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Abstract

Free shipping has proved to be signi�cantly e¤ective in improving online retailing operations. In addi-

tion to traditional price discounts, many online retailers o¤er free-shipping promotions to consumers

whose purchases exceed a given dollar amount. In this paper, we consider an online retailer�s joint

pricing (pro�t margin) and contingent free-shipping (CFS) decisions in both monopoly and duopoly

structures, which is an important marketing-operations interface problem. We begin by investigating

the impacts of a retailer�s decisions on the purchase behaviors of consumers, and show that the CFS

strategy is useful to acquire the consumers with large order sizes. Then, we compute the probability of

repeated purchases, and construct an expected pro�t function for an online retailer in the monopolistic

setting. For the monopoly structure we �nd that the �xed shipping fees may have the largest impact

on the retailer�s pro�t among all shipping-related parameters, and the retailer can bene�t more from

homogeneous markets than from heterogeneous ones. Next, we consider the competition between two

retailers in the duopoly structure, and analytically show that, if two retailers have identical �xed

and variable shipping fees, then their equilibrium decisions are equal. In order to numerically �nd a

Nash equilibrium for two retailers, we develop a simulation approach using Arena and OptQuest. Our

simulation-based examples for the duopoly structure suggest that, as a result of the competition, the

two retailers should decrease their pro�t margins but increase their CFS cuto¤ levels if they have the

same �xed and also the same variable shipping fees. The paper ends with a summary of our major

managerial insights.

Key words: marketing-operations interface, pro�t margin, contingent free shipping, monopoly,

duopoly.



1 Introduction

This paper investigates whether, when and how price and shipping promotions boost online retailers�

pro�ts. The signi�cance of this research stems from the increasing importance of online retailing (see

[36]) and the prominence of online sales during certain shopping periods (such as holiday shopping

seasons). For example, a large number of consumers choose the Internet to make online purchases

during holiday shopping seasons. LeClaire [28] indicated that around 75% holiday shoppers buy their

holiday gifts online, and nearly a third of holiday shoppers do half or more of their holiday shopping

on the Internet. Holiday sales are crucial to online retailing. Moreover, as Dilworth [18] reported,

78% of U.S. small business owners that operate online shopping sites have stated that revenues gener-

ated from online shopping during the December holiday seasons make up a large percentage of their

annual revenues. Online retailers are nonetheless disadvantaged as compared to o ine merchants. In

particular, online stores are currently less e¢ cient than physical stores, since, as Moe and Fader [33]

estimated, their rates of conversion (de�ned as the percentage of online visitors that are converted into

consumers) rarely exceed 5%. Although such ine¢ ciency results largely from the low cost of visiting

online stores [33], it is also signi�cantly driven by shipping fees which may deter consumers. The

impact of shipping fees on order incidence is forceful. Market research showed that from 52% (refer to

Direct Marketing Association�s report [20]) to 60% (refer to Jupiter Communications�s report [26]) of

online visitors abandon their online shopping carts when presented with shipping and handling fees.

To mitigate the negative impacts of shipping fees on conversion rates, online retailers (hereafter,

simply referred to as retailers) implement a variety of shipping policies. The three most common ones

are unconditional free shipping (UFS), contingent free shipping (CFS), and shipping fees that increase

with order size. Under the UFS policy, a retailer absorbs the shipping costs for all orders. When

CFS applies, the retailer pays the shipping fees but only for orders with a value equal to or above a

prede�ned cuto¤ level. Under the third policy, all consumers are responsible for the shipping fees that

are increasing in their purchase values. Lewis [30] showed that, among the three policies, CFS is the

most e¤ective in increasing the revenues of the retailers. From the 2007 survey [1] of Advertising.com,

we �nd that around 67% of consumers consider free shipping as the most enticing promotion o¤ered

by online retailers.

The degree of e¤ectiveness of a CFS policy depends on the choice of the cuto¤ level. One one

hand, a high cuto¤ level exempts the retailer from a large part of the total shipping expenses and
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entices consumers to consolidate multiple orders into one, which can reduce the retailer�s operational

and shipping expenses. On the other hand, this high cuto¤ level may also hamper the arrival of

some potential consumers by pushing them to spend more in order to qualify for free shipping (FS).

As Lewis [30] and Yang [45] showed, the number of online consumers decreases when the FS cuto¤

level increases, and vice versa. Although a low CFS cuto¤ level favors a large number of orders, it

also imposes signi�cant shipping costs on the retailer. For example, Amazon.com introduced everyday

CFS in January 2002 and the �rm, since then, has gradually lowered the minimum qualifying purchase

amount. As a result, the �rm�s net shipping costs as percentage of its net consolidated sales have almost

steadily increased from 0.61% in 2001 to 1.02% in 2002, 2.58% in 2003, 2.85% in 2004, 2.82% in 2005,

and 2.96% in 2006; see Amazon.com�s annual reports. The �nancial burden that online retailers

contract by implementing UFS and CFS could be compensated by in�ated prices. However, higher

prices also have a detrimental e¤ect on order incidence. Thus, when an online retailer adopts the CFS

strategy, he should deal with the trade-o¤ between the following two issues: (i) a high CFS threshold

deters consumers from placing online orders; and (ii) a low CFS cuto¤ level imposes high operational

and shipping expenses on the retailer. How should the retailer take this trade-o¤ into consideration

and maximize his expected pro�t when choosing the price and shipping promotion for a single shopping

period? This is a marketing-operations interface problem, because pricing and shipping promotion

levels impact operational and shipping expenses and vice versa.

Heuristic experimentation has been used by retailers in practice to search for their optimal cuto¤

levels; see Aimi [2] and Regan [37]. Two recent academic papers are concerned with the analysis

of CFS decision-making problems in two di¤erent settings. Leng and Parlar [29] considered a CFS

decision problem in B2B transactions, where an online seller announces his cuto¤ level decision and a

buyer chooses her purchase amount. Accordingly, this problem was modeled as a leader-follower game

in which the seller and the buyer act the roles of the leader and the follower, respectively. The authors

solved the game to �nd the Stackelberg equilibrium. Yang [45] considered a free shipping and repeat

buying problem, in which a rational and cost-minimizing online shopper responds to both the price

and the CFS threshold determined by a retailer. However, Yang [45] considered a single consumer, and

only investigated this consumer�s purchasing decision problem rather than the retailer�s free-shipping

decision problem.

In this paper we develop a two-stage model to capture the aggregate purchase behaviors of hetero-
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geneous consumers, and characterize the relationship between the retailer�s pricing and CFS decisions

and his single-period expected pro�ts. More speci�cally, we �rst analyze a consumer�s net surplus

function in a single transaction, which is computed as the consumer-speci�c utility minus his or her

purchase-related expense. To re�ect the diverse preferences and incomes of consumers, we introduce a

random parameter into the consumer�s utility function. Then, we maximize the net surplus function

to forecast the consumer�s purchase amount, and compute the conversion rate, i.e., the probability

that a consumer buys products online.

Using our analytical results for a consumer�s purchase amount, we develop the repeat buying

model, and then analyze a monopolistic problem in which a single retailer seeks the optimal price and

CFS cuto¤ level that maximize his expected pro�t for a single period. We perform sensitivity analyses

to draw some important managerial insights; for example, we �nd that an online retailer should set

its �xed shipping fee to zero but increase its variable shipping fee, because the impact of the �xed

shipping fee on the retailer�s pro�t is the largest compared with other shipping-related parameters.

Then, we consider the duopoly structure in which two retailers compete for consumers in a market.

We analytically show that, if the two retailers set the same �xed and variable shipping fees, then their

equilibrium pro�t margins and CFS cuto¤ levels are symmetric; this important managerial insight is

illustrated by our numerical examples. We use Arena and OptQuest to simulate several duopoly games

and �nd their Nash equilibria. Note that Arena is a simulation and automation software application

commonly used for the simulation of business processes; OptQuest is a software add-in for Arena used

to optimize such processes. Our simulation approach is helpful to solve those non-cooperative games

that are too complicated to analyze algebraically.

The remainder of our paper is organized as follows: Section 2 provides a preliminary discussion

about our modeling approach for an online retailer, and Section 3 concerns our analysis of a consumer�s

purchasing decision in a single transaction. We then examine optimal decisions for an online retailer

for the monopoly structure in Section 4 and the competition between two retailers in Section 5. This

paper ends with a summary of our major managerial insights in Section 6.

2 Preliminaries

In this section, we provide a preliminary discussion about our modeling approach for an online retailer

in the monopoly and duopoly structures. For both cases, we consider a joint pricing and free-shipping
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decision problem of the retailer who sells multiple products of a single category and o¤ers a CFS

promotion in a market during a single period. We assume that all products for sale at an online retailer

belong to a single category. Moreover, as Gupta [24] discussed, in almost all marketing applications,

the covariate values� i.e., prices and other variables that a¤ect purchase rates� remain constant for a

time interval (for example, a week). Accordingly, it is assumed that the single period is short enough

for static pricing (as opposed to dynamic pricing) to be the most appropriate strategy.

Since the online retailer sells n products, its has to determine n optimal prices. Note that, as

discussed above, these n products that are sold by the online retailer are in a single category. Like a

number of scholars in both the marketing and the operations management areas, we use the concept

of pro�t margin to make the pricing decisions for the online retailer. The pro�t margin for a product

is de�ned as the ratio of the retailer�s per unit pro�t to its unit acquisition cost. As a result, given

the pro�t margin and the unit acquisition cost for a product, we can easily compute the selling price

for the product. More speci�cally, we denote the retailer�s pro�t margin of product i (i = 1; 2; : : : n)

by mi and the retailer�s unit acquisition cost of the product by ci. The unit (marginal) pro�t of the

product is mici, and its price pi can be computed as pi = (1+mi)ci. As some marketing scholars (e.g.,

Anderson et al. [3] and Blattberg and Neslin [10]) have shown, the pro�t margins of di¤erent products

in the same category are typically identical and setting an uniform margin has been a common pricing

rule for retailers. Therefore, it is reasonable to assume that the retailer applies an identical pro�t

margin m to n products belonging to a single category. As a result, making the pricing decisions for

these n products is equivalent to determining a single pro�t margin m. Using this modeling approach,

we �nd that, if the online retailer makes an optimal decision on the pro�t margin m, the retailer can

then easily determine its prices for all of n products in the category. For recent applications of this

modeling approach to marketing-operations problems, see Cachon and Kok [12], Dong et al. [21], etc.

We notice that, during the single period, each consumer may repeat his or her purchase (see,

e.g., Ehrenberg [22]). When repeat-buying occurs, a consumer may make multiple online transactions

with possibly correlated purchase amounts. As a result, we cannot assume independence between

the transactions of a given customer. Thus, for each consumer, we need to consider the probability

of multiple purchases and compute the expected number of purchases. We assume that consumers

don�t in�uence each other when they buy products online, such that the purchase amounts of di¤erent

consumes are independent.
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In practice, the cuto¤ levels for CFS promotions are measured in terms of the value of the purchase.

For example, the CFS cuto¤ levels set by Amazon.com and Barnesandnoble.com are both equal to

$25. Accordingly, in our problem formulation, the retailer announces a CFS cuto¤ level in $, and

o¤ers the free shipping service to every consumer with a total purchase amount (also measured in $)

no less than the CFS threshold. A consumer�s online purchasing process is described as follows: At

�rst, the consumer browses the website of the retailer and collects the prices of the products (in which

the consumer is interested) and the shipping-related information. Then, the consumer determines his

or her optimal purchase quantity of each product. If the purchase quantity of every product is zero,

then the consumer abandons the shopping cart, leaves the retailer, and buys the product(s) from a

brick-and-mortar store or another source. Otherwise, the consumer completes an online transaction

with the retailer but may or may not qualify for free shipping. In particular, when the consumer�s total

purchase amount (i.e., the consumer�s purchase cost for all products that he or she buys) is greater

than or equal to the retailer�s CFS cuto¤ level, the consumer quali�es for FS and is not responsible

for the shipping fee. On the other hand, when the purchase amount is less than the CFS threshold,

the consumer pays the shipping fee. Note that, when a consumer repeats his or her purchase, the CFS

policy applies to the consumer�s purchase amount of each transaction rather than to the cumulative

amount of all repeated transactions. For example, if the CFS cuto¤ level is $100 and a consumer

makes two purchases each for an amount of $60, then the consumer doesn�t qualify for free-shipping

service in either transaction. Since the concept of �shipping fee�is important to our paper, we de�ne

it below.

De�nition 1 Shipping fee is the amount that a consumer, who doesn�t qualify for CFS in a single

transaction, pays to the retailer for the delivery of the products sold. �

We assume that, in the market that the online retailer serves, there is a �nite consumer base

B consisting of some consumers who may buy the retailer�s products. The concept of �consumer

base�has been widely used to analyze the impact of marketing strategies on consumer behavior; for

example, Lewis et al. [31] considered a consumer base that includes 1,000 consumers and presented

an empirical study regarding the e¤ects of shipping costs on consumer behavior. Whether or not a

consumer is likely to complete an online purchase and possibly pay the shipping fee depends on his

or her income and willingness to spend in the purchase of this product. Like previous works (e.g.,

Braden and Oren [11], Gajanan et al. [23], Sarvary and Parker [39], etc.), this research accounts for
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preferences, income, and other heterogeneous consumer characteristics by introducing a non-negative

i.i.d. random parameter �i (i = 1; 2; : : : ; n) into the consumer-speci�c net-surplus function. A high

value of �i implies that the consumer places a high value on product i and that he or she can a¤ord

to spend a relatively high amount of money to acquire it. In contrast, a low value of �i implies that

the consumer is relatively indi¤erent to product i or that he or she can only spend a relatively low

amount of money to buy it.

Next, we examine a consumer�s purchasing decision in a single transaction, and then consider a

monopoly structure in which a single retailer determines its optimal decisions to maximize its expected

pro�t. We also investigate the competition between two retailers in a duopoly structure.

3 Purchasing Decision of a Consumer in a Single Online Transaction

We now investigate the purchasing decision of a consumer in a single transaction, given the pricing

and CFS decisions of an online retailer. We �rst develop the consumer�s net surplus function, and

then maximize the net surplus to �nd the consumer�s optimal purchase quantity of each product and

optimal purchase amount (that the consumer spends for his or her online purchase). In addition, we

analyze the impacts of the retailer�s pricing and CFS decisions on the conversion rate (i.e., probability

that a consumer buys in an online transaction).

3.1 Net Surplus Function of a Consumer

We propose a net surplus function for a consumer with product-speci�c parameters �i (i = 1; 2; : : : ; n)

and maximize it to determine the consumer�s optimal purchase quantities of n products, given the

retailer�s pro�t margin m and CFS cuto¤ level x. When the consumer buys qi units of product i from

the retailer, the consumer obtains a consumption utility U(q1; q2; : : : ; qnj�1; �2; : : : ; �n) (a.k.a. �gross

surplus�; see, for example, Cremer et al. [17]). Since the consumer�s product-speci�c parameter �i

only a¤ects his or her purchasing decision on product i, we can write the consumer�s utility function

U(q1; q2; : : : ; qnj�1; �2; : : : ; �n) as the sum of the consumer�s utilities for all products, i.e.,

U(q1; q2; : : : ; qnj�1; �2; : : : ; �n) =
Xn

i=1
�i(qij�i), (1)
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where �i(qij�i) is the utility of the consumer with speci�c parameter �i who consumes qi units of

product i. Such an additive form has been commonly used to model a consumer�s consumption utility;

see, e.g., Chung [15], Coto-Millán [16], etc. As commonly assumed, the utility function �i(qij�i)

is positive, increasing and concave in qi; that is, �i(0j�i) = 0, �i(qij�i) � 0, �0i(qij�i) � 0, and

�00i (qij�i) � 0. (For a detailed discussion on utility functions, see [15] and [16].) Since, for a �xed

quantity qi, a consumer with a large value of �i should draw an utility higher than that drawn by a

consumer with a small value of �i, the utility function �i(qij�i) is increasing in �i (see Tirole [42, Ch.

2]). In our paper, we assume that the consumer�s utility function is linear in the parameter �i and in

the square root of the purchase quantity qi, i.e.,

�i(qij�i) = �i
p
qi, (2)

for i = 1; 2; : : : ; n. Note that the square-root utility function is widely used in the economics, marketing,

and operations management areas; for other applications of the square-root utility function, we refer

readers to, for example, Basu et al. [7] and Leng and Parlar [29].

In order to get qi > 0 units of product i (i = 1; 2; : : : ; n), the consumer pays the purchase amount

and the shipping fee (if the consumer doesn�t qualify for free shipping). The consumer�s cost of

purchasing qi units of product i is piqi = (1 +m)ciqi, in which m and ci denote the retailer�s pro�t

margin and unit acquisition cost, respectively. The consumer�s total purchase amount (in $) is then

computed as

A � (1 +m)
Xn

i=1
ciqi. (3)

We next discuss the calculation of the shipping fees that the consumer with parameters �i (i =

1; 2; : : : ; n) absorbs if he or she doesn�t qualify for free shipping. In practice, there are three common

shipping-fee calculation methods: (i) quantity-based shipping rate, (ii) weight-based shipping rate,

and (iii) order size-based shipping rate. Using the �rst method, an online retailer determines the

shipping fees as a �xed shipment fee for an online order plus unit fees for each product in the order.

In practice, the quantity-based shipping method usually applies to an online retailing system that

sells a single product or multiple �similar�products which have similar weights and/or similar prices.

Otherwise, for two di¤erent products even in the same category, the shipping fees should be di¤erent.

For example, the shipping fee incurred by a consumer who purchases an USB �ash disk should be
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di¤erent from that when the consumer buys a desktop computer. In this paper, we consider an online

retailer selling multiple products that belong to a single category but may not have similar weights and

prices. Therefore, we don�t consider the quantity-based shipping method. An online retailer adopts

the second method (i.e., weight-based shipping rate) mostly when the products for sale at the retailer

have heterogeneous weights and physical sizes. We don�t use this method for our modeling, because we

don�t consider the products�weights but only investigate the pricing and free-shipping issues that are

both associated with a consumer�s purchase amount (order size) rather than the weights or physical

sizes of the products that the consumer buys.

The third shipping method (i.e., order size-based shipping rate)� which has been the most common

one for the online retailers� is used to calculate the shipping fee according to the dollar value of an

online order. Speci�cally, this method is, in practice, implemented by using �By Order Total�shipping

method (see, e.g., rmtsupport.com.) with the following formula: the shipping fees for an order equal

a �xed shipping base rate plus variable shipping fees that are calculated as a percentage (i.e., shipping

charge per unit dollar) times the total dollar value of the order. For example, HayHouse.com, an online

bookstore, calculates the shipping fee for an online order as 30% of the total dollar value of the order.

HermeticKa.com, a webstore with robes, banners, cloths, etc., charges as shipping fees 10% of the

dollar value of each order placed within the United States. As reported by Luening (a sta¤ writer

of CNET News) in [32], a survey of 50 major online retailers found that 54% of them base shipping

charges on order size. Accordingly, we, in this paper, assume that the shipping fee of the consumer

with purchase amount A is calculated as

S(A) = s0 + sA = s0 + s(1 +m)
Xn

i=1
ciqi, (4)

where s0 and s denote the �xed shipping fee and the variable shipping fee, respectively.

Using the above, we can compute the net surplus that the consumer with parameters �i (i =

1; 2; : : : ; n) derives from consuming qi units of product i (i = 1; 2; : : : ; n) as the consumer�s gross

surplus (utility) minus his or her purchase cost and, possibly, shipping fee. (For an application of the

concept of net surplus, see Valletti and Cambini [43].) Letting G denote the net consumption surplus

of the consumer with parameters �i (i = 1; 2; : : : ; n) when the retailer�s pro�t margin is m and its CFS
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cuto¤ level is x, we have

G =

8><>: G1 �
Pn
i=1 �i

p
qi � (1 +m)

Pn
i=1 ciqi, if A � x,

G2 �
Pn
i=1 �i

p
qi � (1 +m)

Pn
i=1 ciqi � S(A), if A < x.

(5)

3.2 Purchasing Decision of a Consumer

We momentarily ignore the constraints in (5) and �nd the solution that maximizes G1 and the solution

that maximizes G2.

Theorem 1 The optimal purchase quantities �qi (i = 1; 2; : : : ; n) that maximize the consumer�s net

surplus function G1 are

�qi =
�2i

4(1 +m)2c2i
, for i = 1; 2; : : : ; n, (6)

and the resulting purchase amount �A and maximum net surplus G�1 are, respectively,

�A =
�

4(1 +m)
and G�1 =

�

4(1 +m)
, (7)

where � �
Pn
i=1 �

2
i =ci denotes the consumer-speci�c utility parameter (for all products) in his or her

net surplus.

The optimal purchase quantities q̂i (i = 1; 2; : : : ; n) that maximize the consumer�s net surplus

function G2 are

q̂i =
�2i

4(1 + s)(1 +m)2c2i
, for i = 1; 2; : : : ; n, (8)

and the resulting purchase amount Â and maximum net surplus G�2 are, respectively,

Â =
�

4(1 + s)(1 +m)
=

�A

1 + s
and G�2 =

�

4(1 + s)(1 +m)
� s0. � (9)

Proof. The proof of this theorem and the proofs of all subsequent theorems in our main paper are

given in Appendix A.

In a single transaction, whether or not the consumer with the parameter � can obtain the free-

shipping service depends on the comparison between the CFS cuto¤ level x and the consumer�s total

purchase amount A. This means that we should only pay attention to the amount A, which is a r.v.

due to the randomness of the parameter �, as shown in Theorem 1.
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Theorem 2 The net surplus functionsG1 andG2 are both concave in the consumer�s purchase amount

A, and have their maxima at �A [as given in (7)] and Â [as given in (9)], respectively. �

Now we maximize the consumer�s net surplus G in (5) to �nd the consumer�s optimal purchase

quantities q�i (i = 1; 2; : : : ; n) and purchase amount A
�. When we consider the constraints in (5), we

should perform our analysis according to the position of the CFS cuto¤ level x. Thus, we need to

discuss four cases as shown in Figure 1, and for each case we need to �nd the optimal purchase amount

A�. For our particular discussion regarding the four cases in Figure 1, see Appendix B.

Figure 1: Four cases for the optimal solution A� that maximizes the net surplus G of the consumer with the
parameter �.

Using our analytical results in Appendix B, we can calculate the optimal purchase amount A� as

shown in the following theorem.

Theorem 3 Given a pro�t margin m and a CFS cuto¤ level x, the optimal purchase amount A� that

maximizes the net surplus of the consumer with speci�c parameter � is as follows:

1. If x � 4s0(1 + s), then

(a) the consumer doesn�t purchase any product online if � < x(1 +m);

(b) the consumer spends $x if x(1 +m) � � � 4(1 + s)(1 +m)[
p
(1 + s)x�

p
sx+ s0]

2;

(c) the consumer spends $Â if 4(1 + s)(1 +m)[
p
(1 + s)x�

p
sx+ s0]

2 < � < 4x(1 +m);

(d) the consumer spends $ �A if � � 4x(1 +m).

2. If s0(1 + s) < x < 4s0(1 + s), then

10



(a) the consumer doesn�t purchase any product online if � < 4s0(1 + s)(1 +m);

(b) the consumer spends $Â if 4s0(1 + s)(1 +m) < � < 4x(1 +m);

(c) the consumer spends $ �A if � � 4x(1 +m).

3. If 0 � x < s0(1 + s), then

(a) the consumer doesn�t purchase any product online if � < 4x(1 +m);

(b) the consumer spends $ �A if � � 4x(1 +m). �

Theorem 3 suggests that a consumer�s online purchasing decision depends on the CFS cuto¤ level

x. More speci�cally, if the CFS cuto¤ level x is su¢ ciently high [i.e., when x � 4s0(1 + s)], then the

consumer with the speci�c parameter � may spend $x, $ �A, $Â, or may not buy anything online. Note

that a consumer with the purchase amount $ �A quali�es for free shipping; then, the consumer doesn�t

need to consider whether or not to change his or her purchasing decision for the free-shipping service.

However, if a consumer�s purchase amount is $Â, then the consumer doesn�t qualify for free shipping.

Thus, the consumer may increase his or her purchase amount from $Â to $x. More speci�cally, if

Â is close enough to x, then the consumer may increase his or her purchase amount to obtain the

free-shipping service; otherwise, if Â is small, then the consumer is unlikely to increase Â to x and

stays with Â. In addition, the consumers with very small purchase amounts cannot a¤ord the shipping

fee and cannot increase their amounts to qualify for free shipping; thus, they are likely to quit their

online purchases.

When the CFS threshold x is at the medium level [i.e., s0(1+s) < x < 4s0(1+s)], the consumer may

spend $ �A, $Â, or leave without any purchase. This implies that a number of consumers with medium

or large values of � spend the amount $ �A and qualify for the free shipping. However, consumers

with small values of � intend small purchase amounts, and may not want to increase their purchase

amounts to the CFS cuto¤ level x to qualify for the free-shipping service. Furthermore, if a consumer

has very small value of � and thus his or her purchase amount is very small, then the consumer may

abandon his or her online shopping cart because he or she cannot a¤ord the shipping fee and also

cannot spend more to qualify for free shipping. Therefore, we conclude that, when a moderate CFS

threshold applies, the consumers who don�t qualify for the free-shipping service may stay with their

small purchase amount $Â, or may leave without any purchase. When the CFS threshold x is small

[i.e., 0 � x � s0(1 + s)], most consumers qualify for free shipping but few other consumers with very

small purchase amounts abandon their shopping carts because they don�t want to pay for the shipping
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fee and also don�t purchase more to qualify for free shipping.

From the above discussion we draw an important managerial insight, which is presented in the

following remark.

Remark 1 The CFS strategy should be attractive mostly to consumers with large order sizes. That

is, if a consumer�s purchase amount is large but it is still smaller than the CFS cuto¤ level, then the

consumer is likely to increase his or her purchase amount to qualify for the free-shipping service. Thus,

an online retailer should use the CFS strategy mainly to acquire consumers with large order sizes. Our

analytical result is supported by Lewis et al.�s empirical study [31] in which the CFS schedules that

involve incentives for large orders are able to successfully induce consumers to shift to larger order

sizes. J

3.3 Conversion Rate

We �nd from Theorem 3 that each consumer may buy or may not buy from the online retailer. One

may be interested in the following question: how do the retailer�s pricing (pro�t margin) and CFS

decisions a¤ect the conversion rate? The conversion rate is herein de�ned as the ratio of the number

of consumers who buy at least once from the retailer over the total number of consumers who consider

buying from the retailer. According to this de�nition, the conversion rate is the probably that a

consumer makes at least one purchase. Like in some previous marketing publications (e.g., Lewis et

al. [31]), we let all of arriving consumers compose the consumer base B (e.g., B = 1; 000 in [31]). Then

we can calculate the number of consumers who buy from the retailer as the size of the consumer base

times the conversion rate. That is, the number of consumers who buy from retailer is B �Pr(A > 0),

where Pr(A > 0) is the conversion rate.

Theorem 4 The conversion rate Pr(A > 0) as follows:

Pr(A > 0) =

8>>>><>>>>:
1� F [x(1 +m)] =

R1
x(1+m) f(�)d�, if x � 4s0(1 + s),

1� F [4s0(1 + s)(1 +m)] =
R1
4s0(1+s)(1+m)

f(�)d�, if s0(1 + s) < x < 4s0(1 + s),

1� F [4x(1 +m)] =
R1
4x(1+m) f(�)d�, if 0 � x � s0(1 + s),

where f(�) and F (�) are, respectively, the p.d.f. and the c.d.f. of the random parameter �. �
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From Theorem 4, we can �nd that the conversion rate decreases as the CFS threshold x increases

in the range [0; s0(1 + s)]. This means that a small CFS threshold deters most consumers with

small purchase amounts, because those consumers are unwilling to increase their small amounts and

also cannot a¤ord the shipping fee. However, as the CFS cuto¤ level increases in the range [s0(1 +

s); 4s0(1 + s)], the conversion rate is unchanged, because of the following facts: most consumers with

small purchase amounts are deterred by the nonzero CFS threshold. The consumers with medium

purchase amounts can a¤ord the shipping fee (which may not be large compared with their purchase

amounts), but they are unwilling to spend more for the free-shipping service, as shown in Theorem 3.

Other consumers have large purchase amounts and qualify for free shipping. Thus, for medium-size

orders, the CFS cuto¤ level doesn�t signi�cantly a¤ect the conversion rate. However, as x increases

to a large value, i.e., x � 4s0(1 + s), some consumers with medium and large purchase amounts

may abandon their shopping cart and the conversion rate thus decreases. In addition, we �nd from

Theorem 4 that the conversion rate decreases as the pro�t margin m (prices) increases.

Using Theorem 4 we can draw some important managerial insights, as shown in the following

theorem.

Theorem 5 The impacts of pro�t marginm and CFS threshold x on the conversion rate are described

as follows:

1. If m is constant and the p.d.f. f(�) is unimodal, then a small CFS threshold x [i.e., 0 � x �

s0(1+ s)] has greater impact on the conversion rate than a large value of x [i.e., x � 4s0(1+ s)].

2. If x is constant and the p.d.f. f(�) is unimodal, then the pro�t margin m when x is small [i.e.,

0 � x � s0(1 + s)] may or may not have greater impact on the conversion rate than that when

x is large [i.e., x � 4s0(1 + s)], which depends on the p.d.f. f(�). �

According to Theorem 5, we �nd that the impacts of x and m depend on the shape of the p.d.f.

f(�). Since many commonly-used probability density functions are unimodal, e.g., Normal, Weibull,

Johnson, Lognormal, etc., the results given in Theorem 5 should be applicable to practice. In fact,

as the CFS cuto¤ level increases within a low range, many consumers with small purchase amounts

may leave because they cannot a¤ord the shipping fee and are also unwilling to increase their purchase

amounts for free shipping. But, as x increases within a high range, most consumers with large purchase

amounts are likely to increase their order sizes for free shipping or be willing to pay for shipping fee

(which should be small compared with these consumers�purchase amounts). But, the pro�t margin
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(pricing decision) a¤ects all consumers, no matter in which range the CFS threshold x is. Summarizing

the above gives the following remark.

Remark 2 The CFS strategy should be mostly applied to acquire consumers with large order sizes,

because, as Theorem 5 indicates, the CFS threshold x�s impact on the conversion rate when x is small

is greater than that when x is large. This re�ects the fact that the CFS strategy doesn�t signi�cantly

deter consumers with large purchase amounts from their online transactions. Our result in this remark

is similar to that in Remark 1 in which the CFS strategy is also proved to be important to consumers

with large purchases but using our analytical results of consumers�purchase amounts rather than the

conversion rate. J

4 Optimal Decisions of a Single Retailer in the Monopoly Structure

In this section, we analyze the online retailer�s expected pro�t generated during a single period, and

�nd optimal pro�t margin and CFS cuto¤ level for the retailer. Since a consumer may buy nothing,

or may buy products once or multiple times, we �rst consider the repeat buying for a consumer, and

compute the probability that the consumer makes r (r = 0; 1; : : : ;1) purchases during the single

period. Next, we construct an expected pro�t function for the retailer, using our analytical result for

repeat buying and that for a consumer�s purchasing decision in a single transaction (which is obtained

in Section 3). We then maximize the expected pro�t to �nd optimal decisions for the retailer, and

perform sensitivity analysis so as to examine the impacts of some parameters on the retailer�s decisions

and also draw some important managerial insights.

4.1 Repeat Buying

We now consider the purchasing behavior of a consumer who may not place any order, or may order

products online once, or may repeat his or her purchases. We assume that, for a consumer, the number

of purchases is a Poisson-distributed random variable, i.e., the probability of r (r = 0; 1; : : : ;1)

purchases during the single period is

Pr(T = r) =
exp(��)�r

r!
, (10)
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where � denotes the consumer�s expected order frequency (i.e., expected number of purchases for a

period). The Poisson distribution and its compounded extensions with random values of �, such as

the negative binomial distribution, have been widely used to model repeat buying; see Morrison and

Schmittlein [35]. Unlike extant work, we do not account for consumer heterogeneity by letting � be a

random variable. We instead incorporate consumer heterogeneity into our model by using our results

in Theorem 4, which already account for any distribution f(�) of the parameter �.

Theorem 6 For the Poisson distribution Pr(T = r) in (10), a consumer�s expected order frequency

(i.e., expected number of purchases that a consumer makes during a period) is obtained as follows:

� =

8>>>><>>>>:
lnf1=F [x(1 +m)]g, if x � 4s0(1 + s),

lnf1=F [4s0(1 + s)(1 +m)]g, if s0(1 + s) < x < 4s0(1 + s),

lnf1=F [4x(1 +m)]g, if 0 � x � s0(1 + s). �

(11)

Theorem 6 implies that, when the online retailer increases the CFS cuto¤ level x and/or the pro�t

margin m, the consumer responds by reducing his or her order frequency.

Remark 3 Theorem 6 indicates that a consumer�s expected order frequency � is decreasing in the

CFS cuto¤ level x. We recall from Theorem 3 that the CFS cuto¤ level x a¤ects a consumer�s order

size (i.e., purchase amount), and learn from Remark 1 that the CFS strategy can induce consumers

(whose order sizes are relatively large but smaller than x dollars) to increase their purchase amounts

to qualify for free shipping. It thus follows that, as the CFS cuto¤ level x increases, a consumer�s

order size increases whereas the consumer�s order frequency decreases. J

Using (10) and (11) we can easily compute the probabilities of no purchase, one purchase and

multiple purchases, which are next used for the calculation of the retailer�s expected pro�t during a

single period.

4.2 Expected Pro�t Function of the Retailer

Given the pro�t margin m and the CFS cuto¤ level x, an integer-valued number of consumers visit

the online retailer during a single period. Like in extant marketing publications (e.g., Lewis et al.

[31]), we let all of arriving consumers compose the consumer base B (e.g., B = 1; 000 in [31]). Note

that each arriving consumer in the base B may not buy, may buy once or may buy multiple times.
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Theorem 7 The retailer�s expected pro�t is computed as,

�(m;x) =
X1

r=0
�(m;xjT = r)� Pr(T = r)� B, (12)

where �(m;xjT = r) =

Z 1

0
�i(m;x; �jT = r) � f(�)d� denotes the retailer�s expected pro�t drawn

from a consumer who places his or her orders r times; Pr(T = r) is the probability of r purchases with

the expected number � as given in Theorem 6; and Pr(T = r) � B is the number of consumers who

repeat their purchases r times. �

Next, we compute the retailer�s expected revenue and expected cost that are generated when the

retailer serves r online orders of a consumer, and then �nd the expected pro�t function �(m;xjT = r).

We notice from Theorem 3 that a consumer with parameter � may abandon his or her shopping cart

and leave without any purchase, may spend $x or $ �A to qualify for free shipping, or may spend $Â

and pay the shipping fee. Note that the CFS policy applies to a consumer�s single transaction rather

than the consumer�s aggregate amount for his or her r repeated purchases. Thus, we must calculate

�(m;xjT = r) as the retailer�s expected pro�t from a single transaction of the consumer times the

number of transactions r; that is, �(m;xjT = r) = �(m;x)� r, in which �(m;x) represents the pro�t

that the retailer attains from a single transaction of a consumer. Note that �(m;x) is computed as

the retailer�s revenue minus acquisition and shipping costs. Recalling our discussion in Section 2, we

can use pro�t margins to calculate the retailer�s revenue minus its acquisition cost. For example,

assuming that a consumer�s purchase amount is A, the retailer�s revenue is A and its acquisition cost

is A=(1 +m); thus, the retailer�s revenue minus its acquisition cost is mA=(1 +m). Next, we discuss

the calculation of the retailer�s shipping cost, which is de�ned below.

De�nition 2 Shipping cost is the amount that the retailer pays for shipping the products bought by

a consumer from stock (e.g., the retailer�s warehouse) to the consumer�s address. �

Note that �shipping cost�is di¤erent from �shipping fee�(which is given by De�nition 1). While

the shipping fee is always set by the retailer, the shipping cost may be determined by a third-party

transportation �rm (e.g., UPS, Fedex, etc.) if shipping is outsourced. In fact, regardless of whether a

consumer pays the shipping fee or quali�es for CFS, the retailer absorbs the shipping cost.

As Lewis et al. [31] showed, online retailers may subsidize the shipping fees. This means that,

even if a consumer doesn�t qualify for CFS, the shipping fee paid by the consumer may be lower than
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the shipping cost incurred by the retailer. Actually, the retailer may treat the shipping fee (paid by

consumers) as a source of its revenue, and thus choose the shipping fee that is higher than the shipping

cost incurred by the retailer. Using a non-negative parameter k, we can compute the shipping cost

K(A) for delivering products worth $A as

K(A) = k � S(A) = k(s0 + sA), (13)

where S(A) is given in (4), and the parameter k may be greater than, equal to or smaller than 1. If

k > 1, then the retailer subsidizes the shipping for consumers who spend $A but do not qualify for

CFS. If k = 1, then the shipping cost K(A) is equal to the shipping fee S(A); there is no shipping

subsidization. Otherwise, if 0 � k < 1, then the shipping fee paid by a consumer is higher than the

shipping cost incurred by the retailer who thus bene�ts from shipping products to the consumer. The

shipping cost function (13) has been used by some scholars such as Baumol and Vinod [8].

Using �(m;x) we re-write �(m;x) in (12) as

�(m;x) =
X1

r=0
�(m;x)� r � Pr(T = r)� B =�(m;x)� �(�)� B, (14)

Since a consumer�s purchase amount depends on the value of the CFS cuto¤ level x, as indicated by

Theorem 3, we need to calculate �(m;x) for each of three scenarios: x � 4s0(1 + s), s0(1 + s) <

x < 4s0(1 + s), and 0 � x � s0(1 + s). For our detailed discussion about these three scenarios, see

Appendix C.

4.3 Numerical Example and Sensitivity Analysis

In order to �nd optimal decisions for the retailer, we should compare the maximum values of �(m;x)

in the three scenarios above. Next, we provide a numerical example to illustrate our analysis.

Example 1 We assume that the �xed shipping fee per shipment is s0 = $1, and the variable shipping

fee per dollar value is s = $0:1. The consumer base is B =1; 000, the parameter k = 1:1 and the

consumer parameter � is a normally-distributed r.v. with mean � = 30 and standard deviation � = 5.

We consider the three scenarios discussed in Appendix C, and �nd the optimal pro�t margin and CFS

cuto¤ level as 1:038 and $4:63, respectively, which result in the maximum pro�t $16; 194:34. J
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Next we will perform sensitivity analyses to examine the impacts of four important parameters�

i.e., �xed shipping fee s0, variable (per dollar) shipping fee s, the parameter k, and the standard

deviation � of the random variable �� on the retailer�s optimal decisions and maximum pro�t. In

particular, we investigate how the retailer�s optimal decisions and maximum pro�t change when the

parameters (s0; s; k; �) vary around their base values (1; 0:1; 1:1; 5) used in Example 1. Note that, since

the rate k is used to compute the shipping cost K(A) = k(s0 + sA) according to (13), the parameters

s0, s and k are all related to the impacts of shipment. We consider the sensitivity analysis of � in

order to examine the impacts of consumer heterogeneity.

Our computational results are presented in Table 1 (which is given in Appendix D). Using the

data in Table 1, we plot twelve graphs (given in Figure 2) to help discuss managerial insights.

Figure 2: The impacts of the �xed shipping fee s0, variable shipping fee s, the parameter k and the stan-
dard deviation � on the retailer�s optimal CFS cuto¤ level x�, optimal pro�t margin m� and maximum pro�t
��(m�; x�).
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4.3.1 Impacts of s0 and s

We begin by examining the e¤ect of the �xed shipping fee s0 on the retailer�s optimal decisions and

maximum pro�t. In this sensitivity analysis, we increase the value of s0 from 0 to 7.5 in increments of

0.5, and compute optimal solutions and maximum pro�t for each value of s0. We �nd from Figure 2(a)

that, as the �xed shipping fee s0 increases, the retailer should accordingly raise the CFS cuto¤ level

to reduce its shipping-related expenses, which may, but, prevent some consumers from buying online.

In order to keep some of those purchases, the retailer has to decrease the pro�t margin and thus the

prices of all products; see Figure 2(b). Nevertheless, as Figure 2(c) indicates, the retailer�s pro�t still

decreases; this implies that increasing the �xed shipping fee always inevitably harms the performance

of the retailer who cannot change its decisions to eliminate the negative impacts. Especially, when s0

is very large (e.g., s0 � 5:5), the retailer�s pro�t is very close to zero.

In addition, Figures 2(a) to (c) indicate that the retailer�s optimal CFS threshold is almost concave,

increasing in s0, but its optimal pro�t margin and maximum pro�t are almost convex, decreasing in

s0. This means that the impacts of s0 when its value is large are greater than that when its value is

small.

The sensitivity analysis of the variable shipping fees s yields some interesting results. We increase

the value of s from 0 to 0.7 in steps of 0.05. From Figure 2(d) we �nd that increasing the value

of s forces the retailer to increase its optimal CFS cuto¤ level. However, as Figure 2(e) shows, the

impacts of s on pro�t margin change as s increases. More speci�cally, when s is su¢ ciently small

(e.g., s � 0:2), increasing the value of s leads the retailer to slowly increase its CFS threshold and

also slightly increase the pro�t margin. This happens because of the following fact: When per dollar

shipping fee s increases in the range [0; 0:2], the consumers with small purchase amounts may not be

willing to pay for the higher shipping fee and thus leave without any purchase. The retailer should not

respond by setting a low CFS cuto¤ level to absorb the shipping fee for those small orders, because a

low CFS threshold would otherwise result in more shipping expenses (only for small orders) and less

pro�t. Thus, in order to compensate for the loss of consumers with small orders, the retailer has to

slightly raise its pro�t margin, which should not signi�cantly impact the consumers with medium or

large purchase amounts because most of these consumers qualify for the free shipping.

When the variable shipping fee s is large (e.g., s � 0:2), increasing s results in a rise in optimal

CFS cuto¤ level and a reduction in optimal pro�t margin. Moreover, compared with the changes
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of optimal solutions when s is small, increasing the large value of s more signi�cantly impacts the

retailer�s decisions. This can be justi�ed as follows: if a low CFS cuto¤ level applies, then the large

value of per dollar shipping fee s lets the retailer have very high shipping expenses. To reduce these,

the retailer should raise its CFS cuto¤ level, which may, but, deter some consumers with medium or

large orders from completing online transactions. The retailer then responds by reducing its pro�t

margin to attract those consumers who may leave because of a higher CFS threshold. Referring to

Figure 2(f), we �nd that increasing s nonetheless deteriorates the retailer�s performance no matter

how the retailer responds to a higher value of s.

4.3.2 Impacts of k

We now investigate how changing the rate k impacts the retailer�s optimal decisions and its maximum

pro�t. For the sensitivity analysis, the value of k is increased from 0.5 to 2.0 in increments of 0.1. Note

that, as discussed in Section C.1, the value of the rate k depends on whether the retailer subsidizes

the shipment for consumers or treats the shipping fee as a source of its operating revenue. More

speci�cally, if the retailer hopes to increase its revenue from shipping, then k < 1; if the shipping cost

incurred by the retailer is the same as the shipping fee paid by consumers, then k = 1; otherwise, if

the retailer shares a part of shipping cost with consumers who don�t qualify for the free shipping, then

k > 1.

From Figure 2(g) we �nd that, as k increases, the retailer�s CFS cuto¤ level �rst decreases but

then increases. This interesting result re�ects the following fact: When k is smaller than 1, the

retailer earns revenue from shipping when consumers pays for the shipment; but, some consumers may

abandon their shopping carts because of the high shipping fee. Thus, in order to entice the consumers

to place online orders, the retailer has to reduce its CFS cuto¤ level. However, increasing the value of

k reduces the retailer�s revenue; so, the retailer increases its pro�t margin, as shown in Figure 2(h).

When k is greater than 1 but is not very high (i.e., k � 1:6), the retailer shares shipping cost with

consumers who don�t qualify for the free shipping. Thus, as k increases in the range [1; 1:6], the retailer

experiences a smaller di¤erence between the retailer�s shipping payment when a consumer quali�es for

the free shipping and that when the consumer doesn�t qualify for the free shipping. This implies that

reducing the CFS cuto¤ level doesn�t bring signi�cantly high shipping expense to the retailer. As a

result, the retailer is willing to decrease the CFS threshold to attract more consumers. To ensure its
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pro�tability, the retailer still increases its pro�t margin, as indicated by Figure 2(h).

When k is very high (i.e., k > 1:6), we �nd that the retailer increases its CFS cuto¤ level, which

di¤ers from the retailer�s free-shipping decision when k � 1:6. This occurs because of the following

reason. Note that the retailer�s cost savings generated when a consumer with purchase amount A � x

doesn�t qualify for free shipping is actually the shipping fee S(A) = K(A)=k according to (13). This

means that, when k is very large, the retailer�s bene�t from the CFS strategy is reduced. As a

consequence, the retailer is willing to increase its CFS cuto¤ level. But, the retailer still shares

considerable shipping costs with the consumers with very large order sizes, thus increasing its pro�t

margin as shown in Figure 2(h).

From Figure 2(i) we �nd that, as in the case of s0 and s, the retailer�s pro�t decreases in k. This

happens because increasing the value of k makes the retailer incur more shipping expenses no matter

how the retailer behaves. Observing Figure 2(a)�(i), we �nd that, among the three shipping-related

parameters, the impacts of s0 are the largest whereas the impacts of k are the smallest. This suggests

that reducing s0 could be more useful to increase the retailer�s operating pro�t, which is observed in

the practice of many online retailers (e.g., HayHouse.com, HermeticKa.com, etc.) that don�t charge

�xed shipping fee.

4.3.3 Impacts of �

For this sensitivity analysis, the value of � is increased from 4 to 18 in increments of 1. As shown in

Figure 2(j), the numerical results suggest that the heterogeneity of consumers (measured by �) a¤ects

the retailer�s free-shipping decision; more speci�cally, as the value of � increases, the retailer should

increase its CFS threshold. This means that, in a relatively homogeneous market (i.e., � is small), the

retailer should set a low cuto¤ level. In relatively heterogeneous markets (i.e., � is large), the retailer

should choose a high cuto¤ level. Figure 2(k) indicates that the retailer�s pro�t margin decision is

unimodal in �. That is, when � is small (e.g., � � 7) and the market is still relatively homogeneous,

increasing � results in a few more consumers with small order sizes and also a few more consumers

with large order sizes. Those consumers with small order sizes may be deterred by the CFS threshold

from their online purchases. In order to ensure its pro�tability, the retailer has to increase its pro�t

margin. However, when � is large (e.g., � > 7) and the market is relatively heterogeneous, the retailer

raises its CFS cuto¤ level as a result of increasing �, which may deter a number of consumers from
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their online transactions. To reduce this impact, the retailer needs to decrease its pro�t margin to

keep consumers. Our study also indicates [see Figure 2(l)] that, the retailer can bene�t more from

homogeneous markets than from heterogeneous ones.

5 Competition between Two Retailers in the Duopoly Structure

In this section, we consider a duopoly problem in which two online retailers (i.e., Retailers 1 and

2) sell identical products to consumers in a common market. These two retailers choose their pro�t

margins and CFS cuto¤ levels to compete for consumers. For online retailing operations, we notice the

following two facts: (i) consumers�search costs are lower in online (virtual) markets than in traditional

(physical) ones (see, e.g., Bakos [6]); (ii) the majority of online consumers are more likely to go to

a comparison shopping site rather than directly to a web-based store (see, e.g., LeClaire [28]). As a

result, the competition among online retailers should be higher than that among the brick-and-mortar

stores.

Because of the above two facts, consumers can cheaply and conveniently visit two retailers before

they make their purchasing decisions. Accordingly, we can assume that both retailers�pricing and

free-shipping information is known to each consumer, who maximizes his or her net surplus (de�ned in

Section 3.1) to determine an optimal purchase amount and make a single or multiple online transactions

with either Retailer 1 or Retailer 2. Recall from Section 4 that, when a consumer with parameter �

visits a single retailer in the monopoly structure, the consumer�s optimal purchase amount is calculated

as shown in Theorem 3. Now, we consider the consumer�s optimal purchasing decision in the duopoly

structure, and compute the equilibrium pro�t margins and CFS thresholds for two retailers.

In the duopoly structure, Retailer i (i = 1; 2) announces its pro�t margin mi and CFS threshold xi

to consumers in a market. The �xed and variable shipping fees of Retailer i (i = 1; 2) are denoted by

s
(i)
0 and s(i); thus, the shipping fee of a consumer with purchase amount A at Retailer i is S(i)(A) =

s
(i)
0 + s(i)A. Moreover, we denote by k(i) (i = 1; 2) the parameter in Retailer i�s shipping cost function

(13). For the duopoly case, the consumer with speci�c parameter � needs to compare his or her

maximum net surpluses generated from purchasing at Retailers 1 and 2. Note that we can compute

the consumer�s maximum net surplus from a single retailer (i.e., Retailer i, i = 1; 2) by using the

consumer�s optimal purchase amount A� given in Theorem 3. After comparing maximum net surpluses

at the two retailers, the consumer decides to make online transaction(s) with the retailer at which his
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or her net surplus is higher. If the consumer�s net surpluses from buying at two retailers are equal, then

we assume that the consumer chooses Retailer 1 with the probability  (0 �  � 1) and Retailer 2 with

the probability 1�. The probability of choosing a retailer can be determined based on the preference

of the consumer for each online retailer, which depends on the consumer�s subjective perception of

each retailer�s brand name (Smith and Brynjolfsson [40]), web-site usability (Montgomery et al. [34]

and Venkatesh and Agarwal [44]), his or her shopping habit (Reibstein [38]) and experience (Johnson

et al. [25]), etc.

According to the above discussion, we should use Nash equilibrium to characterize optimal decisions

of Retailers 1 and 2 for the duopoly problem. We denote Retailer i�s equilibrium pro�t margin and

CFS threshold respectively by mN
i and xNi , for i = 1; 2. Note that our game is similar to Bertrand

game [9] in which two retailers make their pricing decisions to compete for consumers; however, in our

game, we also consider the CFS decisions.

Theorem 8 If s(1)0 = s
(2)
0 and s(1) = s(2), then two retailers� equilibrium pro�t margins and CFS

cuto¤ levels are identical, i.e., mN
1 = m

N
2 and x

N
1 = x

N
2 . �

We learn from Theorem 8 that the two retailers should choose similar pro�t margins and CFS

cuto¤ levels when they charge consumers the same shipping fees. This result may explain the actual

strategies of Amazon.com and Barnesandnoble.com� which charge very similar shipping fees (see, e.g.,

Dinlersoz and Li [19])� set same CFS cuto¤ levels (currently, $25) and also determine very similar

pro�t margins (see, e.g., Chevalier and Goolsbee [14]).

One may notice from the proof of Theorem 8 that our analysis for the duopoly structure is very

complicated because we should consider the consumer�s decision for nine cases each corresponding to

one of three ranges of x1 and one of three ranges of x2. Moreover, in each case, there is a large number

of possibilities for the position of �. Thus, it is unrealistic to analytically solve our game; instead, we

have to develop a simulation approach to �nd the equilibrium solutions.

In this section, we construct a simulation model by using �Arena�, which is a primary simulation

software in industry, and then use �OptQuest�� an optimization add-in for Arena� to �nd the optimal

(equilibrium) decisions for the two retailers. This software has been previously used in academic

research by, for example, Aras et al. [4] and Askin and Chen [5]. For more information regarding

�Arena�and �OptQuest�, see, e.g., Kelton et al. [27]. We present our simulation framework in detail

in Appendix E.
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Next, we provide two numerical examples to illustrate our simulation approach. As Theorem 8

indicates, the two retailers�equilibrium decisions are identical when their �xed and variable shipping

fees are identical, i.e., s(1)0 = s
(2)
0 and s(1) = s(2). To illustrate this result, we �rst consider an example

in which two retailers have equal �xed and variable shipping fees, and use simulation to �nd Nash

equilibrium. Then, we consider another example in which two retailers have di¤erent �xed and variable

shipping fees.

Example 2 We now consider a duopoly structure in which Retailers 1 and 2 determine their pro�t

margins and CFS thresholds to compete for consumers. We assume that the two retailer set identical

�xed and variable shipping fees as s0 = $1 and s = $0:1. As in Example 1, we assume that the

consumer base is B =1; 000, and the consumer parameter � is a normally-distributed r.v. with mean

� = 30 and standard deviation � = 5. Moreover, we assume that, in the shipping cost functions (13)

for Retailers 1 and 2, k1 = 1:1 and k2 = 0:5. When a consumer can draw the same net surpluses

from buying at either retailer, we assume that the consumer buys from Retailer 1 with the probability

 = 0:6, and buys from Retailer 2 with the probability 1� = 0:4. From Example 1 we learn that the

Retailer 1�s optimal monopolistic pro�t margin and CFS cuto¤ level are 1:038 and $4:63, respectively.

We also �nd that the Retailer 2�s optimal monopolistic pro�t margin and CFS cuto¤ level are 0:9311

and $4:704, respectively.

Using our simulation approach (presented in Appendix E) we perform 11 simulations (for detailed

results, see Appendix F.1), and �nd that the two retailers�equilibrium decisions are as follows: mN
1 =

mN
2 = 0:8750 and x

N
1 = x

N
2 = 4:846. The resulting pro�ts are $8; 749:31 for Retailer 1 and $9; 333:49

for Retailer 2. J

The above example indicates that, when the two retailers��xed and variable shipping fees are the

same, their equilibrium decisions should be equal, as shown in Theorem 8. In fact we use our simulation

approach in Example 2 to solve a large number of games with di¤erent parameter values. We �nd that

two retailers always choose identical equilibrium decisions, in agreement with our analytical results in

Theorem 8. Since these results hold even when k1 6= k2, it follows that the retailers may have di¤erent

pro�ts regardless of implementing identical shipping and pricing policies. A retailer may be more

pro�table by using shipping fees as a source of revenue than by subsidizing shipping even when its

shipping costs are high. In addition, when we compare Examples 1 and 2, we �nd that the competition

in the duopoly structure �forces�the two retailers to decrease their pro�t margins (i.e., prices of their
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products) but increase their CFS cuto¤ levels. These important managerial insights also hold for all

of other games that we simulated.

Next, we provide another example to show that the two retailers�equilibrium solutions may not

be identical when their �xed and variable shipping fees are unequal.

Example 3 We again consider Example 2 but only change Retailer 2�s �xed and variable shipping

fees to s0 = $2 and s = $0:2. We then calculate Retailer 2�s optimal decisions for the monopoly

structure as m�
2 = 0:2417 and x�2 = $9:6. We perform 13 simulations (see Appendix F.2 for our

simulation results) to �nd the equilibrium solutions as mN
1 = 0:6591, x

N
1 = 10:114; and m

N
2 = 0:6898,

xN2 = 16:139. The resulting pro�ts are $7119:38 for Retailer 1 and $16; 997:46 for Retailer 2. J

Our result in Example 3 suggests that, when the two retailers�shipping fees are di¤erent, they

should make asymmetric equilibrium decisions. Moreover, when we compare Examples 2 and 3, we

�nd that the retailer with higher shipping fees (i.e., Retailer 2 in our Example 3) may increase both

its pro�t margin and CFS cuto¤ level. If we assume that pro�t margins and prices are positively

correlated, then our results would agree with those of Dinlersoz and Li [19] who empirically found that

shipping fees and prices, and explained this correlation as a result of imperfect consumer information.

Our model and results suggest that this positive correlation may also arise because of competitive

e¤ects even under perfect consumer information.

Example 3 also suggests that, in the duopoly structure, a retailer should achieve more pro�ts from

insensitive consumers than from highly sensitive consumers. This insight is drawn from the following

result in Example 3: Retailer 2 with higher shipping fees sets a higher cuto¤ level but its pro�t margin

is not signi�cantly di¤erent from Retailer 1�s pro�t margin. As a consequence, Retailer 2 obtains a

signi�cantly higher pro�t than Retailer 1, even though the two retailers� shipping policies in terms

of k1 and k2 are the same. It thus follows that we can attribute the result (about the pro�ts) to the

di¤erence between the shipping fees of the two retailers. Because of the fact that higher shipping

fees and cuto¤ levels deter shipping-sensitive consumers, we can conclude that, in Example 3, most

consumers who buy from Retailer 2 should be insensitive to shipping fees; and thus, Retailer 2 could

pro�t more from serving fewer shipping fee-sensitive consumers.
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6 Summary and Concluding Remarks

This paper contributes to the body of literature on shipping promotions by exploring the managerial

implications and optimality of joint pricing (pro�t margin) and CFS decisions during a single period.

We investigated this problem by considering both monopoly and duopoly structures. After analyzing a

consumer�s purchase decision given an online retailer�s pricing and CFS decisions, we then considered

the monopoly structure and found the optimal pro�t margin and CFS cuto¤ level that maximize a

retailer�s single-period expected pro�t. We performed sensitivity analysis to examine the impacts of

shipping- and consumer heterogeneity-related parameters on the retailer�s decisions and pro�t. Then,

we considered the duopoly structure, and used Arena and OptQuest to �nd Nash equilibria for several

duopolistic games.

Next, we summarize major managerial insights that we have drawn analytically and numerically.

1. The main managerial insights based on our analytical results include:

(a) An online retailer�s CFS strategy is useful to acquire consumers with large order sizes; this

implies that the retailer should mainly consider the CFS strategy to entice the consumers

whose purchase amounts are large. This result is supported by Lewis et al.�s empirical

study [31].

(b) An online retailer�s CFS strategy when the CFS cuto¤ level is small has greater impact on

the conversion rate than that when the CFS cuto¤ level is large.

This result also demonstrates our result (a), because of the following facts: the CFS strategy

when the CFS cuto¤ level is small largely deters the consumers with small order sizes from

their online purchases whereas that when the CFS cuto¤ level is large doesn�t signi�cantly

impact the consumers with large order sizes. Thus, our result regarding the impact of CFS

strategy on the conversion rate also implies that the CFS strategy should be mainly used

to acquire consumers with large order sizes.

(c) An online retailer�s pro�t margin (pricing decision) when the CFS threshold is small may

or may not have greater impact on the conversion rate than that when the CFS cuto¤ level

is large, which depends on the preference and incomes of consumers [i.e., the p.d.f. f(A)].

(d) In the duopoly structure, if the two retailers��xed shipping fees are equal and their variable

shipping fees are also equal, then the retailers should determine identical equilibrium deci-

sions. This result is exempli�ed by the practice of Amazon.com and Barnesandnoble.com
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which set very similar shipping fees (see, e.g., Dinlersoz and Li [19]), the same CFS cuto¤

level $25 and very similar pro�t margins (Chevalier and Goolsbee [14]).

2. The main managerial insights based on our numerical results (i.e., sensitivity analysis, and

computer simulation with Arena and OptQuest) include:

(a) Among three shipping-related parameters (i.e., s0, s and k), the �xed shipping fee s0 has

the largest impacts on the retailer�s pro�t. This suggests that reducing s0 should be most

useful to increase the retailer�s operating pro�t, which is justi�ed by the practice that many

online retailers (e.g., HayHouse.com, HermeticKa.com, etc.) set their �xed shipping fee to

zero. For more discussion, see Section 4.3.1.

(b) If an online retailer�s variable shipping fee is signi�cantly small, then increasing such a fee

should lead the retailer to slightly raise both CFS cuto¤ level and pro�t margin. However,

if the variable shipping fee is signi�cantly large, then increasing the fee should result in

raising the CFS cuto¤ level but decreasing the pro�t margin. For our justi�cation, see

Section 4.3.1.

(c) If an online retailer treats the shipping fee as a source of its operating revenue, i.e., k < 1,

then we �nd that, when k increases (that is, the retailer�s revenue from shipping decreases),

the retailer should reduce its CFS cuto¤ level but raise its pro�t margin.

However, if the retailer is willing to subsidize the shipment for consumers, i.e., k > 1,

then increasing k results in a higher CFS cuto¤ level and a higher pro�t margin. For our

justi�cation, see Section 4.3.2.

(d) An online retailer should set a low cuto¤ level in a relatively homogeneous market and a

high cuto¤ level in a relatively heterogeneous market. Moreover, the retailer can bene�t

more from homogeneous markets than from heterogeneous ones. For more discussion, see

Section 4.3.3.

(e) In the duopoly structure, if the two retailers have equal �xed and variable shipping fees,

then they should choose identical equilibrium decisions. This supports our analytical result

(d). As a result of the competition, both retailers decrease their pro�t margins but increase

their CFS cuto¤ levels. However, if two retailers� �xed and variable shipping fees are

unequal, then they may not determine identical equilibrium decisions. For a more detailed

discussion, see Section 5.
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In the future, we may extend this work to consider some supply chain-related problems. For

instance, we could incorporate inventory costs into our pricing and CFS decision model and investigate

how online retailers make their ordering, pricing, and shipping promotion decisions. In addition,

considering the competition between online retailers and brick-and-mortar stores may be of particular

interest because the presence of physical stores signi�cantly in�uences the purchasing decisions of

customers. In reality, a consumer may choose between picking up the products from a local store

and increasing the size of the online order to qualify for free shipping. Teltzrow et al. [41] showed

that 75% of customers prefer the option of picking up their goods at a local brick-and-mortar store.

Furthermore, the retailers may choose to list their products at some third-party web sites such as

shopping.com or yahoo.com. The costs of employing third-party web sites and/or third-party physical

stores di¤er from the costs of using proprietary web sites, as found by Chen et al. [13].
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Appendix A Proofs of Theorems

Proof of Theorem 1. We �rst �nd optimal purchase quantities �qi (i = 1; 2; : : : ; n) that maximize

the net surplus function G1 of a consumer with parameters �i (i = 1; 2; : : : ; n) who quali�es for CFS.

Taking the �rst- and second-order derivatives of G1 w.r.t. qi (i = 1; 2; : : : ; n) gives

@G1
@qi

=
�i
2
p
qi
� (1 +m)ci and

@G21
@2qi

= � �i
4qi
p
qi
< 0, (15)

which implies that G1 is concave in the purchase quantity qi. To �nd the optimal quantity �qi that

maximizes G1, we set @G1=@qi to zero, solve the resulting equation, and �nd that

�qi =
�2i

4(1 +m)2c2i
;

and the consumer�s total purchase amount (in terms of �qi, i = 1; 2; : : : ; n) for a single online transaction,

according to (3), is
�A � (1 +m)

Xn

i=1
ci�qi =

1

4(1 +m)
�,

where � �
Pn
i=1 �

2
i =ci denotes the consumer�s random consumer-speci�c utility parameter (for all

products) in his or her net surplus. Note that the consumer-speci�c parameter � is a random variable,

since �i (i = 1; 2; : : : ; n) are random. If the probability distribution functions (p.d.f.) of �i (i =

1; 2; : : : ; n) are given, we can then �nd the p.d.f. of the r.v. �. To compute the maximum net surplus
�G1, we substitute �qi into the function �G1 and �nd

G�1 =
Xn

i=1

�2i
4(1 +m)ci

=
1

4(1 +m)
�,

which is equal to �A.

Next, we maximize the function G2 to �nd optimal purchase quantities q̂i (for i = 1; 2; : : : ; n)

and purchase amount Â, when the consumer doesn�t qualify for the free shipping and thus has to

absorb the shipping fee S(Â) in which Â � (1+m)
Pn
i=1 ciq̂i. We compute the �rst- and second-order

derivatives of G2 w.r.t. qi (i = 1; 2; : : : ; n) as,

@G2
@qi

=
�i
2
p
qi
� (1 + s)(1 +m)ci and

@G22
@2qi

= � �i
4qi
p
qi
< 0,

which implies that G2 is concave in the purchase quantity qi. To �nd the optimal quantity q̂i that

maximizes G2, we set @G2=@qi to zero, solve the resulting equation, and �nd that

q̂i =
�2i

4(1 + s)(1 +m)2c2i
,
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and corresponding optimal purchase amount as

Â � (1 +m)
Xn

i=1
ciq̂i =

�

4(1 + s)(1 +m)
=

�A

1 + s
.

Substituting q̂i into the function G2 gives

G�2 =
�

4(1 + s)(1 +m)
� s0.

Proof of Theorem 2. We �rst consider the properties of G1 w.r.t. A. Using (3) we take the

second-order derivative of G1 w.r.t. the purchase amount A and �nd

@G21
@2A

= � 1

4(1 +m)2

Xn

i=1

�i
c2i qi

p
qi
< 0,

which means that G1 is concave in the purchase amount A. As indicated by Theorem 1, the optimal

purchase amount �A maximizing G1 is given by (7).

Similarly, taking the second-order derivative of G2 w.r.t. the purchase amount A gives

@G22
@2A

= � 1

4(1 +m)2

Xn

i=1

�i
c2i qi

p
qi
< 0,

which is the same as @G21=@
2A. This means that G2 is also concave in the purchase amount A. As

indicated by Theorem 1, the optimal purchase amount Â maximizing G2 is given by (9).

Proof of Theorem 3. We perform our analysis according to the four cases indicated by Figure 1.

1. In Cases (i) and (ii), x � �A and the consumer�s optimal purchase amount is A� = �A. Therefore,

we can easily �nd that, if � � 4x(1 +m), then A� = �A = �=[4(1 +m)].

2. In Case (iii), x > �A and G�2 � G1jA=x. For this case, if G1jA=x � 0, then the consumer makes
a purchase; but, if G1jA=x < 0, then the consumer leaves the retailer without any purchase.

Hence, when x > �A, G1jA=x � 0 and G�2 � G1jA=x, the consumer�s optimal purchase amount is
A� = x. Next, we specify these three conditions. The condition that x > �A can be re-written as

� < 4x(1 +m). (16)

From (21) we �nd that G1jA=x � 0 when

� � x(1 +m). (17)

According to our above analysis for Case (iii), we �nd that G�2 � G1jA=x depends on the
comparison between x and s0. Speci�cally, if x < s0, then G�2 � G1jA=x when

� � 4(1 +m)(1 + s)[
p
(1 + s)x+

p
sx+ s0]

2; (18)
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otherwise, if x � s0, then G�2 � G1jA=x when

� � 4(1+m)(1+s)[
p
(1 + s)x+

p
sx+ s0]

2, or, � � 4(1+m)(1+s)[
p
(1 + s)x�

p
sx+ s0]

2. (19)

Hence, we consider the following issues: when x < s0, we �nd that, if � satis�es (18), then �

cannot satisfy (16). This means that, if x < s0, then Case (iii) doesn�t happen.

When x � s0, we �nd that Case (iii) applies if and only if

x(1 +m) � 4(1 +m)(1 + s)[
p
(1 + s)x�

p
sx+ s0]

2,

or simply,

0 � sx+ (1 + s)(3x+ 8sx+ 4s0)� 8(1 + s)
p
(1 + s)x

p
sx+ s0,

which requires that

x � 4s0(1 + s).

This means that, if x � 4s0(1 + s), then Case (iii) happens, and the consumer spends $x. But,
from (16) and (19), we �nd that we need to compare x and (1+ s)[

p
(1 + s)x�

p
sx+ s0]

2. Our

comparison shows that, for Case (iii),

x > (1 + s)[
p
(1 + s)x�

p
sx+ s0]

2,

which implies that, if x � 4s0(1 + s), then the consumer spends $x only when

x(1 +m) � � � 4(1 +m)(1 + s)[
p
(1 + s)x�

p
sx+ s0]

2;

otherwise, if x < 4s0(1 + s), then the consumer abandons his or her shopping cart.

3. In Case (iv), x > �A and G�2 > G1jA=x. For this case, if G�2 � 0, then the consumer makes a

purchase; but, if G�2 < 0, then the consumer leaves without any online purchase. Hence, when

x > �A, G�2 � 0 and G�2 > G1jA=x, the consumer�s optimal purchase amount is A� = Â. Next,
we specify these three conditions. The condition that x > �A can be re-written as (16).

From (9) we �nd that G�2 � 0 when

� � 4(1 +m)(1 + s)s0. (20)

Comparing (16) and (20) suggests that x > (1 + s)s0.

Similar to our above analysis, we �nd that G�2 > G1jA=x depends on the comparison between x
and s0. Speci�cally, if x < s0, then G�2 > G1jA=x when

0 � � < 4(1 +m)(1 + s)[
p
(1 + s)x+

p
sx+ s0]

2;

otherwise, if x � s0, then G�2 > G1jA=x when

4(1 +m)(1 + s)[
p
(1 + s)x�

p
sx+ s0]

2 < � < 4(1 +m)(1 + s)[
p
(1 + s)x+

p
sx+ s0]

2.
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Because x > (1 + s)s0, we don�t need to consider the case that x < s0. When x > (1 + s)s0, we

�nd that, if x � 4s0(1 + s), then x > �A, G�2 � 0 and G�2 > G1jA=x when

4(1 +m)(1 + s)[
p
(1 + s)x�

p
sx+ s0]

2 < � < 4x(1 +m),

otherwise, if (1 + s)s0 < x < 4s0(1 + s), then x > �A, G�2 � 0 and G�2 > G1jA=x when

4(1 +m)(1 + s)s0 < � < 4x(1 +m).

In conclusion, we reach the result as shown in this theorem.

Proof of Theorem 4. Given that the r.v. � is distributed with p.d.f. f(�) and c.d.f. F (�), we
can easily �nd from Theorem 3 that the probability that the consumer with the speci�c parameter �

doesn�t make any purchase is

Pr(A = 0) =

8><>:
R x(1+m)
0 f(�)d�, if x � 4s0(1 + s),R 4s0(1+s)(1+m)
0 f(�)d�, if s0(1 + s) < x < 4s0(1 + s),R 4x(1+m)
0 f(�)d�, if 0 � x � s0(1 + s).

Thus, we can compute the probability Pr(A > 0) = 1� Pr(A = 0), as shown in this theorem.

Proof of Theorem 5. The �rst-order derivative of the probability Pr(A > 0) w.r.t. x is

@ Pr(A > 0)

@x

=

8><>:
�(1 +m)f [x(1 +m)], if x � 4s0(1 + s),
0, if s0(1 + s) < x < 4s0(1 + s),

�4(1 +m)f [4x(1 +m)], if 0 � x � s0(1 + s),

which implies that the probability Pr(A > 0) is non-increasing in the CFS cuto¤ level x. We notice

that, when x � 4s0(1+s), the �rst-order derivative is �(1+m)f [x(1+m)]; but when 0 � x � s0(1+s),
the �rst-order derivative is �4(1 + m)f [4x(1 + m)]. Moreover, we �nd that the impacts of x when
x = s0(1 + s) and that when x = 4s0(1 + s) are the same. In order to compare the impact of x

when x > 4s0(1 + s) and that when 0 < x < s0(1 + s), we can arbitrarily consider the CFS cuto¤

level x1 2 (4s0(1 + s);1). If we assume that the p.d.f. of x is unimodal with two tails, then we can
always �nd a corresponding value x2 2 (0; s0(1 + s)) such that f [4x2(1 +m)] = f [x1(1 +m)]. Thus,
�4(1 +m)f [4x2(1 +m)] < �(1 +m)f [x1(1 +m)]; this means that the impact of x when x = x2 is

greater than that when x = x1. Therefore, we have the conclusion as in the �rst item of the theorem.
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The �rst-order derivative of the probability Pr(A > 0) w.r.t. m is

@ Pr(A > 0)

@m

=

8><>:
�xf [x(1 +m)], if x � 4s0(1 + s),
�4s0(1 + s)f [4s0(1 + s)(1 +m)], if s0(1 + s) < x < 4s0(1 + s),

�4xf [4x(1 +m)], if 0 � x � s0(1 + s),

which implies the decreasing property of the probability Pr(A > 0). We �nd that, as x decreases,

the pro�t margin m�s impact on the conversion rate when x is small [i.e., 0 � x � s0(1 + s)] may be
larger. This di¤ers from our above analysis, because, for any large value m1, we cannot ensure to �nd

a corresponding small value m2 such that f [4x(1 + m2)] = f [x(1 + m1)]. [Note that the minimum

value of m is zero and the corresponding the p.d.f. is f(4x).]

Proof of Theorem 6. From Theorem 4 we can �nd the probability Pr(A > 0), which is the

probability that the consumer buys online. For the Poisson distribution Pr(T = r) in (10), we can

compute the probability of no purchase (i.e., r = 0) as

Pr(T = 0) = exp[��(�)].

Equating exp[��(�)] to the probability Pr(A = 0) = 1�Pr(A > 0) where Pr(A > 0) is obtained from
Theorem 4, we can compute the consumer-speci�c parameter �(�), as shown in this theorem.

Proof of Theorem 7. We denote by �i and ri the parameters for the purchase amount and number

of purchases of consumer i. Let �i(m;xj�i; ri) be the pro�t that the retailer draws from consumer i

for given values of the random parameters �i and ri.

We then compute �(m;x) as,

�(m;x) = E

" BX
i=1

�i(m;xj�i; ri)
#
=

BX
i=1

E[�i(m;xj�i; ri)].

Using the law of iterated expectations, we have

�(m;x) =
BX
i=1

E [E [�i(m;xj�i; ri)j�i]]

=

BX
i=1

E
hX1

ri=0
�i(m;xj�i; ri)� Pr(ri)

i
.
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Then, using the law of conditional probability, we �nd that

�(m;x) =
BX
i=1

Z X1

ri=0
�i(m;x; �ijri)� f(�i)� Pr(ri)d�i,

= B
Z X1

ri=0
�i(m;x; �ijri)� Pr(ri)� f(�i)d�i

=

Z X1

ri=0
�i(m;x; �ijri)� f(�i)d�i � Pr(ri)� B

=
X1

ri=0

Z
�i(m;x; �ijri)� f(�i)d�i � Pr(ri)� B

=
X1

r=0
�(m;xjT = r)� Pr(T = r)� B.

This proves the theorem.

Proof of Theorem 8. We now analyze the two retailers�optimal decisions when the parameters

in their shipping fee functions are equal. For notational simplicity, we set s0 � s
(1)
0 = s

(2)
0 and

s � s(1) = s(2). For the duopoly case, a consumer makes his or her purchasing decision when two

retailers (i.e., Retailer i, i = 1; 2) sell identical products online. Thus, we need to compare the

consumer�s maximum net surpluses from buying at either of the two retailers, and �nd the optimal

purchase amount A� that maximizes the consumer�s overall net surplus. Theorem 3 indicates that,

for a monopoly scenario, the consumer�s purchasing decision depends on the value of x and we thus

need to consider three cases for the monopoly structure. Now, in the duopoly structure, two retailers�

CFS cuto¤ levels x1 and x2 may be di¤erent; as a result, we should analyze the consumer�s decision

for nine cases each corresponding to one of three ranges of x1 and one of three ranges of x2.

We �rst analyze the two retailers�pro�t margin decisions for any given pair of x1 and x2, and show

that, to compete for consumers, the two retailers always set identical pro�t margins for any values of

x1 and x2. As mentioned above, we need to consider nine cases in which x1 and x2 fall in some speci�c

ranges, and for each case examine how the two retailers choose their pro�t margins to compete for

consumer with speci�c parameter �.

Case 1: x1 � 4s0(1 + s) and x2 � 4s0(1 + s). For this case, we �nd that, if � < min[x1(1+m1); x2(1+

m2)], then the consumer doesn�t purchase any product from either retailer, and thus his or her

optimal purchase amount is A� = 0. But, if min[x1(1 + m1); x2(1 + m2)] < � < max[x1(1 +

m1); x2(1 +m2)], then the consumer decides to buy products from the retailer with min[x1(1 +

m1); x2(1+m2)]. In order to compete for the consumer, the retailer with max[x1(1+m1); x2(1+

m2)] should decrease its pro�t margin so that it has the minimum value min[x1(1 +m1); x2(1 +

m2)].

Letting

# � min

(
4(1 + s)(1 +mj)

�q
(1 + s)xj �

p
sxj + s0

�2
; j = 1; 2

)
,

�# � max

(
4(1 + s)(1 +mj)

�q
(1 + s)xj �

p
sxj + s0

�2
; j = 1; 2

)
,
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we �nd that, if max[x1(1+m1); x2(1+m2)] � #, then the consumer with parameter � such that
max[x1(1 +m1); x2(1 +m2)] � � � # can achieve the net surpluses

p
xj�=[1 +mj ] � xj from

Retailer j, j = 1; 2. In order to win the consumer, the two retailers should reduce their pro�t

margins to increase the consumer�s net surplus. Otherwise, if max[x1(1 +m1); x2(1 +m2)] � #,
then we, w.l.o.g., assume that the retailer with �# is Retailer i (i = 1; 2) and the retailer with #

is Retailer j (j = 1; 2, j 6= i), and consider the following two possibilities:
1. If the consumer with parameter � such thatmax[x1(1+m1); x2(1+m2)] � � � �# determines
the purchase amount xi from Retailer i, then the consumer can achieve the net surplusp
xi�=[1 +mi]� xi;

2. If the consumer with parameter � such thatmax[x1(1+m1); x2(1+m2)] � � � �# determines
the purchase amount Âj or �Aj from Retailer j (j = 1; 2, j 6= i), then the consumer can

achieve the net surplus �=[4(1 + s)(1 +mj)]� s0 or �=[4(1 +mj)].

In order to compete for the consumer, each retailer reduces its pro�t margin mi or mj to increase

the consumer�s net surplus. Otherwise, the retailer with a high value of pro�t margin may lose

the consumer.

Next, we �nd that, if � � �#, then the consumer spends $Âi or $ �Ai from Retailer i, or the consumer

spends $Âj or $ �Aj from Retailer j. As a result, the net surplus achieved from Retailer i is

computed as �=[4(1 + s)(1 +mi)] � s0 or �=[4(1 +mi)], and that from Retailer j is calculated

as �=[4(1 + s)(1 +mj)]� s0 or �=[4(1 +mj)]. Like in our above discussion, each retailer should

have an incentive to reduce its pro�t margin so as to win the consumer.

In addition, we notice that, as Retailer i (i = 1; 2) reduces its pro�t margin, the range for no

purchase is smaller and the range for the purchase amount �Ai is greater. That is, as a result of

the competition, each retailer reduces its pro�t margins for this case.

Case 2: x1 � 4s0(1 + s) and s0(1 + s) < x2 < 4s0(1 + s). For this case, we �nd that, if � < min[x1(1+
m1); 4s0(1+s)(1+m2)], then the consumer doesn�t purchase any product from either retailer, and

thus his or her optimal purchase amount is A� = 0. But, if min[x1(1+m1); 4s0(1+s)(1+m2)] <

� < max[x1(1 +m1); 4s0(1 + s)(1 +m2)], then the consumer decides to buy products from the

retailer with min[x1(1+m1); 4s0(1+s)(1+m2)]. To compete for the consumer, the retailer with

max[x1(1+m1); 4s0(1+s)(1+m2)] should decrease its pro�t margin so that it has the minimum

value min[x1(1 +m1); 4s0(1 + s)(1 +m2)].

When � > max[x1(1 + m1); 4s0(1 + s)(1 + m2)], the consumer�s purchase amount from Retailer 1

is x1, Â1 or �A1; and the consumer�s purchase amount from Retailer 2 is Â2 or �A2. Similar

to our analysis for Case 1, the two retailers should reduce their pro�t margins to compete for

the consumer. Therefore, for this case, the two retailers have incentives to decrease their pro�t

margins as a consequence of competition.

Case 3: x1 � 4s0(1 + s) and 0 � x2 < s0(1 + s). For this case, we �nd that, if � < min[x1(1 +

m1); 4x2(1 + m2)], then the consumer doesn�t purchase any product from both retailers, and

thus his or her optimal purchase amount is A� = 0. But, if min[x1(1 + m1); 4x2(1 + m2)] <

� < max[x1(1 + m1); 4x2(1 + m2)], then the consumer decides to buy products from the re-

tailer with min[x1(1 + m1); 4x2(1 + m2)]. To compete for the consumer, the retailer with
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max[x1(1 + m1); 4x2(1 + m2)] should decrease its pro�t margin so that it has the minimum

value min[x1(1 +m1); 4x2(1 +m2)].

When � > max[x1(1 +m1); 4x2(1 +m2)], the consumer�s purchase amount from Retailer 1 is x1, Â1
or �A1; and the consumer�s purchase amount from Retailer 2 is �A2. Therefore, for this case, the

two retailers should decrease their pro�t margins as a consequence of competition.

Case 4: s0(1 + s) < x1 < 4s0(1 + s) and x2 � 4s0(1 + s). The analysis for this case is similar to that
for Case 2.

Case 5: s0(1 + s) < x1 < 4s0(1 + s) and s0(1 + s) < x2 < 4s0(1 + s). For this case, if � < min[4s0(1+
s)(1 + m1); 4s0(1 + s)(1 + m2)], then the consumer doesn�t purchase any product from either

retailer, and thus his or her optimal purchase amount is A� = 0. But, if min[4s0(1 + s)(1 +

m1); 4s0(1 + s)(1 + m2)] < � < max[4s0(1 + s)(1 + m1); 4s0(1 + s)(1 + m2)], then the con-

sumer decides to buy products from the retailer with min[4s0(1+ s)(1+m1); 4s0(1+ s)(1+m2)]

(i.e., the retailer with the smaller pro�t margin). To compete for the consumer, the retailer with

max[4s0(1+s)(1+m1); 4s0(1+s)(1+m2)] (i.e., the retailer with the larger pro�t margin) should

decrease its pro�t margin so that it has the minimum value min[4s0(1+s)(1+m1); 4s0(1+s)(1+

m2)].

If � > max[4s0(1+s)(1+m1); 4s0(1+s)(1+m2)], then the consumer�s purchase amount from Retailer

1 is Â1 or �A1; and the consumer�s purchase amount from Retailer 2 is Â2 or �A2. As discussed for

Case 1, two retailers are likely to reduce their pro�t margins in order to compete for consumers.

Case 6: s0(1 + s) < x1 < 4s0(1 + s) and 0 � x2 < s0(1 + s). For this case, if � < min[4s0(1+s)(1+
m1); 4x2(1 + m2)], then the consumer doesn�t purchase any product from both retailers, and

thus his or her optimal purchase amount A� = 0. But, if min[4s0(1+ s)(1+m1); 4x2(1+m2)] <

� < max[4s0(1 + s)(1 +m1); 4x2(1 +m2)], then the consumer decides to buy products from the

retailer with min[4s0(1 + s)(1 +m1); 4x2(1 +m2)]. To compete for the consumer, the retailer

with max[4s0(1 + s)(1 +m1); 4x2(1 +m2)] should decrease its pro�t margin so that it has the

minimum value min[4s0(1 + s)(1 +m1); 4x2(1 +m2)].

If � > max[4s0(1 + s)(1 +m1); 4x2(1 +m2)], then the consumer�s purchase amount from Retailer 1

is Â1 or �A1; and the consumer�s purchase amount from Retailer 2 is �A2. Comparing them we

�nd that each retailer has an incentive to reduce its pro�t margin.

Case 7: 0 � x1 < s0(1 + s) and x2 � 4s0(1 + s). The analysis for this case is similar to that for Case
3.

Case 8: 0 � x1 < s0(1 + s) and s0(1 + s) < x2 < 4s0(1 + s). The analysis for this case is similar to
that for Case 6.

Case 9: 0 � x1 < s0(1 + s) and 0 � x2 < s0(1 + s). For this case, if � < min[4x1(1 +m1); 4x2(1 +

m2)], then the consumer doesn�t purchase any product from either retailer, and thus his or her

optimal purchase amount A� = 0. But, if min[4x1(1 +m1); 4x2(1 +m2)] < � < max[4x1(1 +

m1); 4x2(1+m2)], then the consumer decides to buy products from the retailer with min[4x1(1+

m1); 4x2(1+m2)]. To compete for the consumer, the retailer with max[4x1(1+m1); 4x2(1+m2)]

should decrease its pro�t margin so that it has the minimum value min[4x1(1+m1); 4x2(1+m2)].

If � > max[4x1(1 +m1); 4x2(1 +m2)], then the consumer�s purchase amount from Retailer 1 is �A1;
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and the consumer�s purchase amount from Retailer 2 is �A2. Each retailer thus has an incentive

to reduce its pro�t margin.

From the above discussion of the nine cases, we conclude that each retailer can reduce its pro�t

margin to win consumers. Then, the two retailers would reduce their pro�t margins to zero; this means

that their prices are set equal to their acquisition costs, as shown by Bertrand [9]. However, we �nd

from Section 4.2 that, if a retailer reduces its pro�t margin to zero, then the retailer�s pro�t would

be negative because it should pay shipping fee to consumers who qualify for free shipping. Thus, in

order to compete for consumers but ensure their pro�tability, the two retailers should choose identical,

nonzero pro�t margins.

When the two retailers set identical pro�t margins, we let m � m1 = m2. We next investigate how

two retailers change their CFS cuto¤ levels to compete for consumers. Like in our above discussion,

we consider the following nine cases:

Case 1: x1 � 4s0(1 + s) and x2 � 4s0(1 + s). For this case, we �nd that consumers don�t make any
online transactions with the retailer with the greater CFS cuto¤ level, because the consumer with

� < xi(1 +mi) doesn�t buy from Retailer i (i = 1; 2). Thus, the two retailers have incentives to

�nally set identical CFS cuto¤ levels. If � > max[x1(1 +m1); x2(1 +m2)], then the consumer�s

purchase amount from Retailer i (i = 1; 2) is xi, Âi or �Ai. We learn from Theorem 1 that

Â1 = Â2 and �A1 = �A2. So, we should compare the consumer�s net surpluses when the consumer

chooses xi at Retailer i. From (21) we �nd that when � > max[x1(1 + m1); x2(1 + m2)], the

consumer�s net surplus is higher when he or she chooses the retailer with the smaller CFS cuto¤

level. Therefore, to compete, two retailers should �nally set identical CFS cuto¤ level.

Case 2: x1 � 4s0(1 + s) and s0(1 + s) < x2 < 4s0(1 + s). For this case, we �nd that, similar to Case
1, consumers don�t make any online transactions with the retailer with the greater CFS cuto¤

level. In addition, we �nd that when � > max[x1(1 +m1); 4s0(1 + s)(1 +m2)], the consumer�s

purchase amount from Retailer 1 is x1, Â1 or �A1, and the consumer�s purchase amount from

Retailer 2 is Â2 or �A2. Since Â1 = Â2 and �A1 = �A2, we need to compare the consumer�s net

surplus in terms of x1 and that in terms of Â2. Note that for this case x2 < x1. Because

G(2)jA=Â2 > G
(2)jA=x2 =

s
x2�

(1 +m)
� x2 >

s
x1�

(1 +m)
� x1 = G(1)jA=x1 ,

which means that Retailer 1 should change its CFS threshold x1 to x2 for this case.

Case 3: x1 � 4s0(1 + s) and 0 � x2 < s0(1 + s). Similarly, we �nd that consumers don�t make any
online transactions with the retailer with the greater CFS cuto¤ level. In addition, we �nd that

when � > max[x1(1 +m1); 4x2(1 +m2)], the consumer�s purchase amount from Retailer 1 is x1,

Â1 or �A1, and the consumer�s purchase amount from Retailer 2 is �A2. Since �A1 = �A2, we need

to compare the consumer�s net surplus in terms of x1, that in terms of Â1 and that in terms of
�A2. We �nd that

G(2)jA= �A2 > G
(2)jA=Â2 =

�

4(1 + s)(1 +m)
� s0 = G(1)jA=Â1 ,
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and

G(2)jA= �A2 > G
(2)jA=Â2 > G

(2)jA=x2 > G(1)jA=x1 ;

thus, the consumer�s net surplus in terms of �A2 is higher. As a result, Retailer 1 should change

its CFS threshold x1 to x2 for this case.

Case 4: s0(1 + s) < x1 < 4s0(1 + s) and x2 � 4s0(1 + s). Similar to Case 2, Retailer 2 should change
its CFS threshold x2 to x1 for this case.

Case 5: s0(1 + s) < x1 < 4s0(1 + s) and s0(1 + s) < x2 < 4s0(1 + s). For this case, we �nd from The-
orem 3 that the consumer with speci�c parameter � has the same purchase amounts at the two

retailers. However, the range for no purchase at the retailer with the larger CFS threshold is

wider; this means that the probability of no purchase at the retailer with the larger CFS thresh-

old is larger. Similarly, we �nd that, if a retailer�s CFS threshold is larger, then the probability

for the larger purchase amount �A at the retailer is smaller. Thus, we conclude that, to compete

for consumers, the two retailers should change their CFS cuto¤ levels until they have identical

CFS thresholds.

Case 6: s0(1 + s) < x1 < 4s0(1 + s) and 0 � x2 < s0(1 + s). For this case, we �nd that x1 > x2.

Similar to Case 3, Retailer 1 should change its CFS threshold x1 to x2 for this case.

Case 7: 0 � x1 < s0(1 + s) and x2 � 4s0(1 + s). Similar to Case 3, Retailer 2 should change its CFS
threshold x2 to x1 for this case.

Case 8: 0 � x1 < s0(1 + s) and s0(1 + s) < x2 < 4s0(1 + s). Similar to Case 6, Retailer 2 should
change its CFS threshold x2 to x1 for this case.

Case 9: 0 � x1 < s0(1 + s) and 0 � x2 < s0(1 + s). For this case, in order to compete for consumers,
the two retailers have incentives to eventually set identical CFS cuto¤ levels.

From the above analysis, we conclude that the two retailers�equilibrium CFS thresholds should

be identical. The theorem is thus proved.

Appendix B A Discussion of Four Cases in Figure 1

We discuss four cases in Figure 1: [Note that, as implies by Theorem 1, �A > Â and G�1 > G
�
2.]

(i): x � Â < �A. According to Theorem 1, we �nd that G�1 = �=[4(1 +m)] � 0. Therefore, for this

case, the consumer quali�es for CFS and his or her optimal purchase quantities are q�i = �qi

(i = 1; 2; : : : ; n), which are given by (6); and his or her optimal purchase amount is A� = �A,

which is given by (7). For this case, see Figure 1(i).

(ii): Â < x � �A. The analytical results for this case are the same as those for Case (i). For this case,
see Figure 1(ii).

(iii): �A < x and G�2 � G1jA=x. Using Figure 1(iii), we �nd that, if G1jA=x � 0, then the optimal

purchase amount is A� = x and the consumer quali�es for CFS; otherwise, the net surplus is

negative, and the consumer abandons his or her shopping cart. It, however, follows from (5) that

we must determine the consumer�s purchase quantities q�i (i = 1; 2; : : : ; n) when the consumer�s

purchase amount A = x. Otherwise, if we don�t have any information about purchase quantities

but only have purchase amount A = x, we cannot compute the consumer�s net surplus G1jA=x.

10



To �nd the purchase quantities, we should maximize G1 subject to A = x; that is,

max
qi

Xn

i=1
�i
p
qi � (1 +m)

Xn

i=1
ciqi, s.t. (1 +m)

Xn

i=1
ciqi = x.

Solving the problem gives

q�i =
�2i
c2i

x

(1 +m)�
,

and the resulting maximum net surplus

G1jA=x =

s
x�

(1 +m)
� x. (21)

Hence, when � � x(1 + m), G1jA=x � 0 and the consumer makes his or her purchase; when

� < x(1+m), G1jA=x < 0 and the consumer abandons his or her online shopping cart. Moreover,
the condition that G�2 � G1jA=x can be written as

�

4(1 + s)(1 +m)
� s0 �

s
x�

(1 +m)
� x.

Solving the inequality we �nd that, if x < s0, then G�2 � G1jA=x when

� � 4(1 +m)(1 + s)[
p
(1 + s)x+

p
sx+ s0]

2;

otherwise, if x � s0, then G�2 � G1jA=x when

� � 4(1 +m)(1 + s)[
p
(1 + s)x+

p
sx+ s0]

2, or, � � 4(1 +m)(1 + s)[
p
(1 + s)x�

p
sx+ s0]

2.

(iv): �A < x and G�2 > G1jA=x. Using Figure 1(iv), we �nd that, if G�2 � 0, then q�i = q̂i (i =

1; 2; : : : ; n), which are given by (8); and the optimal purchase amount is A� = Â, which is

given by (9). For this case the consumer buys but doesn�t qualify for free shipping. Otherwise,

if G�2 < 0, the net surplus is then negative, and the consumer abandons his or her shopping

cart. According to (9), we �nd that, if � � 4s0(1 + s)(1 + m), then G�2 � 0; otherwise, if

� < 4s0(1 + s)(1 +m), then G�2 < 0. In addition, if x < s0, then G
�
2 > G1jA=x only when

0 � � < 4(1 +m)(1 + s)[
p
(1 + s)x+

p
sx+ s0]

2;

otherwise, if x � s0, then G�2 > G1jA=x when

4(1 +m)(1 + s)[
p
(1 + s)x�

p
sx+ s0]

2 < � < 4(1 +m)(1 + s)[
p
(1 + s)x+

p
sx+ s0]

2.

Appendix C An Online Retailer�s Expected Pro�t Function

We now specify an online retailer�s expected pro�t function (14) for the following three scenarios.
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C.1 Scenario 1: x � 4s0(1 + s)

In this scenario, we �nd from Theorem 3 that, if � < x(1+m), the consumer with parameter � doesn�t

purchase any product online and the retailer�s pro�t is thus zero. If x(1 + m) � � � 4(1 + s)(1 +

m)[
p
(1 + s)x �

p
sx+ s0]

2, the consumer then spends $x in a single transaction, and quali�es for

free shipping. To satisfy the consumer, the online retailer needs to absorb the shipping fee. When

x(1+m) � � � 4(1+s)(1+m)[
p
(1 + s)x�

p
sx+ s0]

2, �(m;x) should be computed as revenue minus

acquisition and shipping costs. Because the consumer spends $x for each of r transactions, the sale

revenue per transaction is $x. Since the pro�t margin is m, the retailer�s acquisition cost is computed

as x=(1 +m).

Therefore, when x(1+m) � � � 4(1+s)(1+m)[
p
(1 + s)x�

p
sx+ s0]

2, �(m;x) can be computed

as

�(m;x) = x� x

1 +m
�K(x) = mx

1 +m
� k(s0 + sx) =

�
m� (1 +m)ks

1 +m

�
x� ks0,

where K(x) is de�ned in (13)

Next, when 4(1 + s)(1 +m)[
p
(1 + s)x �

p
sx+ s0]

2 < � < 4x(1 +m), the consumer spends $Â

and pays for the shipping fee S(Â); as a result, the retailer�s per transaction pro�t �(m;x) is

�(m;x) =
mÂ

1 +m
� (k � 1)(s0 + sÂ) =

[m� (k � 1)(1 +m)s]�
4(1 + s)(1 +m)2

� (k � 1)s0,

where if k < 1, then (k � 1)(s0 + sx) < 0 and the retailer�s pro�t increases.
When � � 4x(1 +m), the consumer spends $ �A and obtains the free-shipping service. Hence, the

retailer�s pro�t �(m;x) is found as

�(m;x) =

�
m� (1 +m)ks

1 +m

�
�A� ks0 =

[m� (1 +m)ks]�
4(1 +m)2

� ks0.

In conclusion, for the �rst scenario [i.e., x � 4s0(1 + s)], we can compute

�(m;x) =

Z 4(1+s)(1+m)[
p
(1+s)x�

p
sx+s0]2

x(1+m)

��
m� (1 +m)ks

1 +m

�
x� ks0

�
f(�)d�

+

Z 4x(1+m)

4(1+s)(1+m)[
p
(1+s)x�

p
sx+s0]2

�
[m� (k � 1)(1 +m)s]�
4(1 + s)(1 +m)2

� (k � 1)s0
�
f(�)d�

+

Z 1

4x(1+m)

�
[m� (1 +m)ks]�

4(1 +m)2
� ks0

�
f(�)d�.

and use (14) to �nd

�(m;x) = �(m;x)� �(�)� B =�(m;x)� lnf1=F [x(1 +m)]g � B,

where �(�) = lnf1=F [x(1 +m)]g for the scenario, as shown in Theorem 6.
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C.2 Scenario 2: s0(1 + s) < x < 4s0(1 + s)

For this scenario, as Theorem 3 indicates, the consumer may not buy, may spend $Â but pay for

shipping cost K(Â), or may spend $ �A without shipping payment. Similar to Section C.1, we can

compute the retailer�s expected pro�t �(m;x) as follows:

�(m;x) = �(m;x)� lnf1=F [4s0(1 + s)(1 +m)]g � B,

where

�(m;x) =

Z 4x(1+m)

4s0(1+s)(1+m)

�
[m� (k � 1)(1 +m)s]�
4(1 + s)(1 +m)2

� (k � 1)s0
�
f(�)d�

+

Z 1

4x(1+m)

�
[m� (1 +m)ks]�

4(1 +m)2
� ks0

�
f(�)d�.

C.3 Scenario 3: 0 � x < s0(1 + s)

For this scenario the consumer may not buy or may buy products worth $ �A. We can similarly compute

the retailer�s expected pro�t �(m;x) as follows:

�(m;x) = �(m;x)� lnf1=F [4x(1 +m)]g � B,

where

�(m;x) =

Z 1

4x(1+m)

�
[m� (1 +m)ks]�

4(1 +m)2
� ks0

�
f(�)d�.

Appendix D Numerical Results for the Sensitivity Analysis in Sec-

tion 4.3
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Appendix E A Simulation Approach for the Game Analysis in Sec-

tion 5

In our simulation model, consumers in the base B arrive to the two retailers and make their purchasing
decisions. We develop a �ow chart in Figure 3 to show the simulation of a consumer�s behavior in

a single transaction. Given the p.d.f. of the parameter �, we randomly generate a speci�c value for

an arriving consumer, and use Theorem 3 to compute the consumer�s optimal purchase amount A(i)

and maximum net surplus G(i) if the consumer buys from Retailer i, i = 1; 2. Then, we compare G(1)

and G(2) to �nd at which retailer the consumer should buy. If G(i) = G(j), then the consumer spends

A(1) to buy products from Retailer 1 with the probability , and spends A(2) to buy products from

Retailer 2 with the probability (1 � ). If G(i) > G(j) (i; j = 1; 2; i 6= j), then the consumer gains

more from purchasing at Retailer i, and decides to buy from the retailer. Otherwise, if G(i) < G(j)

(i; j = 1; 2; i 6= j), then the consumer buys from Retailer j. Next, we compare the purchase amount

of the consumer and the CFS cuto¤ level of the retailer from which the consumer buys, in order to

�nd whether the consumer quali�es for the free shipping. We can then compute both retailers�pro�ts

from the consumer, as shown in Figure 3. Note that, if the consumer chooses Retailer i, then Retailer

j�s pro�t from the consumer is zero; otherwise, if the consumer chooses Retailer j, then Retailer i�s

pro�t from the consumer is zero.

Figure 3: The �ow chart of a consumer�s online purchase in our simulation model.

From the simulation for the consumer with � in a single transaction, we can �nd at which online

retailer the consumer buys. If the consumer chooses Retailer i (i = 1; 2), then we can use Theorem

15



6 and the retailer�s decisions xi and mi to compute �(�), i.e., the consumer�s expected number of

repeated purchases. Thus, the total pro�t that Retailer i earns from the consumer�s purchases is

calculated as the pro�t in a single transaction times �(�).

We use �Arena�� a primary simulation software in industry� to develop a simulation model. Arena

provides a variety of modules for simulation. For example, we can use the module �Create�to generate

a new consumer in Figure 3. In our simulation we generate 10; 000 consumers, as in Lewis et al. [31].

Moreover, we can use the module �Decide� to determine at which retailer a consumer buys. For

more information regarding how to use Arena for simulation, see, e.g., Kelton et al. [27]. After

all consumers leave, we can compute the total pro�t that each retailer achieves during the single

period. Denote Retailer 1�s and Retailer 2�s total pro�ts by �1(m1; x1;m2; x2) and �2(m2; x2;m1; x1),

respectively. Given the values of mi and xi (i = 1; 2), we can use the above simulation approach to

�nd �1(m1; x1;m2; x2) and �2(m2; x2;m1; x1).

In order to �nd a Nash equilibrium, we should compute a retailer�s best-response function in terms

of the other retailer�s decisions. However, due to the complexity of our game, we have to use simulation

to �nd a retailer�s best response when the other retailer�s decisions are given. We develop the following

procedure to search for Nash equilibrium.

1. We �rst use our method to compute Retailer i�s optimal pro�t margin m�
i and CFS cuto¤ level

x�i , for i = 1; 2.

2. Given that Retailer 2�s decisions arem�
2 and x

�
2, we maximize Retailer 1�s pro�t�1(m1; x1;m

�
2; x

�
2)

to �nd its best-response solutions mB
1 (m

�
2; x

�
2) and x

B
1 (m

�
2; x

�
2). To maximize �1(m1; x1;m

�
2; x

�
2)

in our Arena simulation model, we use �OptQuest�� which is an optimization add-in for Arena�

to search for mB
1 (m

�
2; x

�
2) and x

B
1 (m

�
2; x

�
2).

3. Given that Retailer 1�s best-response decisions are mB
1 (m

�
2; x

�
2) and x

B
1 (m

�
2; x

�
2), we use �Op-

tQuest� to maximize Retailer 2�s pro�t �2(m2; x2;m
B
1 (m

�
2; x

�
2); x

B
1 (m

�
2; x

�
2)) and �nd its best-

response solutions mB
2 (m

B
1 (m

�
2; x

�
2); x

B
1 (m

�
2; x

�
2)) and x

B
2 (m

B
1 (m

�
2; x

�
2); x

B
1 (m

�
2; x

�
2)).

4. If

m�
1 = mB

1 (m
�
2; x

�
2), x

�
1 = x

B
1 (m

�
2; x

�
2);

m�
2 = mB

2 (m
B
1 (m

�
2; x

�
2); x

B
1 (m

�
2; x

�
2)), x

�
2 = x

B
2 (m

B
1 (m

�
2; x

�
2); x

B
1 (m

�
2; x

�
2)),

then we arrive to Nash equilibrium (mN
i ; x

N
i ) = (m

�
i ; x

�
i ), for i = 1; 2. Otherwise, we let

m�
2 � mB

2 (m
B
1 (m

�
2; x

�
2); x

B
1 (m

�
2; x

�
2)) and x

�
2 � xB2 (mB

1 (m
�
2; x

�
2); x

B
1 (m

�
2; x

�
2)),

and then go to Step 2 to continue with our search.
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Appendix F Simulation Results for two Examples in Section 5

F.1 Simulation Results for Example 2

Simulations Retailer 1 Retailer 2
m�
1 x�1 m�

2 x�2
Starting Point � � 0.9311 4.704

Simulation 1 (Retailer 1�s best response) 0.9308 4.705 � �

Simulation 2 (Retailer 2�s best response) � � 0.9187 4.737

Simulation 3 (Retailer 1�s best response) 0.9182 4.739 � �

Simulation 4 (Retailer 2�s best response) � � 0.8907 4.807

Simulation 5 (Retailer 1�s best response) 0.8894 4.810 � �

Simulation 6 (Retailer 2�s best response) � � 0.8761 4.844

Simulation 7 (Retailer 1�s best response) 0.8759 4.845 � �

Simulation 8 (Retailer 2�s best response) � � 0.8751 4.846

Simulation 9 (Retailer 1�s best response) 0.8750 4.846 � �

Simulation 10 (Retailer 2�s best response) � � 0.8750 4.846

Simulation 11 (Retailer 1�s best response) 0.8750 4.846 � �

F.2 Simulation Results for Example 3

Simulations Retailer 1 Retailer 2
m�
1 x�1 m�

2 x�2
Starting Point � � 0.2417 9.600

Simulation 1 (Retailer 1�s best response) 0.5685 10.202 � �

Simulation 2 (Retailer 2�s best response) � � 0.1331 10.839

Simulation 3 (Retailer 1�s best response) 0.4179 9.517 � �

Simulation 4 (Retailer 2�s best response) � � 0.0679 10.958

Simulation 5 (Retailer 1�s best response) 0.3314 7.811 � �

Simulation 6 (Retailer 2�s best response) � � 0.0200 12.101

Simulation 7 (Retailer 1�s best response) 0.2639 8.653 � �

Simulation 8 (Retailer 2�s best response) � � 0.6737 16.307

Simulation 9 (Retailer 1�s best response) 0.6938 13.971 � �

Simulation 10 (Retailer 2�s best response) � � 0.6898 16.139

Simulation 11 (Retailer 1�s best response) 0.6591 10.114 � �

Simulation 12 (Retailer 2�s best response) � � 0.6898 16.139

Simulation 13 (Retailer 1�s best response) 0.6591 10.114 � �
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