emotion concepts have very similar meanings. Extra information can be helpful to distinguish concepts with delicate
differences.

2. The most appropriate emotion category from the emotion tags provided by the lexicons is determined. It is common that
one word has several tags from the lexicons. For example, the word ‘‘depressed’’ is associated with ‘‘Anger’’, ‘‘Fear’’, and
‘‘Sadness’’ in EmoLex. However, when referring to a kind of emotion, the most relevant emotion should be ‘‘Sadness’’.

3. We asked the annotators to reference the provided lexicon tags but not stick with them. The annotators are educated on
the difference between affective ‘‘words’’ and emotion concepts. They can overturn the given tags based on their personal
understanding if necessary and name the one that they think is more suitable. To avoid excessive subjectivity, they need to
justify the changes with evidence.

4. We find it particularly difficult to find relevant fine-grained concepts for a number of emotion categories. ‘‘Shame’’ and
‘‘Guilty’’ are not used in lexicon annotation. ‘‘Surprise’’ and ‘‘Disgust’’ cause some debates among annotators on what concepts
should be included and what should be excluded, although both are used as tags in the lexicons. Special attention is suggested
for aforementioned emotion categories.

On average, the annotators successfully found the associated emotion category for 69.4 out of 132 concepts. The annotators
show some disagreements on several concepts, while we hope the final mapping function can be agreed upon all. We discarded the
concepts whose associated category cannot be unanimously agreed upon by the annotators. For example, the concept lonely was
xcluded, as it received a three to two votes on ‘‘Fear’’ and ‘‘Sadness’’. Nevertheless, emotion categories such as ‘‘Surprise’’, ‘‘Shame’’,
nd ‘‘Guilty’’, have relatively limited associated concepts if the all-agree criterion is enforced, which will make the mapping severely
nbalanced. Therefore, the results were screened by the four investigators again to finalize the mapping with careful adjustments.
he adjustments are adding wonder to ‘‘Surprise’’, in_love and affectionate to ‘‘Love’’, and free to ‘‘Optimism’’. In addition, the concepts

n ‘‘Guilt’’ and ‘‘Shame’’ are tuned to be balanced. In the end, the final mapping was managed to achieve an overall agreement of
6.3% between all annotators. We present our identified mapping function in Table 2.

We want to emphasize that the work itself is not targeting at rigorously defining a hierarchical emotion system from a professional
sychological perspective, given our limited domain expertise. Instead, we find a feasible way in the field of sentic computing to
reate the mapping and apply the WED technique for distribution learning based on available resources and manual deliberation. The
roposed methodology may not be the best one, and we are humble and open to any suggestion. Moreover, the domain knowledge
nd lexicons are open-sourced information, which can be easily accessed from the corresponding stakeholder. Thus, one can easily
eproduce the mapping and perform the selection according to their knowledge, and even redefine a new mapping function for their
ecessity.

.1.3. Fine-grained emotion selection
Based on the identified mapping, we can now extend the label space for a dataset. In general, we can tell from Table 2 that,

lthough the mapping has been consolidated, the overall mapping is not balanced per category. However, we intend to extend each
motion category with the same number of fine-grained concepts so that the dimension of each label can be equally expanded. In
his work, for instance, we select three concepts per emotion category.

Regarding the question of how to select the concepts, at this moment, we think there is no gold standard for which one to
hoose and which one not to choose because all the associations are designed to be universally accepted. The selection is mainly
ased on people’s understanding or experience with the emotion categories and concepts. A workable solution is to select those that
re both representative and relatively scattered in the VAD space. As shown in Table 1, the selected concepts under each category
9
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information. If all the selected concepts were pinpointed in a small area in the VAD space, their intensities in WED computed
by Eq. (1) and values in the final distribution will be similar, which means we merely repeat the labels without enriching the
information. As the inconsistent annotations were handled strictly, we find at most three concepts for some emotion categories,
which restricts the application of machine learning-based selections. We believe it is a promising research direction to include
concepts linked with several emotion categories. By doing so, the label space can be further extended, and we will have flexibility
to incorporate automatic or semiautomatic methods in the selection process.

4.2. Generating the sentence-level emotion distribution

Given a sentence, we generate a pseudo distribution according to the extensions confirmed in the previous step. Based on the
ED method, we produce a WED vector in the extended label space. Next, the rule-based method in Li, Li, Xie, Li, Tao (2021) is

sed to produce the pseudo extended emotion distribution (pEED), which is a simplified version from Li, Xie et al. (2021). Interested
udiences can find the algorithm in both published papers. The proposed rule-based method increments the emotion distribution of
ach affective word to obtain a sentence-level distribution label, i.e., the generated extended emotion distribution (EED), as shown
n the generating part in Fig. 3. The polarity value from SenticNet is used as a weight for each word.

In particular, we use a masking function to remove the effects of non-dominant emotions in the learning stage. Given the ground-
ruth emotion category 𝐲, for emotion concepts in which 𝐌𝐚𝐩(𝑐𝑜𝑛𝑐𝑒𝑝𝑡) ≠ 𝐲, their values in the EED are masked to 0. Moreover, the
asked distribution is normalized to form the distribution label pEED. The pseudo distribution label will be used in the classification

ramework.

.3. Learning the classifier with the extended distribution

This work devises a framework to incorporate distribution learning into the classification framework. Distribution learning has
een exploited in some existing works at the output layer, where the distribution learning loss works as an auxiliary term in the
bjective function. In contrast, we adopt a pipeline framework and apply distribution learning and classification learning at different
ayers.

.3.1. Semantic feature extraction
We employ a feature extractor layer, such as CNNs, BiLSTM, and BERT, to extract semantic features from textual input. Given

sentence 𝑠 with 𝑚 tokens, non-BERT implementations project discrete word tokens into a continuous embedding space via the
andomly initialized word embedding model and obtain a dense vector 𝐱𝑖 ∈ R𝑘 for each word, where 𝑘 is the embedding dimension.

Given a sentence with 𝑚 words, all embedding vectors are concatenated as the model input: 𝐱 = [𝐱1, 𝐱2,… , 𝐱𝑚]. The sentences are
padded to maintain a uniform length. We first apply a CNN layer (with a pooling layer) or a recurrent layer to extract feature vector
𝐂:

𝐂 = TextCNN(𝐱), or
𝐂 = BiLSTM(𝐱).

(3)

For the BERT model, we extract the [CLS] token from the output layer of the pre-trained BERT model as the sentence representation:

𝐂 = Bert(𝑠). (4)

4.3.2. Learning the extended emotion distribution
The feature vector 𝐂 is projected to the extended label space, where distribution learning is employed. A softmax layer is

employed to transfer the resultant vector into a probability distribution of the extended label 𝐎𝑒𝑥𝑡𝑛:

𝐂𝑒𝑥𝑡𝑛 = FullyConnect(𝐂)
𝐎𝑒𝑥𝑡𝑛 = Sof tmax(𝐂𝑒𝑥𝑡𝑛).

(5)

We apply the pEED at this layer and calculate the Kullback–Leibler loss 𝐿𝑒𝑥𝑡𝑛 for distribution learning,

𝐿𝑒𝑥𝑡𝑛(𝐎𝑒𝑥𝑡𝑛, pEED) = − 1
𝑁

[ 𝑁
∑

𝑖

𝐾
∑

𝑗
pEED𝑗 ⋅ ln(𝐎𝑒𝑥𝑡𝑛

𝑗 )

]

, (6)

where 𝑁 denotes the batch size.
10
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Fig. 4. Difference between conventional Dropout mechanism and the proposed Leaky Dropout.

4.3.3. A sparse connection for prediction
Subsequently, another layer projects the learned distribution into the label space,

𝐎𝑝𝑟𝑒𝑑 = FullyConnect(𝐎𝑒𝑥𝑡𝑛)

𝐎𝑝𝑟𝑒𝑑 = Sof tmax(𝐎𝑝𝑟𝑒𝑑 ).
(7)

Cross-entropy loss 𝐿𝑐𝑙𝑠 is computed for guiding the classification learning:

𝐿𝑐𝑙𝑠(𝐎𝑝𝑟𝑒𝑑 , 𝑦) = − 1
𝑁

[ 𝑁
∑

𝑖

𝐾∗
∑

𝑗
𝟏(𝑦𝑖 = 𝑗) ⋅ ln(𝐎𝑝𝑟𝑒𝑑

𝑗 )

]

, (8)

where 𝐾∗ is the number of labels, and 𝟏(𝑦𝑖 = 𝑗) = 1 if 𝑦𝑖 = 𝑗; otherwise, 𝟏(𝑦𝑖 = 𝑗) = 0.
When projecting the extended emotion distribution space back to the original label space, we expect the classifier be able to

extract the dependency from the fine-grained concepts. Although the non-dominant emotion concepts are masked in the pEED, the
penultimate layer still produces a dense vector. Nevertheless, a special overfitting situation occurs, where the classifier only learns
the positional mapping between the entries of the extended distribution with the index of the label. Such a situation does not harm
our model, as we have found that using an extended distribution label to train the classifier only and predicting the output from
the learned distribution can bring improvements to baseline models. However, the classifier cannot fully exploit the dependency
information in the extended space in this way. Therefore, we propose a sparse connection approach, namely, Leaky Dropout, to avoid
such a situation.

The Dropout mechanism (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) builds a sparse connection between
layers to alleviate the overfitting issue in a deeper network. The sparse connection is performed by randomly deactivating neurons in
a layer, as shown in Fig. 4(a), so that the information of these selected neurons will not feed to the next layer. However, deactivating
selected neurons causes unexpected effects in our model. More specifically, a smaller dropout rate cannot prevent overfitting between
the last two layers (the model shows limited improvements compared with training with the extended label only), while a greater
rate can block valid information flow. As a main contribution, we propose a soft Dropout mechanism, namely Leaky Dropout, in this
paper. The term ‘‘leaky’’ means that the selected neurons will not be fully deactivated; instead, only the magnitude of their values
will be suppressed, and the weights can be updated by gradient backpropagation. The difference between conventional Dropout and
the propose Leaky Dropout is presented in Fig. 4(b).

Given the activated layer 𝐱 and dropout rate 𝛽, we partially suppress the vector by computing elementwise production of 𝐱 and
a masking vector 𝐦:

𝐱′ = 𝐱 ⊙𝐦, (9)

and 𝐦 is calculated as:

𝐦𝑖 =

{ 1
1−𝛽 , 𝑧𝑖 = 0

𝛾, 𝑧𝑖 = 1

𝛾 =
1 − 𝛽
𝑐2

,

(10)

where 𝑧𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛽) are indicators (i.e., preserve if 𝑧 = 0 or partially drop if 𝑧 = 1), and the suppression factor 𝑐 controls the
magnitude of suppression. For example, a neuron selected by the Bernoulli distribution with value 𝑥 will return 0.8×𝑥

10000 if 𝛽 = 0.2 and
𝑐 = 100. The quadratic denominator helps to reduce the parameter searching space. Following Srivastava et al. (2014), the kept
cells are magnified to maintain the layer’s expectation largely unchanged. An exceedance is expected in the overall expectation as
the selected neurons are not fully dropped. However, due to the quadratic denominator, the exceedance is very small and can be
neglected. Moreover, the nominator 1 − 𝛽 is a harmonic factor that caps the expectation exceedance 𝛽(1−𝛽)

𝑐2
at 0.25

𝑐2
when 𝛽 = 0.5.

We apply the Leaky Dropout in the last two layers by changing Eq. (7) to

𝐎𝑝𝑟𝑒𝑑 = FullyConnect(𝐋𝐞𝐚𝐤𝐲𝐃𝐫𝐨𝐩𝐨𝐮𝐭(𝐎𝑒𝑥𝑡𝑛))
𝑝𝑟𝑒𝑑 𝑝𝑟𝑒𝑑 (11)
11
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Table 3
General statistics of the adopted datasets. ‘‘CV’’ means that the dataset does not have a standard training/testing split, and 10-fold
cross validation is applied.
Dataset Average length Train Dev Test Emo. #

ISEAR 21.2 7666 – CV 7
TEC 15.3 21,051 – CV 6
SemEval 16.0 63,838 886 3259 11
SST-1 18.1 11,855 – 2210 5
SST-2 18.9 9613 – 1821 3

4.3.4. Model training
The loss function  is a weighted sum of the Kullback–Leibler loss (the distribution learning loss) and cross-entropy loss (the

lassification loss) based on Eqs. (6) and (8),

 = 𝜆 ⋅ 𝐿𝑐𝑙𝑠 + (1 − 𝜆) ⋅ 𝐿𝑒𝑥𝑡𝑛. (12)

he hyperparameter 𝜆 is a weighting term to balance the proportion of distribution learning loss and classification learning loss in
he objective function. Intuitively, if 𝜆 = 1, the model is trained with a one-hot label, and there is no constraint in the extended
abel space. Adam optimizer is employed to train the model.

. Experiment

.1. Datasets

We show the effectiveness of the proposed methodology in different tasks. The description of adopted datasets are reported in
able 3.

.1.1. Multiclass datasets
For multiclass classification task, we adopts ISEAR and TEC. ISEAR collects the personal experience when seven emotions were

erceived (Scherer & Wallbott, 1994). TEC includes six emotions to label the tweets (Mohammad, 2012).

.1.2. Multilabel datasets
We have also experimented on a multilabel dataset. SemEval2018 annotates the affectual state from a tweet using automatic

ystems (Mohammad et al., 2018). The task is to classify a tweet as a ‘neural or no emotion’ type or an emotional type with the
leven emotions.

.1.3. Sentiment analysis task
We investigate the effectiveness in sentiment analysis, where binary labels representing sentiment orientations, positive and

egative, are used. SST-14 and SST-2 contain five sentiment label and binary labels, respectively (Socher et al., 2013). Particularly,
e select the same quantity of fine-grained concepts for both positive and negative labels and construct pEED for each sentence.
ote that, for this work, we will not specify what emotions are of very positive/negative and what are of positive/negative. The
eutral class is also removed in the extended space. For positive sentiment, joyful, fascinated, affectionate, free, and leisurely are
ncluded; for negative sentiment, anger, fearful, depressed, sad, and guilty are exploited.

.2. Baselines

The baseline models are selected according to the nature of the task. For multiclass classification datasets, i.e., ISEAR and TEC,
e compare the proposed model with the following baseline models:
MTCNN (Zhang et al., 2018) is the first work to incorporate a generated distribution label for distribution learning. A multitask

ramework is proposed for emotion classification. DERNN (Wang, Wang, Xiang, & Xu, 2019) uses an RNN-based framework to
xploit topical information and syntactic dependency for emotion label prediction. TESAN (Wang & Wang, 2020) designs a topic
odel and produces a topic embedding for a document, which is used to predict the emotion label. The DACNN proposed by Yang

nd Chen (2020) employs an attention mechanism by adjusting the weights for features extracted from a multichannel CNN to
mprove emotion classification performance. WLTM (Pang et al., 2019) uses a topic model to alleviate the data sparsity issue.
STeR proposed by Gollapalli, Rozenshtein, and Ng (2020) exploits word co-occurrences and associations from a large-scale corpus
or unsupervised emotion classification. EmoChannel (Li et al., 2020) looks into fine-grained emotions and models their intensity
ariations in the sentence as a novel feature. The dependency within fine-grained emotions is extracted by an attention mechanism
or improving the model performance. WED proposed by Li, Xie et al. (2021) presents a method to produce word-level emotion
istribution as an affective representation. Two schemas are suggested to utilize WED for emotion classification.

4 http://nlp.stanford.edu/sentiment/.
12
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Table 4
Parameter settings used in this research.

Model Parameters

CNN module Filter size = [3, 4, 5], 100 filters per size
RNN module Hidden dimension = 128
Transformer Multi-head = 8 and 3 blocks

For multilabel dataset, SemEval2018, we compare TextCNN, Bi-LSTM, and C-LSTM under the binary relevance (BR) framework
nd joint binary (JB) framework proposed by He and Xia (2018) to examine the feasibility of our proposed method in multilabel
lassification.

.3. Evaluation metrics

We adopt the accuracy and F1 score to evaluate the single-label prediction performance. We conduct a t-test against the
eproduced baselines. For datasets without a training/testing split, such as ISEAR and TEC, we conduct tenfold cross-validation
nd report the average result with a t-test based on five rounds. As to SST-1/2 where standard train/test is provided, the reported
esults are based on ten rounds of experiment.

For multilabel classification, we employ hamming loss (HL), ranking loss (RL),micro F1 (miF1),macro F1 (maF1) and average
recision (AP) to measure the performance.

.4. Experiment configuration and parameter settings

For non-BERT implementations, we set the word embedding size to 300 following the conventional setting in NLP tasks. The
embedding vectors are initialized from scratch and set to trainable during training to remove the performance margin caused by
different pre-trained language models.

Moreover, this work focuses on the feasibility and effectiveness of the label extension schema and the sparse connection
mechanism. Thus, we implement the feature extractors with empirical configurations and keep them fixed for ablation studies.
The hyperparameter settings are specified in Table 4.

We employ BERT Uncased for BERT implementation. The BERT model is frozen during the training to reduce the training time.
The Adam optimizer is employed to train the classifier. The rate for conventional Dropout connecting feature extractor layers is
set to 0.5 for all models. As to the dropout applied to the extended label space, according to the cross-validation on ISEAR, the
conventional Dropout rate is set as 0.2, and the Leaky Dropout rate is set to 0.2 with the leaky parameter 𝑐 set to 200.

The number of fine-grained concepts for each category in the extended label space is three. We can only identify three associated
fine-trained concepts for some labels. For example, the ISEAR dataset has seven emotion labels, so the extended label space contains
21 fine-grained concepts.

5.5. Experimental results

We report the results of our model against baseline methods in Table 5 (multiclass classification), Table 6 (sentiment analysis),
and Table 7 (multilabel classification). In all tasks, consistent improvements are observed in our model compared with the baseline
methods. The t-test results indicated significant improvements. Particularly, the proposed method sees improvements of 2.5% in
accuracy and 2.82% in the F1 score on ISEAR, and 2.52% in accuracy and 2.0% in the F1 score on TEC, compared with TextCNN.
Compared with BiLSTM, the proposed framework exploiting BiLSTM yields 2.24% and 2.43% improvements in accuracy and F1
score on ISEAR, and 1.16% and 1.64% improvements in accuracy and F1 score on TEC.

Regarding the BERT-based method, our method produces 1 ∼ 1.4% improvements over the BERT baseline on ISEAR and TEC.
Furthermore, our model outperforms other methods on sentiment analysis datasets, i.e., SST-1 and SST-2, and the multilabel
classification dataset, SemEval2018, which validates our approach’s generality across different emotion-relevant tasks.

Ablation studies are conducted to help us understand the function of each model component.5 The following ablation models
are tested on the ISEAR and TEC datasets.

• Ablation (a): We train the classifier with the extended distribution label only, and the model predicts from the learned
extended distribution. In this ablation model, we remove cross-entropy loss in Eq. (12) (set 𝜆 = 0) and make the penultimate
layer the output layer. The classifier searches for the maximum value in the extended label space and directly returns its
corresponding emotion category as the output.

• Ablation (b): The model does not have a sparse connection, where a dense layer connects the penultimate layer and the output
layer, following Eq. (5).

• Ablation (c): The model utilizes a conventional Dropout layer as the sparse connection, and the dropout rate is set as 0.2,
which is inconsistent with the Leaky Dropout configuration.

5 This work mainly focuses on the parameters related to Leaky Dropout. The influence of the parameters of WED on model performance was studied in Li,
13

ie et al. (2021).
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Table 5
Results on the multiclass classification task.

Model ISEAR TEC

Accu. F1 Accu. F1

(retrieved results from references)
DERNN (’19) – 60.44 – –
WLTM (’19) 36.50 – – –
TESAN (’20) 61.14 – – –
DACNN (’20) – – 62.73 –
ESTeR (’20) – – – 39.8

(reproduced results)
CLSTM (’15) 59.88 59.47 59.84 51.03
Transformer (’18) 61.07 60.20 62.17 53.74
MTCNN (’18) 61.15 60.72 62.32 53.82
EmoChannel (’20) 61.87 61.21 62.16 54.13
WED (’21) 62.19 61.24 62.58 54.18

BiLSTM (’13) 59.68 59.42 61.46 54.19
Label extension schema w/BiLSTM
Predict from extended label space
(a) w/learned distribution 60.16 61.18 61.62 54.61
Predict from original label space
(b) w/dense connection 59.83 58.82 61.75 55.02
(c) w/dropout (rate = 0.2) 59.96 59.16 61.92 55.10
(Ours) w/leaky dropout (rate = 0.2) 61.92 61.85 62.62 𝟓𝟓.𝟖𝟑‡

TextCNN (’14) 60.53 60.03 61.00 53.10
Label extension schema w/TextCNN
Predict from extended label space
(a) w/learned distribution 61.60 61.52 61.32 53.10
Predict from original label space
(b) w/dense connection 61.83 61.74 61.35 53.01
(c) w/dropout (rate = 0.2) 62.53 62.23 62.75 53.92
(Ours) w/leaky dropout (rate = 0.2) 𝟔𝟑.𝟎𝟑§ 𝟔𝟐.𝟖𝟓‡ 𝟔𝟑.𝟓𝟐† 55.10

Bert (’19) 65.33 65.35 64.37 55.58
Label extension schema w/Bert
Predict from extended label space
(a) w/learned distribution 65.60 65.58 64.73 55.83
Predict from original label space
(b) w/dense connection 65.87 65.64 64.81 55.88
(c) w/dropout (rate = 0.2) 66.38 65.93 65.13 56.19
(Ours) w/leaky dropout (rate = 0.2) 𝟔𝟔.𝟕𝟑§ 𝟔𝟔.𝟑𝟗‡ 𝟔𝟓.𝟓𝟔† 𝟓𝟔.𝟒𝟐†

†𝑝 < .05, ‡𝑝 < .01, §𝑝 < .001.

Table 6
Results on the sentiment analysis task.

Model SST-1 SST-2

Accu. F1 Accu. F1

TextCNN (’14) 45.13 41.52 83.82 83.80
BiLSTM (’13) 44.68 42.30 83.57 83.53
CLSTM (’15) 45.83 43.15 82.45 82.33
Transformer (’18) 43.11 40.03 82.68 82.66

Ours 𝟒𝟔.𝟕𝟒‡ 𝟒𝟒.𝟏𝟐† 𝟖𝟓.𝟏𝟎§ 𝟖𝟒.𝟐𝟕‡

Bert (’19) 53.20 51.00 91.20 91.20

Bert + Ours 𝟓𝟒.𝟓𝟐‡ 𝟓𝟑.𝟏𝟐§ 𝟗𝟐.𝟒𝟖‡ 𝟗𝟐.𝟓𝟏‡

†𝑝 < .05, ‡𝑝 < .01, §𝑝 < .001.

6. Discussion

6.1. Discussion of the ablation study

In Table 5, Ablation (a) outperforms the model trained with one-hot labels, suggesting that the extended distribution is better than
a one-hot label. It is an intriguing observation, as intuitively, it is more challenging for the model to learn given a three-folded label
space. We give credit to the benefit of distribution learning. The smoothed distribution label accompanied by the Kullback–Leibler
loss provides essential knowledge to the classifier. Second, the refinement from extended label space to emotion labels without a
Dropout layer, i.e., Ablation (b), performs less impressively compared with Ablation (c). The overfitting issue may occur earlier
14
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Table 7
Results on the multilabel classification task.

Model AP ↑ MaF1 ↑ MiF1 ↑ HL ↓ RL ↓

BR
TextCNN 46.79 48.37 58.86 17.7 18.2
BiLSTM 45.90 47.83 56.02 19.7 19.6
CLSTM 47.37 48.68 59.30 16.4 17.3

Ours (BR) 𝟓𝟎.𝟒𝟕‡ 𝟓𝟎.𝟗𝟓‡ 𝟔𝟐.𝟏𝟎‡ 15.8 16.1

JB
TextCNN 49.22 49.76 61.24 16.1 17.3
BiLSTM 48.38 47.15 59.88 17.1 17.5
CLSTM 50.12 50.85 62.10 16.1 16.5

Ours (JB) 𝟓𝟏.𝟗𝟐‡ 𝟓𝟑.𝟐𝟓‡ 𝟔𝟒.𝟐𝟖‡ 16.2 15.7

↑ means ‘‘the higher the better’’; ↓ means ‘‘the lower the better’’
†𝑝 < .05, ‡𝑝 < .01, §𝑝 < .001.

Fig. 5. Results of using different dropout rates (𝛽) with different loss weights (𝜆). The effect of different dropout mechanisms is discussed in Section 6.2, and
the influence of loss weight is discussed in Section 6.3. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

with a dense connection, preventing a better performance, as we discussed in Section 4.3.3. Third, Ablation (c) with a conventional
Dropout connection produces satisfactory results, which validates the necessity of a sparse connection, as argued by Li, Li, Xie, Li,
Tao (2021). Moreover, we notice that the proposed model can lead to substantial performance improvement against Ablation (c),
revealing that a leaky connection is more suitable than neuron deactivation in the emotion label extension schema.

6.2. Sparse connection and Leaky Dropout

Extensive experiments are conducted to investigate how the Dropout mechanism functions in the overall performance. In Fig. 5,
we plot the results with different connection mechanisms on the ISEAR dataset, which are dense connection (plotted in black dashed
line), Dropout (in dotted line), and Leaky Dropout (in solid line) with various configurations. The contribution of using a sparse
connection is distinctly evident since models with Dropout or Leaky Dropout produce significant improvements compared with the
model with a dense connection. Notably, with the same dropout rate, the model with Leaky Dropout consistently outperforms the
model with conventional Dropout, which validates the effectiveness of Leaky Dropout. Furthermore, we notice that the performance
of both traditional Dropout and Leaky Dropout deteriorates as the dropout rate increases. When the dropout rate is larger than 1∕𝐾∗,
where 𝐾∗ is the number of emotion labels, fine-grained emotions associated with the label emotion can be possibly masked, which
causes fatal information loss in the learning and thus compromises performance. For example, given seven emotion labels in the
ISEAR dataset, we expand each label with three concepts and obtain a 21-dimensional extended space. If the dropout rate is greater
than 0.143, or 3

21 , it is possible that all the neurons denoting concepts under the same category can be deactivated at the same time.
In such a case, the valid information about the distribution will be fully discarded, and the training can collapse. Nevertheless, the
magnitude of performance deduction of using Leaky Dropout is less significant than that of using Dropout, proving that the proposed
Leaky Dropout is more robust than conventional Dropout.
15
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Fig. 6. Relationship between model performance and suppression parameter 𝑐 with different dropout rates 𝛽.

In addition to the dropout rate, we also investigate the effect of the suppression factor 𝑐 on the overall performance. In Fig. 6,
e visualize how the predication accuracy changes with different Leaky Dropout configurations. Generally, the best performance

s achieved when 𝛽 = 0.2 and 𝑐 = 200. For 𝛽 = 0.1 and 𝛽 = 0.2, the performance increases as 𝑐 increases until 200. When 𝑐 ≥ 200,
the performance decreases. For 𝛽 = 0.3, the performance deteriorates severely with a relatively large suppression rate, e.g., 100. We
conclude from the observations that there is an optimal combination between 𝑐 and 𝛽. The model is more sensitive to the change
of 𝑐 when 𝛽 is larger.

6.3. Model performance with loss weight

To adapt the proportion of Kullback–Leibler loss and cross-entropy loss in the objective function, we set a hyperparameter 𝜆 as
the loss weight. Essentially, the model will focus more on classification learning if 𝜆 is large, and vice versa. We train the models
with different loss weights under different Dropout settings and visualize the results in Fig. 5. Since the goal of the task is still
single-label prediction, it is natural that the model with a relatively large weight for cross-entropy loss, say 𝜆 = 0.9, outperforms the

odel with a small weight, say 𝜆 = 0.1. A similar observation is also found in Li, Xie et al. (2021) and Zhang et al. (2018). However,
he model reacts differently than these two works when 𝜆 is not that prominent. A good result can still be achieved when 𝜆 has
n intermediate value, from 0.3 to 0.8. Sometimes the model with a smaller 𝜆 is observed to outperform that with a larger 𝜆. It is

also intuitive that the classification performance deteriorates when 𝜆 approaches 0 as the model is trained to fit the distribution,
with limited guidance for label prediction. However, the model with Leaky Dropout can still yield a very competitive result when
𝜆 = 0.1. In the proposed pipeline framework, the model learns the distribution first and predicts from a different layer based on the
distribution so that the constraints at each layer will not affect each other. If the model learns the distribution well, it is easy for
the model to learn the refinement with weak supervision in classification learning. Nevertheless, in Li, Xie et al. (2021) and Zhang
et al. (2018), distribution learning and classification learning are employed at the same layer. Such a setting is harmful, as learning
the distribution and predicting the one-hot label are two tasks that conflict in nature. Consequently, the distribution learning loss
becomes a better label smoothing method, and the power of distribution learning never unfolds.

We compare our method with Li, Xie et al. (2021) and Zhang et al. (2018) to provide some in-depth discussions on employing
a distribution learning module for classification. As mentioned in Section 1, training with an emotion distribution in the original
label space can cause interclass confusion and noise introduction. Consequently, distribution and classification learning must be
decoupled to stabilize the performance. Therefore, the existing methods (Guo et al., 2021; Li, Xie et al., 2021; Zhang et al., 2018)
assign a dominant value for the cross-entropy loss and set a dominant weight for the ground-truth label in the distribution. In
contrast, our proposed label extension approach transfers interclass confusion to intraclass confusion and eliminates noise from
non-dominant emotions. Moreover, the progressive pipeline design also highlights the role of distribution learning in the overall
framework. Hence, two losses can be coupled to enjoy mutual benefits.

6.4. In-depth discussion of the effect of a sparse connection

Extensive investigation has been made to explain why a sparse connection is helpful to the model training. We intend to
examine the pattern of weights in the fully-connected layer, which projects extended label space back to the original space with
different dropout rates. We train the classifier with different dropout configurations on the ISEAR dataset to achieve this. The model
checkpoints are saved at each training epoch. The weights in the matrix connecting the penultimate and output layers are retrieved
and visualized as heatmaps. The visualizations at 5 to 10th and 15th epochs are depicted in Fig. 7, where the columns from left
to right are the weights of models with a dense connection, Leaky Dropout (𝛽 = 0.1), Leaky Dropout (𝛽 = 0.2), and Leaky Dropout
𝛽 = 0.3), respectively. Note that it is not an attention layer, and the weight matrix is not a square. Each row of the matrix represents
weighted vector applied in the extended distribution to calculate the probability of each emotion label via inner product. A higher
16
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Fig. 7. Visualization of the weights in the output layer. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
17
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Fig. 8. Mean and variance of weights during the training process. (For interpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

isualizations, we observe that as training continues, the connection between fine-grained emotion concepts and the corresponding
motion category identified in the mapping is more evident, showing a distinct diagonal in dark blue at the 15th epoch. However, all
hese models achieve the best performance at approximately the 8th epoch, suggesting that the dependencies within all fine-grained
oncepts benefit the classifier.

Intriguingly, we have a visual feeling that the diagonal of weight matrix without dropout is better than that with Leaky Dropout
at each epoch. We hypothesize that the model with a dense connection tends to recognize the mapping between extended label space
and original space earlier than those with a sparse connection and highlight the corresponding mapping in the subsequent training,
which signals earlier overfitting. From the scalability perspective, inspired by the normalization technique in deep learning that
scalable weights can stabilize the training process, we quantitatively measure such an effect by comparing the mean and variance
of the weights, as shown in Fig. 8. The Leaky Dropout is helpful to keep the weights scalable, as the variance of weights is consistently
lower than the model without a sparse connection, which benefits the overall performance.

7. Conclusion and future work

In this work, we have established a mapping relationship between emotion categories (or emotion labels) and fine-grained
concepts by incorporating domain knowledge and manual deliberation. A novel label extension schema has been proposed to
extend the label space of a given dataset based on the identified mapping. We adopted a rule-based method to generate sentence
emotion distribution using a general affective representation method, i.e., the Word Emotion Distribution. Additionally, we suggest
a classification framework to incorporate distribution learning in the extended label space. We have conducted experiments on
various tasks to demonstrate that the proposed method is feasible and effective. Our proposed method can give the distribution
learning module much a higher weight than the existing methods, as the proposed framework can handle the interclass confusion
and noise introduction issues of incorporating distribution learning in a classification task.

Moreover, we identified the problem of using a dense connection to project the extended label space back to the original label
space. We proposed a novel space connection, i.e., Leaky Dropout, which represses the neuron values instead of fully deactivating
18
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neurons. Applying the Leaky Dropout in the proposed pipeline framework produces substantial improvement, as a better refinement
is yielded when making predictions based on the extended distribution.

Our future work will focus on refining the mapping function. We excluded the fine-grained concepts expressing multiple emotions
n this work for constructing an explicit mapping. However, concepts associated with mixed emotions may provide more information
o the model. We will devise a better extension method to leverage these concepts, which can increase the degree of freedom in
he distribution label. This work only examined the weights in the fully-connected layer, and more informative dependency may be
eglected. The self-attention mechanism can be employed on the extended emotion distribution to extract the latent dependency
ithin fine-grained emotion concepts. Besides the subjective text emotion classification, we will try to generalize the label extension
ethods to other tasks. The extension strategy will be defined according to the subjectiveness and fuzziness of the labels.
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