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Abstract
Advancements in artificial intelligence (AI) have driven extensive research into developing 
diverse multimodal data analysis approaches for smart healthcare. There is a scarcity of 
large-scale analysis of literature in this field based on quantitative approaches. This study 
performed a bibliometric and topic modeling examination on 683 articles from 2002 to 
2022, focusing on research topics and trends, journals, countries/regions, institutions, 
authors, and scientific collaborations. Results showed that, firstly, the number of articles has 
grown from 1 in 2002 to 220 in 2022, with a majority being published in interdisciplinary 
journals that link healthcare and medical research and information technology and AI. 
Secondly, the significant rise in the quantity of research articles can be attributed to the 
increasing contribution of scholars from non-English speaking countries/regions and the 
noteworthy contributions made by authors in the USA and India. Thirdly, researchers show 
a high interest in diverse research issues, especially, cross-modality magnetic resonance 
imaging (MRI) for brain tumor analysis, cancer prognosis through multi-dimensional 
data analysis, and AI-assisted diagnostics and personalization in healthcare, with each 
topic experiencing a significant increase in research interest. There is an emerging 
trend towards issues such as applying generative adversarial networks and contrastive 
learning for multimodal medical image fusion and synthesis and utilizing the combined 
spatiotemporal resolution of functional MRI and electroencephalogram in a data-centric 
manner. This study is valuable in enhancing researchers’ and practitioners’ understanding 
of the present focal points and upcoming trajectories in AI-powered smart healthcare based 
on multimodal data analysis.
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Abbreviations
AI	� Artificial intelligence
EHRs	� Electronic health records
NLP	� Natural language processing
DNNs	� Deep neural networks
IoMT	� Internet of Medical Things
RQs	� Research questions
PRISMA	� Preferred Reporting Items for Systematic Reviews and Meta-Analyses
SNA	� Social network analysis
H-index	� Hirsch index
ACP	� Average citations per paper
MK	� Mann–Kendall
C/Y	� Yearly citation rate
DBM	� Deep Boltzmann machine
MRI	� Magnetic resonance imaging
fMRI	� Functional MRI
EEG	� Electroencephalography
ECG	� Electrocardiogram
PET	� Positron emission tomography
AD	� Alzheimer’s disease
MCI	� Mild cognitive impairment
NSST	� Nonsubsampled shearlet transform
MM-DPSN	� Multimodal deep polynomial networks stacked
m-PCNN	� Multi-channel Pulse coupled neural network
DCAE	� Deep coupling autoencoder
GNNs	� Graph neural networks
ELM	� Extreme learning machine
OCT	� Optical coherence tomography
3D	� Three dimensional
WoS	� Web of Science
FREX	� Frequent and exclusive terms
CNN	� Convolutional neural network
BCO-MDP	� Bacterial colony optimization with multi-dimensional population
IoTs	� Internet of Things
GANs	� Generative adversarial networks
STM	� Structural topic model
SHM	� Smart health monitoring
XAI	� Explainable AI

1  Introduction

The comprehensive examination of integrating various types of data for smart healthcare 
using artificial intelligence (AI) is emerging as a pivotal and dynamic area of study. 
Interest in advancing smart healthcare through combining diverse data types using AI 
is steadily growing across academia, medical or healthcare institutions, and pertinent 
government sectors. Attention has been paid to specific topics like merging medical 
signals for smart healthcare, data-driven systems for intelligent healthcare using various 
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data, and integrating medical data from different sources. These studies largely employed 
systematic approaches with limited samples involved. No study encompasses the 
integration of multimodal data fusion, smart healthcare, and AI concurrently. Given the 
importance of this interdisciplinary field, understanding its challenges and trends is crucial 
for fostering its future progress. Employing topic models and bibliometric approaches, the 
present research comprehensively examines existing scientific work regarding AI-driven 
integration of diverse data in smart healthcare on a global scale.

1.1 � AI‑powered multimodal data fusion in smart healthcare

The healthcare industry has experienced a remarkable transformation driven by significant 
developments of AI and the proliferation of various data sources (Soni et al. 2020). The 
integration of multimodal data fusion, an innovative approach that combines information 
from various sources, carries the capacity to transform healthcare practices in the era 
of smart healthcare (Yang et  al. 2022). This study presents a comprehensive study on 
AI-powered smart healthcare based on multimodal data fusion using topic modeling and 
Bibliometric Analysis, exploring the intersection of AI, healthcare, and data analytics.

Smart healthcare implements technologies like wearable gadgets, the Internet of 
Medical Things (IoMT), advanced machine learning, and wireless devices to effortlessly 
retrieve medical records, link people, resources, and establishments, and efficiently oversee 
and address healthcare demands (Muhammad et al. 2021). It encompasses the utilization of 
diverse digital instruments such as wearables, telehealth, electronic health records (EHR), 
AI, Internet of Things (IoTs), and big data analytics to transform healthcare provision. 
The utilization of healthcare devices based on IoT, denoting tools embedded with sensors, 
connectivity, and software for gathering and transmitting healthcare data, represents a facet 
of smart healthcare by enabling continuous health monitoring, real-time data gathering, 
and remote patient care. Nonetheless, IoT-based healthcare devices are not the exclusive 
focus of smart healthcare.

Smart healthcare utilizes AI’s capabilities to handle, scrutinize, and decipher extensive 
quantities of diverse data, encompassing EHRs, medical images, wearable gadgets, 
genomics, patient-provided information, and social media content (Nguyen et  al. 2022). 
By synthesizing information from these diverse sources, medical professionals can acquire 
a comprehensive outlook on the well-being of patients, enabling more precise diagnostics, 
personalized treatment plans, and proactive interventions (Tian et  al. 2019; Huynh et al. 
2020).

The key to achieving effective multimodal data fusion lies in applying advanced 
AI, natural language processing (NLP), and deep neural networks (DNNs) to uncover 
concealed patterns, identify associations, and draw significant understandings from the 
fusion of (un)structured information (Ahmed et al. 2020; Noorbakhsh-Sabet et al. 2019). 
As a result, healthcare professionals can make data-driven decisions with higher accuracy 
and efficiency, resulting in enhanced patient results and the overall quality of healthcare.

As the healthcare industry progresses towards more data-driven and patient-centric 
approaches, the implementation of multimodal data fusion supported by AI will become 
increasingly crucial (Hartl et  al. 2021; Holzinger et  al. 2022). The potential benefits are 
far-reaching, including improved disease detection and early diagnosis, more effective 
treatment planning, better management of chronic conditions, and enhanced healthcare 
delivery overall (Flores et al. 2021; Albahri et al. 2023).
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However, alongside these advancements come various challenges, encompassing 
worries about data privacy and security, ethical deliberations, and the requirement for AI 
models that are sturdy and easy to understand. Addressing these issues will be vital to 
ensuring the successful adoption and integration of AI-powered multimodal data fusion in 
smart healthcare.

1.2 � Literature review

Driven by the escalating significance of AI and fusion methodologies across healthcare 
research, scholars have conducted assessments covering pertinent subjects like AI in 
healthcare applications and data-driven smart healthcare systems. For instance, Muhammad 
et  al. (Muhammad et  al. 2021) meticulously surveyed fusion schemes for multimodal 
medical signals in smart healthcare based on 105 research papers between 2014 and 2020. 
Specifically, Muhammad et  al. delved into (1) IoMT applications, (2) multi-sensor data 
fusion levels, and 3) recent advancements in multimodal medical data fusion. (Cai et al. 
2019) offered a comprehensive overview of techniques regarding multimodal data-powered 
smart healthcare applications from January 2013 to September 2018, concentrating on 
multimodal semantic perception, data fusion, cross-border knowledge fusion, and decision-
making systems. (Shaik et  al. 2023) delivered an extensive overview of multimodal 
medical data fusion, exploring diverse approaches like feature selection, rule-powered 
applications, machine learning, DNNs, and NLP for data fusion and analysis. (Albahri 
et  al. 2023) systematically reviewed 64 contributions regarding AI trustworthiness in 
healthcare, evaluating quality, bias risk, and data fusion. (Sujith et al. 2022) systematically 
reviewed smart health monitoring (SHM) using DNNs and AI, addressing recent 
advancements and challenges in SHM, focusing on features, role of deep learning and 
AI, structure, data security, and limitations based on studies from 2020 to 2021. (Mohsen 
et  al. 2022) comprehensively analyzed fusion approaches, diseases, outcomes, machine 
learning algorithms, and available multimodal medical datasets based on 34 studies. (Guo 
et al. 2020) examined AI research in healthcare based on 1473 publications, emphasizing 
publication growth, research characteristics, patterns, and hotspots. (Chen et  al. 2023a) 
adopted the topic model and bibliometrics to analyze 351 papers about AI-powered 
information fusion for smart health, identifying contributors, visualizing collaboration, 
major research topics, future directions, and distributions of contributors. A summary of 
relevant reviews is listed in Table 1.

The previously mentioned analyses primarily relied on synthesis or systematic meth-
ods. The systematic approaches often entail an arduous coding process, and these studies 
tended to cover a relatively limited number of articles. In terms of research focus, existing 
reviews typically concentrated on isolated aspects like multimodal data analysis, informa-
tion fusion, AI, or healthcare. For instance, (Sujith et al. 2022) explored SHM using DNNs 
and AI, (Muhammad et  al. 2021) tackled multimodal medical signals fusion, and (Guo 
et al. 2020) and (Albahri et al. 2023) delved into AI for healthcare. Others, such as multi-
modal data-driven smart healthcare (Cai et al. 2019), multimodal medical data fusion, and 
multimodal information fusion for smart healthcare (Shaik et al. 2023), addressed specific 
facets. While (Mohsen et al. 2022) and. (Chen et al. 2023a) provided more focused assess-
ments on the combined utilization of AI and fusion technologies in healthcare, a compre-
hensive analysis considering multimodal data fusion, smart healthcare, and AI simultane-
ously, especially through quantitative analysis employing machine learning approaches on 
a large scale, has been lacking. Consequently, the understanding of AI-driven multimodal 
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data fusion in smart healthcare remains limited. Vital questions such as major research top-
ics and their evolution, prominent contributing countries/regions, institutions, and authors 
within this field are yet to be thoroughly explored.

1.3 � Research objectives and questions

To fill the knowledge gap and facilitate research on AI-powered smart healthcare based on 
multimodal data analysis, this research conducts a thorough investigation of the present 
body of literature on multimodal data fusion and AI applications in smart healthcare, using 
advanced topic modeling and bibliometric analysis techniques. Via this all-encompassing 
analysis, our objective is to enhance the present comprehension of the cutting-edge within 
this field and recognize possible pathways for additional exploration and ingenuity.

The focus of this paper centers on two critical aspects: topic modeling and bibliometric 
analysis. Topic modeling is a powerful NLP technique that aids in the discovery and 
extraction of latent themes and subjects from vast text corpora. By applying topic modeling 
to healthcare-related literature, we can identify prevalent research areas, emerging trends, 
and the interconnections between various topics, shedding light on the current state and 
prospective pathways for integrating AI and multimodal data analytics in smart healthcare.

Furthermore, bibliometric analysis complements topic modeling by quantitatively 
assessing the publication patterns, research productivity, and impact of academic literature 
within this domain. By systematically reviewing scientific publications, citation networks, 
and collaborations among researchers, we can gain valuable insights into the growth 
trajectory of this field, key contributors, and the most influential research contributions.

Specially, three research questions (RQs) will be addressed in this study.
RQ1: What are the publication patterns, leading studies, journals, countries/regions, 

institutions, and authors?
RQ2: How is the scholarly collaboration among countries/regions, institutions, and 

authors in terms of co-authorship?
RQ3: Which noteworthy topics are addressed, and how do these topics evolve in terms 

of research prominence over time?
The RQs are formulated by consulting prior bibliometric investigations that, akin to 

the present study, strive to grasp the research panorama of a domain. Instances encompass 
research like AI (Vega Hernández et  al. 2023), AI in the healthcare sector (Guo et  al. 
2020), employment of blockchain in management (Tandon et  al. 2021), readiness for an 
ethical AI society (Wamba et  al. 2021), football performance analysis (Principe et  al. 
2022), sentiment analysis (Cui et al. 2023a), and integration of information and AI in smart 
healthcare (Chen et al. 2023a). As per past literature, addressing these queries can furnish 
a cutting-edge grasp of research related to the amalgamation of healthcare information 
with AI, and bestow significant ramifications to researchers and project initiators for its 
subsequent advancement.

The rationales behind investigating each of these queries are demonstrated as follows. 
Initially, addressing RQ1 allows scholars to (1) comprehend the worldwide progression 
of scientific knowledge and the trajectories in the field’s advancement (Cui et al. 2023b), 
(2) apply the outcomes of influential scholarly works, (3) pinpoint suitable platforms for 
sharing and publishing research concerning the amalgamation of healthcare information 
with AI (Swacha 2021), and (4) recognize pivotal authors to learn from Oliveira et  al. 
(2019). Subsequently, tackling RQ2 assists in comprehending patterns of collaboration 
and associations, as well as identifying potential academic partners (Wu et  al. 2021a). 
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Lastly, outcomes derived from RQ3 will aid in understanding the historical and present 
scholarly landscape concerning the amalgamation of healthcare data with AI, ensuring that 
researchers are updated about pressing matters that require their focus (Shao et al. 2021). 
Furthermore, the results also provide insights into the evolving patterns of research themes 
and provide insight into the potential directions of the area in the times ahead (Mustak 
et  al. 2021). These revelations empower scholars, policymakers, and practitioners to 
remain cognizant of cutting-edge research while venturing into scientific and technological 
endeavors (Jeyaraj and Zadeh 2020).

Therefore, the primary contributions of this research to the academic community can be 
outlined as follows: (1) introduce the first structural topic model (STM)-driven bibliometric 
analysis of AI-powered smart healthcare based on multimodal data examination, (2) 
uncover key contributors (countries/regions, institutions, and authors) to share their 
research insights, (3) visualize collaborations among prominent contributors (countries/
regions, institutions, and authors), (4) identify prevalent research topics and potential 
future paths, (5) enhance comprehension of the historical, current, and forthcoming 
academic panorama concerning multimodal data fusion employing AI in smart healthcare, 
and 6) employ topic model-driven bibliometric methodologies for literature assessment, 
circumventing the constraints of manual coding or qualitative analysis techniques.

2 � Data and methods

This study followed the three phases outlined in the Flow Diagram of the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Moher et  al. 
2009) to identify, choose, and critically evaluate relevant studies (Pian et  al. 2021). 
The adoption of the PRISMA aimed to certify robustness and reduce bias in the review 
procedure (Demir 2021). The collected data underwent analysis using topic modeling and 
bibliometrics, incorporating a statistical trend examination and social network analysis 
(SNA). An elaborate description of the procedure is presented below.

2.1 � Literature search

This study systematically searched the literature in the Web of Science (WoS) database. 
The search terms (Table 2) used in this study were derived from previous reviews related 
to AI [e.g., (Goodell et al. 2021; Wamba et al. 2021)], multimodal data analysis [e.g., (Lu 
et  al. 2023; Zhang et  al. 2020a)], and healthcare/medical [e.g., (Jimma 2023; Guo et  al. 
2020)].

We conducted searches for the terms in titles, abstracts, and keywords, resulting in a 
total of 829 initial hits. Among these hits, there were 779 journal articles written in English 
from Science Citation Index Expanded (SCI-E), and 50 papers from Social Science 
Citation Index (SSCI) databases.

2.2 � Selection criteria and study selection

The data search produced a 829 articles, which were then organized in Mendeley. From 
this collection, 48 duplicate articles were automatically eliminated, leaving 781 unique 
articles that underwent screening based on specified inclusion/exclusion criteria (Table 3) 
adapted from Chen et al. (Chen et al. 2023a).
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To be eligible for inclusion, an article must meet the following criteria: (i) emphasize 
the utilization of AI-centered methods (for instance, conventional machine learning tech-
niques, deep learning methodologies, logic and measurements), (ii) employ multimodal 
data fusion methods and mechanisms, and (iii) address medical/health-related issues or 
topics (e.g., predictive, preventive, personalized, and participatory solutions for smart 
health, processing and utilization of medical/clinical images, signals, and texts, along with 
the detection and evaluation of human activities for health/medical intentions). Studies that 
solely concentrated on gesture, motion, movement recognition, emotion recognition, or 
wireless sensor applications without relevance to health purposes were excluded. Similarly, 

Table 2   Search terms used in this study

AI-related “Intelligent agent*” or “expert system*” or “fuzzy logic” or “neuro-fuzzy” or 
“text mining” or “text-mining” or “deep network*” or “fuzzy system*” or “graph 
mining” or “markov chain” or “neural fuzzy” or “neural-fuzzy” or “bayes network*” 
or “decision tree” or “deep learning” or “deep-learning” or “fuzzy control” or 
“kernel method” or “kinetic model” or “random forest” or “visual search” or 
“bayes learning” or “feature coding” or “fundus imaging” or “naive bayesian” or 
“neural control” or “neural network*” or “robust control” or “computer vision” or 
“features mining” or “fuzzy reasoning” or “graph embedding*” or “hybrid coupling” 
or “knowledge graph*” or “regression tree*” or “retinal imaging” or “bayesian 
network*”or “fuzzy clustering” or “fuzzy set theory” or “machine learning” or 
“machine-learning” or “naive bayes tree*” or “rough set theory” or “semantic 
mapping” or “genetic algorithm*” or “k-means*” or “nearest neighbor*” or “neural 
nets model*” or “ontology matching” or “bayesian inference” or “hesitant fuzzy 
set” or “human intelligence” or “k-means clustering” or “k-nearest neigbour*” or 
“question answering” or “sentiment analysis” or “speech recognition” or “swarm 
intelligence” or “affective computing” or “classif* tree” or “deep belief network*” 
or “fuzzy cognitive map*” or “machine translation” or “markov random field*” 
or “pattern recognition” or “ambient intelligence” or “human–machine system*” 
or “machine intelligence” or “semantic orientation” or “tensor-train network*” or 
“information retrieval*” or “intelligent computing” or “man–machine interface*” or 
“feature representation” or “gaussian mixture model*” or “information extraction” 
or “intuitive intelligence” or “reinforcement learning” or “support vector machine” 
or “support vector network*” or “artificial intelligence” or “association rule 
mining” or “bayesian belief network*” or “brain-machine interface*” or “decision 
support system*” or “deep polynomial network*” or “ensemble classif*” or 
“semantic topic analysis” or “support vectors machine” or “conditional random 
field*” or “evolutionary computation” or “fuzzy c-means clustering” or “intelligent 
robot system*” or “named entity recognition” or “networked control system*” 
or “sentiment classif*” or “bayesian learning” or “feature learning” or “switched 
network cluster*” or “artificial neural-network*” or “artificial neural network*” or 
“gradient boosting machine”or “word sense disambiguation” or “computational 
intelligence” or “deep contour-aware network*” or “naive bayes classif*” or “neural 
dynamic programming” or “fuzzy classif*” or “natural language generation” or 
“natural language processing” or “feature selection” or “support vector classif*” or 
“fuzzy knowledge representation” or “natural language understanding” or “artificial 
bee colony” or “artificial fish swarm” or “artificial general intelligence” or “fuzzy 
inference”

AND
Fusion-related “Fusion”
AND
Multimodal-related “Multimodal*” OR “multi-modal*”
AND
Medical/health-

related
“Medical*” OR “medicine*” OR “medication” OR “health*” OR “healthcare” OR 

“hospital*” OR “clinical” OR “clinic*” OR “disease*”
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studies that centered on computer-aided detection/diagnosis but did not utilize AI methods 
or technologies were also excluded. Moreover, studies focusing on food, animals, plants, 
chemical, biometric, microbial, environment, agriculture, or smart home-related issues 
were excluded. Finally, research lacking primary data (such as editorials, commentaries, 
viewpoint articles, and theoretical pieces) or not composed in the English language were 
also omitted.

The 781 articles underwent two rounds of screening. In the first round of screening, 
the title and abstract and each of the 781 articles were filtered by two authors (X.C. and 
X.T.) based on the inclusion/exclusion criteria. The screening process entails three 
stages. Initially, when determining the inclusion of an article, we first focus on AI 
methodologies. Articles not aligning with AI methods were promptly excluded without 
further evaluation of other criteria linked to multimodal data fusion or medical/health-
related issues. Any article involving technologies associated with machine learning (IA1), 
DNNs (IA2), or reasoning and metrics (IA3) was classified as AI method-related. In the 
subsequent stage, each article categorized as AI method-related underwent assessment 
for relevance to multimodal data fusion. Those lacking relevance were excluded outright 
without consideration of other criteria pertaining to medical/health-related topics. Articles 
involving technologies within multimodal data fusion domains/mechanisms (IM1) were 
classified as multimodal data fusion-related. In the final stage, each article identified as 
multimodal data fusion-related was scrutinized for relevance to medical/health-related 
topics. Articles not meeting this criterion were excluded. Articles touching upon areas like 
solutions for smart healthcare (IH1), medical or  clinical image processing applications 
(IH2), medical  or  clinical signal processing  applications (IH3), medical  or  clinical 
NLP  applications (IH4), medical  or  clinical integrated processing  applications (IH5), 
generic processing  applications for health  or  medical purposes (IH6), human activity 
detection and assessment for health  or  medical purposes (IH7), multimodal analysis for 
doctor-patient relationship prediction (IH8), and safety (e.g., food security, fall prevention) 
(IH9) were classified as medical or health-related. Whenever discrepancies occurred, the 
third author (H.X.) was consulted to decide if the article should be selected. A total of 
53 articles were reduced, resulting in 728 articles that underwent the second round of 
screening.

In the second round of screening, a thorough evaluation of the 728 articles’ eligibil-
ity was carried out through full-text reading based on the same screening process by the 
three authors (X.C., X.T., and H.X.) to finalize the inclusion of 683 articles. The inter-
rater agreement reached 97%, and any discrepancies were resolved through consensus dis-
cussions. As per (Huang et al. 2022a), the screening procedure detailed above serves as a 
method of quality control, ensuring a thorough evaluation of articles using clearly outlined 
inclusion and exclusion criteria. The PRISMA flow diagram in Fig. 1 presents each stage 
of the search and the paper selection process.

Quality assessment, often a crucial step in systematic literature reviews to ensure 
comprehensive coverage of predefined dimensions for analysis, wasn’t utilized in this 
research. This choice arose from employing a topic modeling-based bibliometric approach, 
distinct from systematic analysis that scrutinizes specific, predetermined dimensions 
within a restricted article set. The study’s objective is to analyze bibliometric attributes 
and research topics within the 683 eligible articles using automated machine modeling, 
diverging from the reliance on predefined codes or categories characteristic of systematic 
analysis or meta-analysis studies.
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2.3 � Data analysis for answering research questions

From the pool of 683 papers selected for their relevance to AI-powered multimodal data 
fusion in smart healthcare, we pursued answers to the three RQs. Employing a topic 
modeling-driven bibliometric analysis, our data analysis predominantly delved into 
the metadata or bibliographic details linked to each paper, encompassing authors, titles, 
abstracts, keywords, publication year, and journal titles. Nonetheless, the textual content 
within the 683 papers was not utilized or reviewed, as our study’s aim did not involve 
pinpointing specific elements akin to systematic reviews. This divergence stems from 
our analytical approach—STM-based bibliometrics—which focuses on uncovering 
latent themes within extensive datasets rather than relying on manual coding through 
predetermined schemes.

RQ1 was investigated through a quantitative analysis of article and citation counts over 
the years. To capture non-linear trends in the annual paper output, a polynomial modeling 
approach was employed. The academic performance of journals, nations/regions, academic 
institutions, and researchers was evaluated using bibliometric measures, including 
the Hirsch index (H-index) and average citations per article (ACP). The productivity 
and impact of actors were assessed according to the number of articles contributed and 
citations earned. The H-index was employed to assess contributors from both a standpoint 

Fig. 1   An overview of data search
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of excellence and volume, while ACP was calculated by dividing the citation count by the 
article count.

To respond to RQ2, Gephi (Bastian et  al. 2009) and SNA were used to visualize the 
connections between researchers, institutions, or nations/regions as separate entities. In 
a cooperative network of institutions, for instance, the size of each node represented the 
institution’s productivity, and the link’s width between nodes indicated the degree of their 
cooperation.

Addressing RQ3, the study utilized topic modeling and keyword analysis techniques. 
In addition to predefined keywords, phrases extracted from paper titles and abstracts were 
included for keyword analysis. By ranking these phrases and keywords based on their fre-
quency in the corpus of evaluated publications, frequently researched study subjects were 
identified. This research employed the intricate STM (Chen et  al. 2023b; Roberts et  al. 
2014) as an advanced probabilistic technique for topic modeling, as demonstrated by its 
plate diagram presented in Fig.  2. In the context of an article collection indexed by D , 
wherein vector x

d
 denotes article-level covariates, K signifies the number of topics, the 

total word count in a sampled article d is denoted as {w
d,n} , and V  represents the size of 

the vocabulary. The fundamental pseudocode of the STM involves a tripartite process. The 
initial phase is dedicated to the estimation of the topic prevalence parameter �

d
 for every 

word within article d , accomplished by logistic-normal generalized linear modeling. Sub-
sequently, the second phase centers on approximating the topical content model � , which 
portrays words as a probabilistic blend of each topic (k) . In the third and final step, for each 
word within the article (n ∈ {1,… ,N

d
}) , each topic is selected through sampling from a 

multinomial distribution over �
d
.

In this study, the modeling process involved three primary steps. First, terms from 
titles, abstracts, and keywords, were pre-processed by removing numbers, punctuation, 
and stop-words. Next, using the term frequency-inverse document frequency technology, 
unimportant words were filtered out based on a threshold of 0.05. Within the pool of 
potential models encompassing topic quantities spanning from 5 to 30, models with 
higher performance in terms of semantic coherence and exclusivity were manually 
compared and evaluated. Then, the Mann–Kendall (MK) test was utilized to analyze the 
annual proportions of topics and identify significant increasing/decreasing tendencies 

Fig. 2   Plate diagram of STM (Adapted from (Chen et al. 2023b) and (Roberts et al. 2014))
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(p <  = 0.05). The MK test was also used to examine the evolution of discovered 
keywords and phrases (Mann 1945).

3 � Results

3.1 � Publication trend

The distributions of articles and citations per year are visualized in Fig. 3. A polyno-
mial regression analysis was performed to fit their patterns. The timeframe from 2002 to 
2022 was employed. The outcomes illustrate a discernible inclination toward growth in 
publication count, particularly noticeable since 2013, reflecting an increasing fervor for 
research within this domain. This is further supported by the positive coefficient of “x2” 
in the calculated regression model (R2 = 0.8066). The forecasted value for the year 2023 
stands at y1 = 0.9920057  ×  20232–3985.488  ×  2023 + 4003012 = 181.9068. There has 
been a significant surge in citations, particularly since 2013. This trend is likewise high-
lighted by the positive coefficient of “x2” in the computed model (R2 = 0.8045). In a par-
allel manner, a regression model was also employed to predict the trajectory of citation 
variation, yielding y2 = 19.16552 × 20232−77002.1 × 2023 + 77343270 = 3453.002.

3.2 � Top studies

Based on the number of citations, the highest-ranked 10 articles out of the 683 papers 
related to the integration of healthcare information with AI are showcased in Table 4. 
Notably, 5 articles feature both ranking compilations [i.e., (Suk et al. 2014; Zhang et al. 
2020b; Katsigiannis and Ramzan 2017; Yin et  al. 2018; Shi et  al. 2017)]. The main 

Fig. 3   Trend analysis of article count
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content of these five studies is elaborated as follows. The paper by Suk et al. (Suk et al. 
2014) received a total of 492 citations with a C/Y value of 49.2, proposing a novel 
deep learning method that employed a deep Boltzmann machine (DBM) to uncover 
latent hierarchical features within three-dimensional (3D) patches of neuroimaging data 
and then created a combined feature depiction for paired MRI and positron emission 
tomography (PET) patches using a multimodal DBM. The method outperformed 
previous approaches, achieving high accuracies in categorizing Alzheimer’s disease 
(AD), mild cognitive impairment (MCI), and healthy control subjects. The paper 
by Zhang et  al. (Zhang et  al. 2020b) received a total of 328 citations with a C/Y 
value of 82, presenting IFCNN, an innovative image-blending framework grounded 
in convolutional neural networks (CNNs). It captured significant attributes from 
various input images using dual convolutional layers and amalgamated them utilizing 
elementwise-max, elementwise-min, or elementwise-mean principles depending 
on the image characteristics. The architecture was entirely convolutional, enabling 
comprehensive end-to-end training without necessitating post-processing steps. The 
paper by. (Katsigiannis and Ramzan 2017) received a total of 300 citations with a C/Y 
value of 50, proposing a database containing multiple modes of data encompassing 
electroencephalography (EEG) and electrocardiogram (ECG) signals, which were 
captured while eliciting emotions through audio-visual stimuli. The signals, along 
with self-assessments of participants’ emotional states, were captured using portable, 
wearable, and low-cost equipment, enabling potential use in everyday applications. The 
paper by (Yin et  al. 2018) received a total of 275 citations with a C/Y value of 55, 
introducing a new approach for fusing multimodal medical images using nonsubsampled 
shearlet transform (NSST). This involved NSST decomposition for multiscale and 
multidirectional representations. High- and low-frequency bands were fused with 
parameter-adaptive pulse-coupled neural networks and a tactic addressing energy 
preservation and detail extraction, respectively. The fused images were rebuilt through 
reverse NSST. The paper by (Shi et  al. 2017) received a total of 234 citations with a 
C/Y value of 39, introducing an algorithm called multimodal deep polynomial networks 
stacked (MM-DPSN) designed for diagnosing AD. The MM-SDPN was composed of 
dual-stage stacked deep polynomial networks, which independently acquired advanced 
features from MRI and PET, and subsequently integrated them to enhance feature 
representation.

According to total citations, another five studies among the top 10 papers are intro-
duced as follows. The paper by (Liu et al. 2014) received a total of 299 citations, pre-
senting an original diagnostic structure utilizing a deep learning architecture aimed at 
aiding AD detection. The framework employed a zero-masking tactic for merging data 
and extracting supplementary insights from several data modalities. By enabling the 
efficient merging of neuroimaging features from multiple modes and potentially needing 
fewer labeled datasets, the structure exhibited enhanced outcomes in binary/multiclass 
AD classification. The paper by Hu et al. (Hu et al. 2018) received a total of 188 cita-
tions, presenting a method to infer voxel-level transformation using anatomical labels, 
which were more practical and reliable to obtain than voxel-level correspondence. They 
employed a CNN for displacement field prediction for aligning labeled structures in 
image pairs during training, and the method ran in real-time during inference without 
requiring labels or initialization. The paper by Zhu et  al. (Zhu et  al. 2015) received 
a total of 163 citations, presenting a consolidated structure that merged two distinct 
subspace learning methods: linear discriminant analysis, and locality-preserving pro-
jection. This was employed to pick features that were both distinct to the classes and 



Artificial intelligence and multimodal data fusion for smart…

1 3

Page 15 of 52     91 

Ta
bl

e 
4  

T
op

 st
ud

ie
s

C
 c

ita
tio

n 
co

un
t

St
ud

ie
s

Ti
tle

C

Su
k 

et
 a

l. 
(2

01
4)

“H
ie

ra
rc

hi
ca

l f
ea

tu
re

 re
pr

es
en

ta
tio

n 
an

d 
m

ul
tim

od
al

 fu
si

on
 w

ith
 d

ee
p 

le
ar

ni
ng

 fo
r A

D
/M

C
I d

ia
gn

os
is

”
49

2
Zh

an
g 

et
 a

l. 
(2

02
0b

)
“I

FC
N

N
: a

 g
en

er
al

 im
ag

e 
fu

si
on

 fr
am

ew
or

k 
ba

se
d 

on
 c

on
vo

lu
tio

na
l n

eu
ra

l n
et

w
or

k”
32

8
K

at
si

gi
an

ni
s a

nd
 R

am
za

n 
(2

01
7)

“D
R

EA
M

ER
: a

 d
at

ab
as

e 
fo

r e
m

ot
io

n 
re

co
gn

iti
on

 th
ro

ug
h 

EE
G

 a
nd

 E
C

G
 si

gn
al

s f
ro

m
 w

ire
le

ss
 lo

w
-c

os
t o

ff-
th

e-
sh

el
f 

de
vi

ce
s”

30
0

Li
u 

et
 a

l. 
(2

01
4)

“M
ul

tim
od

al
 n

eu
ro

im
ag

in
g 

fe
at

ur
e 

le
ar

ni
ng

 fo
r m

ul
tic

la
ss

 d
ia

gn
os

is
 o

f A
lz

he
im

er
’s

 d
is

ea
se

”
29

9
Y

in
 e

t a
l. 

(2
01

8)
“M

ed
ic

al
 im

ag
e 

fu
si

on
 w

ith
 p

ar
am

et
er

-a
da

pt
iv

e 
pu

ls
e 

co
up

le
d 

ne
ur

al
 n

et
w

or
k 

in
 n

on
su

bs
am

pl
ed

 sh
ea

rle
t t

ra
ns

fo
rm

 
do

m
ai

n”
27

5

Sh
i e

t a
l. 

(2
01

7)
“M

ul
tim

od
al

 n
eu

ro
im

ag
in

g 
fe

at
ur

e 
Le

ar
ni

ng
 w

ith
 m

ul
tim

od
al

 st
ac

ke
d 

de
ep

 p
ol

yn
om

ia
l n

et
w

or
ks

 fo
r d

ia
gn

os
is

 o
f 

A
lz

he
im

er
’s

 d
is

ea
se

”
23

4

H
u 

et
 a

l. 
(2

01
8)

“W
ea

kl
y-

su
pe

rv
is

ed
 c

on
vo

lu
tio

na
l n

eu
ra

l n
et

w
or

ks
 fo

r m
ul

tim
od

al
 im

ag
e 

re
gi

str
at

io
n”

18
8

Zh
u 

et
 a

l. 
(2

01
5)

“S
ub

sp
ac

e 
re

gu
la

riz
ed

 sp
ar

se
 m

ul
tit

as
k 

le
ar

ni
ng

 fo
r m

ul
tic

la
ss

 n
eu

ro
de

ge
ne

ra
tiv

e 
di

se
as

e 
id

en
tifi

ca
tio

n”
16

3
W

an
g 

an
d 

M
a 

(2
00

8)
“M

ed
ic

al
 im

ag
e 

fu
si

on
 u

si
ng

 m
-P

C
N

N
”

16
2

M
a 

et
 a

l. 
(2

01
8)

“D
ee

p 
co

up
lin

g 
au

to
en

co
de

r f
or

 fa
ul

t d
ia

gn
os

is
 w

ith
 m

ul
tim

od
al

 se
ns

or
y 

da
ta

”
15

4



	 X. Chen et al.

1 3

   91   Page 16 of 52

robust against noise. The suggested approach demonstrated effectiveness in the context 
of multiclass classification and surpassed alternative cutting-edge techniques on the 
AD Neuroimaging Initiative dataset. The paper by Wang and Ma (Wang and Ma 2008) 
received a total of 162 citations, presenting a multi-channel Pulse coupled neural net-
work (m-PCNN) to fuse medical images. The article elucidated the mathematical foun-
dation of m-PCNN and introduced the dual-channel model as an exceptional instance. 
The outcomes showcased that m-PCNN surpassed alternative approaches regarding 
visual impact and objective assessment. The paper by (Ma et al. 2018) received a total 
of 154 citations, introducing the deep coupling autoencoder (DCAE) for fault detection 
using multimodal sensory signals. The DCAE seamlessly integrated feature extraction 
and data fusion, capturing shared information between different sensory data and learn-
ing higher-level joint features.

According to the yearly citation rate (C/Y) (Chen et al. 2022), another five studies among 
the top ten papers are presented in Table 5. The paper by (Holzinger et  al. 2021) received 
a C/Y value of 45.33, advocating the use of graph neural networks (GNNs) for multimodal 
causability. GNNs were highlighted as essential for multimodal causability because they 
could directly define causal links between features using graph structures. The paper by (Chen 
et  al. 2020) received a C/Y value of 41.5, introducing pathomic fusion, a comprehensible 
approach for merging histology images and genomic features to predict survival outcomes. 
This technique captured mutual feature correlations using a Kronecker product and controlled 
representation expressiveness through a gate-oriented attention mechanism. The method 
allowed for feature interpretation and localization across each modality and improved 
prognostic determinations compared to unimodal deep networks. The paper by (Khan 
et al. 2020) received a C/Y value of 38.5, presenting an automated approach for classifying 
brain tumor types utilizing deep learning and multimodal data. The method involved five 
fundamental stages: applying linear contrast enhancement, performing feature extraction 
through deep learning utilizing VGG16 and VGG19 architectures, implementing correntropy-
based collaborative learning in tandem with extreme learning machine (ELM) for feature 
curation, fusion of robust covariant features using partial least square, and final classification 
with ELM. The paper by (Jin et al. 2022) received a C/Y value of 36.5, evaluating choroidal 
neovascularization in age‐related macular degeneration using multimodal DNNs with optical 
coherence tomography (OCT) and angiography images, enhancing computer-aided diagnosis 
systems. The paper by (Venugopalan et al. 2021) received a C/Y value of 35.33, improving 
AD and MCI analysis by integrating imaging, genetic, and clinical data. Deep learning 
techniques, including stacked denoising autoencoders and 3D CNNs, classified patients into 
AD, MCI, and controls, surpassing shallow models. The study identified the hippocampus, 
amygdala, and Rey Auditory Verbal Learning Test as key features, aligning with AD literature.

3.3 � Journal analysis

A total of 233 journals were found. In Table 6, the leading 15 journals in terms of article 
quantity are presented, ranked from the complete relevant article pool (683). The primary 
trio of journals comprises Biomedical Signal Processing and Control, IEEE Journal of 
Biomedical and Health Informatics, and IEEE Access. These journals encompass 36.60 
percent of the aggregate articles, with the foremost 3 accounting for 13.03 percent. When 
considering both the H-index and citation counts, IEEE Transactions on Medical Imaging 
and IEEE Journal of Biomedical and Health Informatics hold positions within the top 3.
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By utilizing the yearly article count spanning 2002 to 2022 and employing the MK trend 
assessment, we calculated the overall significance level and trend for each journal, denoted 
by upward (↑) or downward (↓) indicators. The higher the count of these symbols, the more 
notable the trend. Except for Information Fusion and Neural Computing and Applications, 
all the other 13 listed journals demonstrate a dramatically increasing trend. Additionally, 
we divided the two decades into three intervals: 2002–2012, 2013–2017, and 2018–2023, 
as depicted in Table 6.

3.4 � WOS categories

A total of 82 WoS categories were found. Table 7 displays the foremost 15 WoS categories 
with the highest article counts, arranged according to the complete pool of relevant 
articles (683). The leading quintet encompasses “engineering, electrical & electronic”, 
“computer science, artificial intelligence”, “engineering, biomedical”, “computer science, 
interdisciplinary application”, and “computer science, information system”. From both 
the H-index and citation count standpoints, “engineering, electrical & electronic”, 
“engineering, biomedical”, and “radiology, nuclear medicine & medical imaging” stand 
within the highest three positions.

Using the yearly count of articles spanning from 2002 to 2022 and applying the MK 
trend test, we calculated the overall significance level and the trend for each WoS category. 
Except for five categories: “engineering, electrical & electronic”, “computer science, 
artificial intelligence”, “engineering, biomedical”, “radiology, nuclear medicine & medical 
imaging”, and “computer science, theory & method”, all the other 10 listed categories 
exhibit a notably ascending trend. Additionally, we divided the 20 years into three phases: 
2002–2012, 2013–2017, and 2018–2023, as illustrated in Table 7.

3.5 � Top countries/regions, institutions, and authors

In the span from 2002 to 2023, a cumulative of 683 articles were published in the 
research, involving a comprehensive representation of 57 countries/regions. These articles 
demonstrate a wide array of geographic origins, as illustrated by Table 8 which lists the top 
15 countries/regions based on their article count. Among these, the leading trio comprises 
China, USA, and India. Remarkably, China stands out with 371 articles, making up around 
54.32% of the entire article count, followed by the USA (125 articles, 18.30%), and India 
(73 articles, 10.69%). Ranked by both citation count and H-index, China (4203 citations, 
H index of 34) and the USA (3715 citations, H index of 37) emerge as the leading two 
countries/regions in this field of study.

Through employing the annual count of articles within the timeframe of 2002–2022 
and applying the MK trend test, computations were carried out for the general significance 
level and the trend for each country/region collectively. Except for four countries/regions: 
the USA, the UK, Italy, and France, all the remaining 11 listed countries/regions portray a 
conspicuously increasing trend. The table further outlines the article and citation counts of 
countries/regions within the three periods: 2002–2012, 2013–2017, and 2018–2023. The 
findings demonstrate that China exhibited substantial progress in ranking during the most 
recent period.

During the period spanning from 2002 to 2023, a collective of 683 research articles 
engaged a cumulative of 962 institutions in their publication. These articles reflect an array 
of geographic origins, with Table 9 providing insight into the top 17 institutions based on 
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their article count. Positioned at the helm, the Chinese Academy of Sciences and Shang-
hai Jiao Tong University secure the top two spots among these institutions, contributing 
together to 49 articles, followed by Fudan University (16 articles), Sichuan University 
(15 articles), and Chongqing University of Posts and Telecommunications (14 articles). 
Ranked by both citation count and H-index, Chinese Academy of Sciences (240 citations, 
H index of 9), University of North Carolina at Chapel Hill (332 citations, H index of 9), 
and Korea University (330 citations, H index of 9) are the top 3 institutions in this research 
area.

Through utilizing the yearly article count within the 2002–2022 timeframe and 
implementing the MK trend test, calculations were conducted for both the overall 
significance level and trend pertaining to each institution collectively. All the 17 institutions 
featured on the list display a highly prominent ascending trend. The table further provides 
an overview of the article and citation counts for institutions during three distinct periods: 
2002–2012, 2013–2017, and 2018–2023. The findings highlight that numerous institutions 
have notably elevated their rankings in the most recent period, with Fudan University, 
Sichuan University, and Chongqing University of Posts and Telecommunications notably 
excelling.

In the span from 2002 to 2023, a cumulative of 683 research articles witnessed the con-
tribution of 3170 authors. These articles emanate from a multitude of geographic origins, 
as evident in the top 17 authors enumerated in Table 10. The top three authors are Ding-
gang Shen from ShanghaiTech University (12 articles), Xia-An Bi from Hunan Normal 
University (9 articles), and Yu Liu from Hefei University of Technology (9 articles), fol-
lowed by Tamer Abuhmed from Sungkyunkwan University (7 articles), and Shaker El-
Sappagh from Benha University (7 articles). Dinggang Shenis also the top author ranked 
by H-index. Ranked by citation count, Anant Madabhushi from Emory University (494 

Table 8   Top productive countries/regions

Similar to Table 6

Countries/regions AC TC ACP H MK test 2002–
2012

2013–
2017

2018–2023

p S Trend AC TC AC TC AC TC

China 371 4203 11.33 34 0.002 96 ↑↑↑ 2 22 17 262 352 3919
USA 125 3715 29.72 37 0.367 30 ↑ 8 10 18 161 99 3544
India 73 1240 16.99 17 0.009 81 ↑↑↑ 3 39 4 37 66 1164
UK 55 1591 28.93 16 0.069 55 ↑ 2 24 3 231 50 1336
South Korea 39 774 19.85 14 0.020 68 ↑↑ 1 0 2 20 36 754
Saudi Arabia 29 308 10.62 10 0.000 94 ↑↑↑↑ 0 26 1 17 28 265
Australia 26 488 18.77 12 0.008 71 ↑↑↑ 0 3 2 27 24 458
Egypt 26 353 13.58 9 0.010 64 ↑↑ 0 0 1 40 25 313
Germany 25 602 24.08 12 0.006 77 ↑↑↑ 0 0 3 56 22 546
Canada 21 642 30.57 11 0.011 74 ↑↑ 0 0 5 39 16 603
Spain 20 644 32.20 11 0.040 60 ↑↑ 1 0 2 0 17 644
Italy 17 662 38.94 7 0.112 40 ↑ 1 0 1 84 15 578
Pakistan 15 178 11.87 7 0.005 64 ↑↑↑ 0 0 0 1 15 177
France 13 485 37.31 7 0.080 44 ↑ 1 0 3 4 9 481
Turkey 10 69 6.90 4 0.012 51 ↑↑ 0 0 0 5 10 64
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citations), Xiaofeng Zhu from University of Electronic Science and Technology of China 
(417 citations), and Dinggang Shen (331 citations) are the top 3 authors in this research 
area.

Utilizing the annual article count spanning from 2002 to 2022 and employing the MK 
test, computations were performed to determine the overall significance level and trend for 
each author collectively. Except for Vince D. Calhoun from Georgia State University, Anant 
Madabhushi from Emory University, and Xiaofeng Zhu from the University of Electronic 
Science and Technology of China, the remaining 14 authors among those listed exhibit 
a remarkable upward trend. The table also offers a broad perspective on the article and 
citation counts of authors across three distinct timeframes: 2002–2012, 2013–2017, and 
2018–2023. The findings underscore that numerous authors have significantly enhanced 
their rankings in the latest period, particularly Xia-An Bi, Yu Liu, Tamer Abuhmed, and 
Shaker El-Sappagh.

3.6 � Scientific collaboration analysis

In Fig. 4a illustrates the partnerships involving 7 countries/regions, with collaborative fre-
quencies spanning from 9 to 52. Among these, 3 belong to Asia (pink nodes). Notably, the 
USA and China demonstrated the strongest collaboration, appearing in 52 articles. This 
was followed by collaborations between China and the UK (18), South Korea and the USA 
(14), and the UK and the USA (12). In Fig. 4b, collaborations among 10 countries/regions 
are showcased, featuring collaborative frequencies ranging from 6 to 7. Of the 10 countries/
regions, 4 are from Asia (pink nodes) and 3 are from Europe (green nodes). The collabora-
tion among them is close as witnessed by three collaborative clusters: 2) China and Hong 
Kong, 2) Italy, the UK, and Germany, and 3) Saudi Arabia and Pakistan. Figure 4c displays 
the partnerships among 7 countries/regions, characterized by a collaborative frequency of 
5. Of the 7 countries/regions, 4 are from Asia (pink nodes). They maintain a tight col-
laborative relationship. as witnessed by the collaborative cluster formed by China, India, 
and Saudi Arabia. In Fig. 4d, the partnerships involving 9 countries/regions are illustrated, 
marked by a collaborative frequency of 4. Of the 9 countries/regions, 4 are from Asia (pink 
nodes) and 2 are from North America (orange nodes). The collaboration among them is 
close as witnessed by 2 collaborative clusters: 2) the USA, Canada, and Saudi Arabia and 
2) Pakistan and South Korea. Figure 4e visualizes the partnerships among 14 countries/
regions, characterized by a collaborative frequency of 3. Of the 14 countries/regions, 7 are 
from Europe (green nodes) and 6 are from Asia (pink nodes). The collaboration among 
them is closed as witnessed by China, Singapore, Macao, Norway, German, France, the 
UK, and Iran.

In Figs. 5 and 6 illustrate partnerships among institutions, exhibiting collaborative fre-
quencies spanning from 3 to 10. In Fig. 5a, partnerships among 4 institutions are repre-
sented, marked by a collaborative frequency of 10. Of the 4 institutions, 2 are from China 
(green nodes). These 4 institutions form two clusters of collaboration: (1) Korea Univer-
sity and University of North Carolina at Chapel Hill, and (2) University of Chinese Acad-
emy of Sciences and Chinese Academy of Sciences. In Fig. 5b, the partnerships among 
7 institutions are showcased, characterized by collaborative frequencies that range from 
5 to 6. Of the 7 institutions, 4 are from China (green nodes) and 2 are from South Korea 
(orange nodes). These 7 institutions form 3 clusters of collaboration: (1) Hefei University 
of Technology and University of Science and Technology of China, (2) Sichuan Univer-
sity and Chengdu University of Information Technology, and (3) Sejong University, Benha 
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Fig. 4   Country/region collaborations (52 <  = collaborative frequency <  = 3)
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University, and Sungkyunkwan University. Figure  5c depicts a collaborative network 
formed by 7 institutions with a collaborative frequency of 4. These 7 institutions include 
Sejong University, Sungkyunkwan University, Benha University, Galala University, and 
University of Santiago Compostela. Figure 5d and Fig. 6 illustrate partnerships among 24 
institutions, marked by a collaborative frequency of 3. Of the 24 institutions, 9 are from 
China (green nodes), 4 are from India (pink nodes), and 3 are from Egypt (blue nodes). The 
collaboration among institutions from the same countries/regions is closed as witnessed by 
several collaborative clusters, for example, (1) International Institute of Information Tech-
nology and Shri Mata Vaishno Devi University, (2) First Hospital of Jilin University and 
Jilin University, (3) Chinese Academy of Sciences, Fudan University, and University of 
Science and Technology of China, and (4) Benha University and Galala University.

In Fig. 7a, partnerships among 4 authors are represented, with collaborative frequencies 
spanning from 5 to 7. Of the 4 authors, 2 are from China (purple nodes). These 4 authors 
form two clusters of collaboration: (1) Yu Liu and Xun Chen, and (2) Tamer Abuhmed 
and Shaker El-Sappagh. Figure  7b illustrates partnerships among 10 authors, character-
ized by a collaborative frequency of 4. Of the 10 authors, 7 are from China (purple nodes). 

Fig. 5   Institution collaborations (10 <  = collaborative frequency <  = 3)
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Fig. 6   Institution collaborations (collaborative frequency = 3)

Fig. 7   Author collaborations (4 <  = collaborative frequency <  = 7)
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The collaboration among them is close as witnessed by three collaborative clusters: (1) 
Xi Hu, Xia-An Bi, and Zhaoxu Xing, (2) Xi Wu and Jiliu Zhou, and (3) Baiying Lei and 
Tianfu Wang. Figure 8 showcases partnerships among 57 authors, marked by a collabo-
rative frequency of 3. Of the 57 authors, 33 are from China (pink nodes) and 7 are from 
India (green nodes). The collaboration among institutions from the same countries/regions 
is closed as witnessed by several collaborative clusters, for example, (1) Sneha Singh, Rad-
hey Shyam Anand, Deep Gupta, Ashwini M. Bakde, and Manisha Das, (2) Tao Zhou, Kim-
Han Thung, Xiaofeng Zhu, and Dinggang Shen.

3.7 � Top frequently used terms and phrases

The top 50 terms that appear most frequently are visually presented in Table 11. Leading 
the list is the term “disease”, securing the first position by making an appearance in 210 
articles, representing a share of 30.75%. Other prevalent terms encompass “brain” (122 
articles, 17.86%), “detection” (107 articles, 15.67%), “system” (107 articles, 15.67%), 
“imaging” (106 articles, 15.52%), “prediction” (97 articles, 14.2%), “multi-modality” 

Fig. 8   Author collaborations (collaborative frequency = 3)
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(93 articles, 13.62%), “mri” (92 articles, 13.47%), “convolutional” (89 articles, 13.03%), 
“alzheimer” (86 articles, 12.59%), and “segmentation” (78 articles, 11.42%). Utilizing the 
yearly term frequency data spanning from 2002 to 2022, we also incorporated the out-
comes of the non-parametric MK trend test. Across these periods, most of the terms listed, 
particularly “prediction”, “convolutional”, “magnetic”, “resonance”, “predict”, and “sig-
nal” exhibited notably substantial increases in frequency.

Table 12 showcases the leading 42 commonly employed phrases, with "neural network" 
emerging as the foremost choice in 163 articles, constituting 23.87%. Other prominently 
used phrases included “deep learning” (154 articles, 22.55%), “experimental result” (131 
articles, 19.18%), “medical image fusion” (108 articles, 15.81%), “medical image” (86 
articles, 12.59%), “fused image” (86 articles, 12.59%), “multimodal fusion” (54 articles, 
7.91%), “multimodal data” (47 articles, 6.88%), “source image” (44 articles, 6.44%), 
“magnetic resonance imaging” (40 articles, 5.86%), and “clinical diagnosis” (39 articles, 
5.71%). Employing the annual phrase frequency data spanning from 2002 to 2022, we also 
incorporated the findings of the non-parametric MK trend test. Throughout these temporal 
spans, most of the phrases listed, particularly “deep learning” and “magnetic resonance 
imaging”, exhibited substantial changes in frequency.

Table  13 presents the emerging terms and phrases during 2020–2023. Examples 
of important terms include “interaction”, “encoder”, “covid-19”, “transformer”, 
“decoder”, “texture”, “heterogeneity”, “u-net”, and “progression”. Examples of important 
phrases include “multimodal fusion model”, “ct image”, “imaging modality”, “tumor 
segmentation”, “brain disease diagnosis”, “contextual information”, “coronavirus disease”, 
“electronic health record”, and “human–computer interaction”.

3.8 � Topic identification and trend analysis

Within this investigation, the scholars engaged in topic modeling to determine a suitable 
quantity of topics. To achieve this, they undertook the process using a range of candidates 
for topic numbers, spanning from 5 to 30. According to the evaluation of semantic coher-
ence and exclusivity performance (Fig. 9), three models were selected for manual compari-
son. Following a meticulous evaluation by domain experts, who drew upon their profound 
expertise and substantive understanding of the subject matter, the researchers ultimately 
opted for a 14-topic model. This selection was made after considering interpretability, rela-
tive effectiveness, external validity, and semantic coherence. This choice ensured that the 
model not only generated distinct topics but also maintained their interpretability. Labels 
were attributed to each topic by referencing typical terms and papers, and the frequent and 
exclusive terms (FREX) metric was utilized to pinpoint highly represented terms in each 
topic (Airoldi and Bischof 2016).

The outcomes, which encompass article proportions and recommended topic labels, 
are displayed in Fig. 10. Notably, the top three topics with the highest frequencies encom-
passed adaptive transformations for enhanced visual data analysis (12.10%), neurodegen-
erative disease prediction with multi-task diagnostics (10.70%), and cross-modality MRI 
for brain tumor analysis (9.80%). The trend assessment outcomes for the 14 topics are 
likewise incorporated within the Table. Eleven topics, including neurodegenerative dis-
ease prediction with multi-task diagnostics, cross-modality MRI for brain tumor analysis, 
cancer prognosis through multi-dimensional data analysis, IoT-enabled sensory monitor-
ing for health management, neuroimaging for cognitive impairment detection, AI for emo-
tion recognition and post-stroke assessment, AI for neuroimaging-based brain disorder 
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prediction, multimedia content analysis for mental health support, AI-assisted diagnostics 
and personalization in healthcare, advanced signal processing for sleep and gait disor-
ders, and neurological health monitoring via mobile technologies, manifest a noteworthy 
and statistically robust escalation in trend, reaching significance at the two-sided p = 0.05 
threshold. In contrast, the remaining 3 topics do not showcase a statistically significant 
trend. These trends within the mentioned topics are visually depicted in Fig.  11, which 
illustrates the dynamic prevalence of each of the 14 topics across time within the entire 
dataset.

4 � Discussion

4.1 � Answers to RQs

Within this research endeavor, a topic-focused bibliometric investigation centered on 
AI-powered smart healthcare through multimodal data analysis was devised to address 
the earlier-raised research inquiries. Regarding RQ1, the comprehensive augmentation 
in the corpus of scholarly articles, graphically depicted in Fig.  3, indicates a mounting 
fascination with research within this multidisciplinary sphere over the last two decades. A 
trend analysis further accentuates this trajectory, prognosticating a continued surge. This 
trajectory underscores the promise of AI-powered smart healthcare anchored in multimodal 
data analysis, substantiating a flourishing research community and a burgeoning output of 
academic contributions. Illustrated in Table 6, the scrutiny of journals identified a roster 
of periodicals inclined to publish works underpinning AI-powered smart healthcare via 
multimodal data analysis. The distribution of these publications was notably diverse, 
reflecting a broad spectrum of research perspectives. The findings also reveal a discernible 
popularity surge, particularly since 2013, for articles elucidating the nexus between 
AI technology and its augmentation of multimodal health and medical data analysis for 
the advancement of smart healthcare. These contributions notably found resonance 
in interdisciplinary journals bridging healthcare, medical research, and information 
technology, underlining their invaluable contribution to these domains. Surveying 
the results encompassing countries and regions in Table  8, the notable escalation in 
published studies can be attributed to two core factors. Firstly, it stems from the escalating 
researchers’ interest hailing from non-English speaking countries/regions, typified by 
China and South Korea. Secondly, it is complemented by the substantive contributions of 
authors originating from the USA and India. Notably, China’s commanding role is evident, 
contributing approximately 54% of the scrutinized articles. This dominance extends to the 
identification of 14 out of the 17 most prolific institutions (Table 9) and 9 out of the 17 
most prolific authors (Table  10). Such prominence firmly establishes China as a pivotal 
player in this domain, with its three top prolific authors solidifying its stature.

Regarding RQ2, Fig. 4 illustrates that countries/regions with robust international col-
laborations tend to exhibit substantial progress and growth in the field, exemplified by the 
achievements of the USA, the UK, China, and India. This underscores the significance of 
global cooperation in propelling the advancement of this emerging domain, facilitating the 
harnessing of opportunities, and the effective addressing of challenges that may arise. Fig-
ures 5, 6, 7 and 8 also imply that institutions and authors hailing from the same geographi-
cal regions are inclined to engage in this multidisciplinary research. This pattern could stem 
from the inherent ease of communication and resource sharing within proximity. However, 
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mitigating negative local effects might involve collaborating with more distant countries/
regions to maximize impact gains. Consequently, we advocate for increased cross-regional 
partnerships to embrace the evolving challenges of applying AI and multimodal data fusion 
for smart healthcare.

Fig. 9   Semantic coherence and 
exclusivity of models with topics 
ranging from 5 to 30

Fig. 10   Topic proportions, label, and developmental tendencies (↑(↓): increasing (decreasing) trend but not 
significant (p > 0.05); ↑↑(↓↓), ↑↑↑(↓↓↓), ↑↑↑↑(↓↓↓↓): significantly increasing (decreasing) trend (p < 0.05, 
p < 0.01, and p < 0.001, respectively)
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In response to RQ3 concerning research themes, the results from the analysis of 
frequently used terms and topics exhibit substantial congruence, reinforcing each other’s 
findings. This study delineates 11 distinct themes, emerging through the combined 
interpretation of word/phrase frequency analyses (Tables 11, 12 and 13), topic modeling 
(Figs. 10 and 11), and an examination of papers focusing on the identified topics and terms. 
These themes encapsulate the contemporary and evolving research dimensions within the 
realm of AI-powered smart healthcare predicated on multimodal data analysis. Further 
elaboration on the formation of each theme is provided below.

4.2 � Neurodegenerative disease prediction using AI‑powered multi‑task diagnostics

There has been a growing enthusiasm for neurodegenerative disease prediction using 
AI-powered multi-task diagnostics and multimodal data fusion, evidenced by the increasing 
tendencies of neurodegenerative disease prediction with multi-task diagnostics (Fig.  11) 
and frequent and emerging terms/phrases such as “alzheimer”, “disease”, “prediction”, 
“combination”, and “disease diagnosis” (Table 13).

AI-powered multi-task diagnostics and multimodal data fusion hold great promise 
in neurodegenerative disease prediction by integrating diverse data sources, enhancing 
accuracy, enabling personalized risk assessment, and supporting proactive interventions 
for at-risk individuals. Multimodal data fusion integrates medical imaging (e.g., MRI, 
PET scans), genetic, clinical, wearable sensor, and cognitive data. AI-powered multi-
task diagnostic models leverage this information to assess an individual’s health status 
and neurodegenerative disease risk, identifying complex patterns associated with early-
stage neurodegenerative diseases. Considering multiple biomarkers and risk factors, these 
models achieve higher accuracy in detecting at-risk individuals and neurodegenerative 
diseases at earlier stages. AI-powered multi-task diagnostics enable personalized risk 

Fig. 11   Trends of the 14 topics
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assessment, guiding targeted prevention and personalized care plans. Early prediction 
empowers proactive interventions, implementing lifestyle modifications, cognitive training, 
and disease-specific therapies for high-risk individuals. Post-diagnosis, these diagnostics 
continuously monitor disease progression through longitudinal data integration, facilitating 
treatment assessment and care plan adjustments. Additionally, AI-powered multi-task 
diagnostics aid neurodegenerative drug development by identifying patient subgroups for 
targeted therapies in clinical trials.

Researchers have been interested in jointly applying AI-powered multi-task diagnostics 
and multimodal data fusion technologies to facilitate neurodegenerative disease prediction. 
For example, (Liu et al. 2019a) focused on multi-task feature learning by combining fused 
group lasso and ℓ2,1-norm with mixed norms to capture more adaptable structures. An 
alternating direction approach of multipliers was utilized to efficiently resolve non-smooth 
formulation. (Shao et al. 2020) suggested a hypergraph-driven multi-task feature selection 
technique to classify AD/MCI. They initiated feature selection on individual modalities 
as distinct tasks and incorporated group-sparsity regularization to simultaneously choose 
shared features across diverse modalities. Additionally, they integrated a hypergraph-
grounded regularization component into the conventional multi-task feature selection 
process to account for the complex interrelationships among subjects. Ultimately, a multi-
kernel support vector machine (SVM) classifier was employed for fusing the selected 
features from various modalities.

4.3 � AI for neuroimaging‑based brain disorder prediction and detection

Evidenced by the increasing tendencies of AI for neuroimaging-based brain disorder 
prediction and neuroimaging for cognitive impairment detection (Fig.  11) and frequent 
and emerging terms/phrases such as “imaging”, “neuroimaging”, “brain”, “detection”, 
“prediction”, “cognitive impairment”, and “brain disease diagnosis” (Tables  11, 12 and 
13), we formed the second theme as “AI for neuroimaging-based brain disorder prediction 
and detection”.

Brain disorders and cognitive impairment, a common feature in many brain disorders 
describing a decrease in cognitive capabilities (such as memory, attention, language 
skills, executive functions, and problem-solving aptitudes), have been widely discussed 
by researchers the combination of AI and multimodal data fusion with neuroimaging 
techniques holds immense promise for tackling brain disorders and cognitive impairment 
in smart healthcare. For example, AI-powered neuroimaging analysis can identify early 
biomarkers associated with brain disorders and cognitive impairment. Early detection 
allows prompt interventions, potentially allowing for disease treatment and personalized 
care plans. Also, the combination of AI and multimodal data fusion facilitates precision 
medicine approaches. By tailoring treatments suiting individuals. neuroimaging and 
cognitive profiles, healthcare providers can optimize treatment efficacy and minimize 
adverse effects. Furthermore, AI algorithms can analyze large-scale neuroimaging 
datasets to discover new biomarkers for brain disorders and cognitive impairment. These 
biomarkers can aid in diagnosis, prognosis, and therapeutic target identification. In 
addition, the integration of AI with neuroimaging technologies can support telemedicine 
and remote care, providing access to specialized brain health assessments for individuals in 
remote or underserved areas.

Researchers have been interested in jointly applying AI, multimodal data fusion, and 
neuroimaging techniques to tackle brain disorders and cognitive impairment. For instance, 
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(Zhang et al. 2021) introduced a graph-based DNN that concurrently captured both brain 
structure/function in MCI. The initial graph topology was derived from structural network 
data (obtained through diffusion MRI) and was progressively refined by integrating 
functional information (gathered from functional MRI). This process aimed to enhance 
the discriminative power between MCI patients and elderly normal controls. (Wang et al. 
2023) developed a genetic evolution random neural network clustering approach based on 
mutual information correlation analysis for merging resting-state functional MRI (fMRI) 
data with single nucleotide polymorphism data, forming fused features. To prevent the 
model from getting trapped in local optimal solutions, the traditional genetic evolution 
algorithm was enhanced with strategies such as elite retention and large variation genetic 
algorithms. Through multiple independent experiments, the proposed model demonstrated 
greater effectiveness in identifying AD patients and extracting pertinent pathogenic factors, 
thus holding promise as a valuable tool in AD research.

4.4 � Cross‑modality MRI for brain tumor diagnostics

The third theme “cross-modality MRI for brain tumor diagnostics” is formed considering 
the increased interest in the topic of cross-modality MRI for brain tumor analysis (Fig. 11) 
and the frequent and emerging terms/phrases “tumor”, “brain tumor”, “brain tumor 
segmentation”, “cross-modality”, and “tumor segmentation” (Tables 11, 12 and 13).

The combination of AI and cross-modality MRI data fusion and analysis is effective for 
brain tumor segmentation and diagnostics. Specifically, MRI data can be acquired using 
different imaging sequences, each providing complementary information about the brain’s 
anatomy and pathology. For instance, T1-weighted images highlight anatomical structures, 
T2-weighted images emphasize edema and necrotic regions, and contrast-enhanced images 
highlight areas with increased vascularity, such as tumor borders. By fusing information 
from these multiple modalities, AI models leverage each sequence’s advantages, leading 
to an inclusive representation of the tumor and its surrounding tissues. Furthermore, 
AI-based segmentation techniques, such as deep learning algorithms, excel at learning 
complex patterns and features within medical images. With access to cross-modality 
MRI data, these algorithms can extract intricate details and subtle variations indicative of 
tumor boundaries. In addition, AI-powered cross-modality data fusion enables rapid and 
automated segmentation, reducing the burden on healthcare professionals and allowing 
them to focus more on treatment planning and patient care. Once trained on a diverse 
dataset with cross-modality MRI data, AI models not only can demonstrate excellent 
generalization across different patient cohorts and imaging protocols even when dealing 
with challenging cases or novel MRI acquisition techniques, but also be used for predictive 
analytics for tailoring personalized treatment strategies and monitoring disease progression 
over time.

Researchers have been interested in leveraging AI’s ability to integrate and process 
information from multiple MRI sequences to improve segmentation accuracy, save time, 
enhance image quality, and enable predictive analytics, ultimately leading to better patient 
care and outcomes in brain tumor diagnostics. (Amin et  al. 2020a) proposed a fusion 
approach for amalgamating the structural and textural information originating from four 
distinct MRI sequences to enhance brain tumor detection. The fusion process employed a 
discrete wavelet transform in conjunction with the Daubechies wavelet kernel, leading to 
an informative representation of the tumor region compared to individual MRI sequences. 
After fusion, a partial differential diffusion filter was employed to mitigate noise. A 
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global thresholding technique was implemented to segment the tumor region, which was 
inputted into a CNN for the ultimate differentiation between tumor and non-tumor regions. 
Amin et  al. (Amin et  al. 2020b) put forth an automated approach that facilitated the 
discrimination between cancerous and non-cancerous brain MRI scans. Various methods 
were employed for the segmentation of potential lesions. Following segmentation, a feature 
set was selected for each identified lesion, incorporating factors such as shape, texture, and 
intensity. Subsequently, an SVM classifier was applied, employing diverse cross-validation 
strategies on the feature set to gauge the efficacy of the proposed framework.

4.5 � Multi‑dimensional data analysis for cancer diagnostics

Evidenced by the increased attention received by the topic of cancer prognosis through 
multi-dimensional data analysis (Fig. 11) and the frequently used term “cancer” (Table 11), 
we formed the fourth theme as “multi-dimensional data analysis for cancer diagnostics”.

As a complex and heterogeneous disease, cancer diagnosis needs data integration from 
multiple sources and dimensions. AI-driven multi-dimensional data analysis and fusion 
contribute to the effectiveness of cancer diagnostics. Specifically, combining information 
from various dimensions offers a more holistic overview of the disease, contributing to a 
better understanding of cancer’s molecular, cellular, and clinical characteristics. Using AI 
for processing/analyzing large-scale, multi-dimensional datasets can promote identifying 
meaningful but subtle patterns and associations that might otherwise be challenging for 
human experts to discern. This enables earlier detection of cancer and potentially leads 
to improved patient outcomes through timely interventions. Furthermore, cancer is highly 
individualized, with variations in tumor subtypes, genetic mutations, and treatment 
responses among patients. AI’s ability to analyze multi-dimensional data allows for the 
identification of specific molecular and genetic profiles associated with different cancer 
types. This personalized approach enables tailored treatment plans, optimizing therapeutic 
effectiveness while reducing potential side effects. In addition, AI models can utilize 
multi-dimensional data to build predictive models in the context of cancer advancement, 
treatment reaction, and patient results, these models have the potential to support 
healthcare professionals in making well-informed decisions about treatment options and 
design patient-specific care plans based on predicted disease trajectories.

Researchers are increasingly harnessing the power of AI to quickly process and interpret 
complex and diverse data sources, to assist clinicians in making timely and evidence-based 
decisions for cancer diagnostics and treatment planning. For example, (Shao et al. 2019) 
developed an ordinal multimodal feature selector with the ability to concurrently extract 
significant features from pathological images and multimodal genomic data to identify 
cancer patients. (Wang et al. 2019) unveiled a fresh approach known as bacterial colony 
optimization with a multi-dimensional population (BCO-MDP) for feature selection in 
classification tasks. The BCO-MDP method demonstrated its superiority over binary 
models regarding feature size and efficiency and maintaining lower computational 
complexity.

4.6 � Advanced signal processing for sleep and gait disorder diagnosis

The fifth theme “advanced signal processing for sleep and gait disorder diagnosis” is 
formed considering the increased interest in the topic of advanced signal processing 
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for sleep and gait disorders (Fig. 11) and the frequent and emerging terms “signal” and 
“diagnosis” (Table 11).

Advanced signal processing driven by AI promotes automated analysis of sleep and gait 
disorders by extracting meaningful patterns and features from the raw data in several ways. 
First, in sleep and gait analysis, the raw data collected from various sensors can be complex 
and contain a vast amount of information. Deep learning and machine learning, possess 
the capability to autonomously recognize pertinent attributes within the unprocessed data. 
For example, in sleep analysis, AI can extract sleep stages and identify sleep interruptions 
based on patterns in EEG or actigraphy data. Similarly, in gait analysis, AI can extract gait 
parameters like gait speed, stride length, and cadence, from gait sensor data. Second, AI 
algorithms excel at pattern recognition and can identify subtle anomalies or deviations that 
may not be easily recognizable by human observers. For instance, AI can detect abnormal 
sleep architecture indicative of sleep disorders or identify abnormal gait patterns associated 
with neurological conditions. In addition, AI-driven advanced signal processing is capable 
of amalgamating information sourced from various sensors and modalities, leading to a 
more holistic comprehension of a patient’s sleep and gait patterns. This data fusion allows 
AI models to consider contextual information, such as environmental factors or patient-
specific characteristics, enhancing the accuracy and specificity of the analysis.

Researchers have been interested in leveraging AI’s pattern recognition capabilities 
and adaptability with advanced signal processing techniques for accurate and automated 
analysis, ultimately improving the diagnosis and management of sleep and gait disorders in 
smart healthcare settings. For example, (Sun et al. 2020) described a method for recognizing 
identities based on gait, which is applied to manage access to wearable healthcare devices 
targeted at the elderly. This method addresses the challenge of variations in gait within 
the same individual, resulting in a notable enhancement in recognition accuracy compared 
to existing approaches. (Chakraborty and Nandy 2020) presented a DNN framework that 
employs discrete wavelet decomposition to represent data for the detection of irregular 
gait patterns using inertial sensors. (Lin et  al. 2020) devised a hybrid architecture for a 
body sensor network that integrated multiple sensors through multi-sensor fusion. 
This architecture facilitated advanced smart medical services by amalgamating various 
technologies such as sensors, communication, robots, and data processing. (Yang et  al. 
2021) suggested an IoT-based module for fusing sleep data, known as sleep data fusion 
networks, utilizing a Bluetooth network in a star topology. This network integrated sleep-
aware applications’ data and deployed machine learning to recognize sleep events using 
audio signals.

4.7 � IoT and mobile‑assisted health management and monitoring

Evidenced by the increased attention received by the topics of IoT-enabled sensory 
monitoring for health management, neurological health monitoring via mobile 
technologies, AI-assisted diagnostics and personalization in healthcare, and AI for post-
stroke assessment (Fig. 11) as well as the frequently used terms “health”, “diagnostic”, and 
emerging phrase “human–computer interaction” (Table 11 and Table 13), we formed the 
sixth theme as “IoT and mobile-assisted health management and monitoring”.

AI plays a crucial role in supporting IoT-enabled sensory monitoring for health 
management for the following reasons. First, IoT devices gather an extensive volume 
of health-related information through diverse sensors, including wearable gadgets, 
smart wristwatches, and fitness monitors. AI can efficiently integrate and process 
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this heterogeneous data from different sources, enabling real-time processing and 
analysis even in large-scale deployments. Furthermore, AI algorithms can perform 
real-time analysis on the continuously streaming data from IoT devices. This enables 
immediate identification of anomalies or critical health events, providing timely alerts 
and interventions to healthcare providers and patients. In addition, AI can recognize 
individual patterns and tailor health management strategies based on each person’s 
unique health profile, and predict potential health risks or changes in health conditions 
based on historical data from IoT devices, allowing for proactive health management 
and personalized interventions, reducing the risk of adverse health outcomes.

AI also supports neurological health monitoring via mobile technologies in the 
following ways. First, AI-powered mobile technologies facilitate remote neurological 
health monitoring by evaluating cognitive functions, motor skills, and other neurological 
parameters, enabling telemedicine services, reducing the burden on healthcare facilities, 
and providing valuable data for healthcare professionals, especially for people with 
limited access to neurological care. Furthermore, AI enables continuous monitoring 
of neurological health through mobile devices, capturing real-life data, providing an 
inclusive understanding of an individual’s neurological status, and tracking changes 
in neurological health over time, thus providing insights into disease progression and 
treatment effectiveness. In addition, AI algorithms can automatically analyze data from 
mobile neurological monitoring devices, such as smartphone-based neurocognitive tests 
or wearable brain-computer interfaces. AI can identify abnormal patterns or changes in 
neurological function, assisting in the early detection of neurological disorders.

The combination of AI and wearable sensors for post-stroke assessment has also 
been an important and promising topic for several reasons. First, wearable sensors 
can capture gait patterns and mobility-related metrics, crucial for assessing a stroke 
survivor’s walking ability and balance in real time. The captured data, processed and 
analyzed by AI algorithms allow for immediate assessment of a stroke survivor’s health 
status and detect any sudden changes or potential complications. This AI-driven analysis 
delivers data-driven insights for informed decision-making by clinicians and caregivers, 
enhancing the precision and efficacy of post-stroke rehabilitation. Furthermore, wearable 
sensors integrated with AI-based speech recognition can assist in assessing post-stroke 
speech and language impairments. AI algorithms can analyze speech patterns, detecting 
dysarthria or aphasia, which are common after a stroke, facilitating targeted speech 
therapy. AI-powered cognitive assessment tools can also analyze cognitive function 
through wearable sensors and other data inputs. This comprehensive evaluation allows 
clinicians to monitor cognitive improvements or identify cognitive challenges that may 
require further intervention.

Researchers have been interested in leveraging AI’s abilities to process large amounts 
of data, conduct real-time analysis, provide predictive insights, and personalize healthcare 
interventions to support IoT-enabled sensory monitoring for health management, 
neurological health monitoring via mobile technologies, and post-stroke assessment using 
wearable sensors. For example, (Wu et al. 2021b) described an IoT-driven real-time health 
monitoring system utilizing deep learning techniques. This system employed wearable 
medical devices for vital sign measurements and employed diverse DNN algorithms to 
extract meaningful insights. Ali et al. (Ali et al. 2021) suggested an innovative healthcare 
monitoring framework that operated within a cloud environment. This framework 
incorporated big data analytics through data mining methods, ontologies, and bidirectional 
long short-term memory. The goal was to accurately store and examine healthcare data. 
Razfar et  al. (Razfar et  al. 2023) put forth an effective diagnostic system for post-stroke 
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conditions, leveraging multi-level ensemble learning that combined heterogeneous or 
homogeneous baseline classifiers based on Xsens wearable sensors.

4.8 � Mental health support based on multimedia content analysis

The seventh theme “mental health support based on multimedia content analysis” is formed 
considering the increased interest in the topics of multimedia content analysis for mental 
health support and AI for emotion recognition (Fig. 11).

The use of multimedia content like audio, video, text, and images, has become prevalent 
in mental health applications. AI techniques offer several advantages in this domain, 
allowing for more effective and personalized mental health support. In particular, AI-driven 
NLP algorithms such as sentiment analysis can analyze and extract valuable insights from 
text data, including social media posts, online forums, and chat conversations. The detected 
sentiment, emotions, and linguistic patterns might indicate mental health concerns. This 
enables real-time monitoring of individuals at scale and facilitates timely interventions. 
Also, AI-based computer vision techniques and Speech recognition algorithms can analyze 
images and videos to detect facial expressions, body language, and behavioral cues to 
identify emotions and affective states that indicate mental health issues. In addition, AI can 
integrate data from various multimedia sources along with other patient data (e.g., EHRs 
and wearables) to offer a comprehensive evaluation of individuals’ mental health status.

Researchers are increasingly leveraging AI’s capabilities in analyzing multimedia 
content to provide valuable insights and personalized support for mental health. For 
example, (Sawhney et al. 2020) introduced STATENet, a transformer-based model with a 
time-aware approach designed to conduct initial screening of suicidal risk in social media 
content. This was achieved by enhancing linguistic models with historical context. (Ghosh 
et al. 2022) presented a deep multitask framework incorporating a knowledge component 
that integrated external knowledge-specific features into learning, utilizing SenticNet’s 
IsaCore and AffectiveSpace vector spaces. The framework concurrently handled tasks such 
as emotion recognition, depression detection, and sentiment classification.

4.9 � Latest trends in AI‑powered smart healthcare based on multimodal data 
analysis

Evidenced by the emerging phrases such as “generative adversarial network”, “contrastive 
learning”, “spatio-temporal”, “contextual information”, “attention model”, “noninvasive 
technique” (Table 13), as well as frequent phrases that show an increase in usage such as 
“neural network” and “deep learning” (Table 12), we highlight several latest topics in the 
field.

To begin, a surge of interest is evident in the application of generative adversarial 
networks (GANs) for both multimodal medical image fusion and synthesis. For one thing, 
while convolutional methods for image fusion excel at extracting local features, they often 
struggle to capture broader global information. This shortfall can lead to output images 
with reduced clarity and increased noise. To address this challenge, several researchers 
have incorporated GANs into image fusion. (Tang et  al. 2022) developed a multiscale 
adaptive transformer fusion approach to enhance the preservation of global contextual 
information when fusing MRI and single photon emission computed tomography images. 
(Rao et al. 2023) developed TGFuse employing a lightweight transformer component and 
adversarial learning to enhance the integration of shallow features, refining fusion relations 
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both spatially and across channels. (Liu et  al. 2023) put forth a GAN tailored for the 
multimodal MRI fusion of brain tumors. The approach employs a generator characterized 
by a nested U-shaped structure along with residual U-blocks, thereby enhancing multi-
scale feature extraction.

For another thing, the exploration of GAN-based approaches extends to the realm of 
image synthesis. Nema, for instance, introduced the concept of residual cyclic unpaired 
encoder-decoder networks aimed at segmenting brain tumors within MRI data (Nema et al. 
2020). (Huang et al. 2022b) put forward a 3D common-feature learning-powered context-
aware GAN that adopted an encoder-decoder structure to facilitate input modality mapping 
into shared feature spaces. Qin et  al. (Qin et  al. 2022) integrated style transfer into the 
architecture of conditional GANs resulting in the hierarchical feature mapping and fusion 
model. This approach tackled the challenge of cross-modality synthesis for MR images. 
(Mi et al. 2022) described a medical image-fusion method that leveraged a straightforward 
network obtained through knowledge distillation to extract features from computer 
tomography and magnetic resonance modes, thereby reducing the data volume required 
for training complex networks. (Gao et al. 2021) developed a sophisticated DNN method 
by combining task-induced pyramids and attention GANs for classifying multimodal brain 
images.

Second, contrastive learning is a powerful self-supervised learning technique that has 
shown great promise in medical image fusion. Specifically, Contrastive learning helps 
the model learn meaningful representations of medical images. By contrasting positive 
with negative pairs, the model can capture important features and patterns specific to 
the medical imaging domain. This holds significant importance in the context of image 
fusion, as it enables the model to identify relevant information in multiple images for more 
effective fusion. Also, Medical image fusion often requires extracting and combining high-
level image features effectively. Contrastive learning enables the model to recognize and 
extract salient features from each image independently. This leads to a more robust and 
informative feature space that can capture essential information from medical images. 
Furthermore, Contrastive learning is a self-supervised technique that leverages unlabeled 
data. In medical imaging, gaining labeled data for supervised learning is difficult and 
time-consuming because of the need for expert annotations. Contrastive learning can 
utilize abundant unlabeled medical images to learn powerful representations, making it a 
more data-efficient approach. As a result, by learning rich representations and informative 
features, contrastive learning can improve fused medical image quality. The fusion process 
benefits from a more comprehensive understanding of the underlying data, leading to better 
visual clarity, enhanced structural details, and improved information preservation in the 
fused image. For example, (Zhang et al. 2023) drew inspiration from contrastive learning 
and constructed pairs of positive and negative outcomes, introducing a unique contrastive 
loss within an auto-encoder framework. This contrastive auto-encoding, coupled with 
information exchange through convolutions, was employed for multimodal medical fusion. 
Taking cues from autoencoder networks and contrastive learning, a multi-branch encoder 
was established with contrastive constraints to grasp the shared and distinct attributes of 
paired images (Luo et al. 2021).

Thirdly, neuroimaging data, encompassing images generated through functional and 
metabolic assessments (such as fMRI, functional near-infrared spectroscopy, or PET), 
along with structural evaluations (like computed tomography, T1-, T2-, PD-, or diffusion-
weighted MRI), contains an abundance of spatiotemporally detailed insights into the brain 
of each patient. In recent times, researchers have directed their focus toward incorporating 
spatiotemporal constraints to enhance the efficacy of solving the EEG inverse problem. 
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They’ve also been exploring the synergistic spatiotemporal resolutions offered by fMRI 
and EEG in data-centric approaches. For instance, (Liu et al. 2019b) introduced a solution 
that addressed inverse problems through matrix factorization within empirical Bayesian 
frameworks by concurrently estimating the present sources and unknown temporal basis 
functions through data-guided means. (Liu et al. 2021) employed “covariance components 
(CCs) derived from clusters defined by fMRI and EEG signals as spatial priors within the 
empirical Bayesian framework” (p. 14) to facilitate EEG/fMRI fusion.

4.10 � Challenges and prospects

This section examines the motivations, merits (contributions), and drawbacks (challenges) 
of AI’s integration in the healthcare sector, addressing concerns such as data scarcity 
and biases. We further propose future research directions. These directions highlight 
the significance of employing various fusion methods and developing trustworthy and 
explainable AI (XAI) to tackle these challenges and advance AI-driven smart healthcare 
based on multimodal data analysis.

The motivations driving the implementation of AI applications in healthcare are 
centered on enhancing patient outcomes, refining diagnostic accuracy, optimizing treatment 
plans, reducing healthcare expenses, enabling personalized medicine, and facilitating 
improved resource allocation and management (Ahmed et al. 2020). The strengths of AI 
applications in healthcare primarily revolve around enhancing patient outcomes and overall 
healthcare system efficiency (Müller et al. 2020). The challenges and weaknesses related 
to AI applications in the healthcare sector encompass the interpretability of AI models, 
regulatory hurdles, integration issues with existing healthcare systems, potential biases in 
algorithms, ethical concerns regarding privacy and consent, and the continuous need for 
validation and adaptation to ensure clinical relevance and safety.

The challenge of data scarcity in training AI and DNNs poses a significant obstacle for 
healthcare systems, causing limitations in AI and deep learning utilization. The scarcity, 
especially concerning diverse multimodal healthcare data, arises due to privacy concerns, 
data silos, and limited access. Addressing this scarcity is vital to unlock AI’s full potential 
in improving bone classification accuracy and aiding clinical decision-making (Alzubaidi 
et al. 2023).

To tackle these challenges, potential solutions are proposed. Firstly, addressing 
data scarcity involves initiating model training with sizable and diverse datasets. This 
approach enhances a model’s capability in learning and recognizing patterns, ensuring 
its generalizability to new instances. Strategies like feature fusion in information fusion 
techniques integrate information from multiple sources (e.g., MRI scans, patient records, 
genetic data, and wearable devices) to create more informative datasets for predictive 
modeling or diagnosis (Alammar et  al. 2023; Al-Timemy et  al. 2023; Jebur et  al. 
2023), providing healthcare providers with detailed insights into patient conditions (Ali 
et  al. 2020). For instance, (Alammar et  al. 2023) described   an approach for detecting 
abnormalities in X-ray images based on deep transfer learning with advanced feature 
fusion, showcasing superior results in humerus and wrist classification compared to prior 
methods.

Another solution involves utilizing federated learning to train models across 
decentralized data sources without sharing raw data. While this approach allows 
collaborative training to improve a shared global deep learning model (Rodríguez-Barroso 
et  al. 2023), data fusion technology introduces challenges such as heterogeneous and 
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multi-source data fusion. Addressing these challenges involves improving data and model 
utilization, removing repetitive information, and consolidating various data origins to 
acquire valuable understanding. Future concerns include preserving user confidentiality, 
establishing models applicable across the board, data augmentation techniques, cross-
institutional collaborations for privacy-compliant data sharing, and guaranteeing data 
fusion result stability across domains (Alzubaidi et al. 2023).

Secondly, mitigating bias risks and ensuring AI and deep learning trustworthiness 
necessitates the development of trustworthy and explainable AI. XAI aims to elucidate AI 
models’ inner workings and decision-making processes, making AI-powered applications 
more ethical, private, secure, trustworthy, confident, and safe (Albahri et  al. 2023). The 
integration of trustworthy AI into healthcare systems offers various advantages, including 
aiding disease diagnosis, promoting patient care, enhancing privacy, and reducing 
treatment costs and durations. Numerous studies discuss XAI’s explainability in healthcare 
applications (e.g., (Lucieri et  al. 2022; Martínez-Agüero et  al. 2022; Deperlioglu et  al. 
2022; Arrieta et al. 2020; Yang et al. 2022; El-Sappagh et al. 2021; Rahman et al. 2021), 
using methods such as textual explanations, Shapley values, Class activation mapping, 
and heatmap, across tasks like melanoma classification, disease diagnosis, and evaluating 
sustainability features in healthcare applications. For example, in Martínez-Agüero et al. 
(2022), Shapley values were employed to create reliable intelligent systems to forecast 
antimicrobial multidrug resistance early.

Additionally, integrating modern information fusion techniques with XAI ensures 
responsible and ethical utilization of sensitive data (Abdar et al. 2023). Studies like (Yang 
et  al. 2022) explored XAI’s advancements in healthcare, proposing XAI solutions that 
leverage multimodal and multi-center data fusion for clinical use. Utilizing information 
fusion can revolutionize solutions bridging research and practical applications in 
trustworthy healthcare AI (Holzinger et al. 2021). By amalgamating multiple information 
sources like graph analysis and feature visualization, data fusion enhances AI systems’ 
accuracy. Yet, AI explainability faces challenges in handling diverse feature representation 
spaces, necessitating robust AI systems capable of responsibly managing complex and 
diverse data (Oprescu et  al. 2022). These difficulties emphasize the critical need for AI 
applications capable of managing varied data in a socially responsible way.

4.11 � Limitations, reflections, and future work

This section discusses the limitations of this study. Initially, we only considered journal 
articles with SSCI and SCI indices in the WoS that have undergone rigorous peer review. 
As a result, not all papers related to AI-driven smart healthcare through multimodal data 
analysis were included. During the data search, we initially explored other databases like 
Springer and Scopus. Our search across multiple databases yielded over ten thousand 
records. However, a preliminary check of five hundred randomly selected records 
revealed significant noise and low relevance within this extensive dataset. Conversely, 
when we focused on SSCI and SCI-indexed articles, most were highly relevant, covering 
the primary concerns in this field. Considering efficiency, reliability, and resource costs, 
we chose to utilize SSCI and SCI-indexed journals. The data analysis confirmed this 
decision’s efficacy, identifying key issues. Yet, for future endeavors, we propose to develop 
a strategy to streamline screening within vast datasets from multiple databases, enhancing 
comprehensive results.
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Regarding methodology, we employed topic modeling-based bibliometric analysis, 
distinct from systematic analysis focusing on a limited number of articles based on 
predefined dimensions (e.g., the weakness, strengths, and challenges of each application 
of AI or datasets and achieved results on them). Topic modeling-based bibliometrics offer 
rapid, automatic large-scale data analysis, extracting crucial topics not confined to AI 
applications or datasets used. This methodology, notably popular in various fields related 
to computer science [e.g., (Chen et  al. 2023a; Cui et  al. 2023b; Jimma 2023)], aids in 
comprehending research progress, technology development, and novel ideas. Nonetheless, 
it may lack the depth of manual coding and meta-analysis studies.

While our results largely cover major issues in AI-powered multimodal data fusion in 
smart healthcare research, overlapped words and conceptual ambiguities might lead to 
some issues not being detected. Future work could involve systematic, qualitative analyses 
to achieve more comprehensive results. This entails a quality assessment to filter papers 
meeting predefined criteria.

Despite limitations, our study fulfills the aim of presenting an overview of the status, 
tendencies, and thematic structure of AI-powered multimodal data fusion in smart 
healthcare research. Future efforts could merge topic models with manual techniques for a 
more robust understanding of the field.

5 � Conclusion, contributions, and significance

To unravel the themes and their progression in the realm of AI-powered smart healthcare 
based on multimodal data analysis, this paper engaged in an exploration of scientific 
literature via the avenues of topic modeling and bibliometric analysis. Beyond merely 
identifying the cutting-edge areas of research, this study delved into the ebb and flow of 
topics via a non-parametric trend assessment. An examination of the annual scholarly 
output within this interdisciplinary domain exhibited mounting enthusiasm among 
researchers. Noteworthy were the cross-disciplinary publishing outlets that bridge 
Healthcare and medical research with Information technology and AI, demonstrating 
active involvement in this sphere. Leading nations like China, the USA, and India stood 
out in terms of prolific contributions, accounting for more than 54% of the dataset. The 
foremost academic entities encompassed Chinese Academy of Sciences, Shanghai Jiao 
Tong University, and Fudan University. International collaborative endeavors were 
found to catalyze improved scholarly achievements and expedited progress. Commonly 
recurring terms in the scrutinized literature encompassed disease, brain, detection, system, 
and imaging. The topics that surfaced frequently encompassed adaptive transformations 
for enhanced visual data analysis, neurodegenerative disease prediction with multi-
task diagnostics, cross-modality MRI for brain tumor analysis, AI-assisted imaging for 
cancer detection, and cancer prognosis through multi-dimensional data analysis. Eleven 
research topics that experienced significantly increased interest include: neurodegenerative 
disease prediction with multi-task diagnostics, cross-modality MRI for brain tumor 
analysis, cancer prognosis through multi-dimensional data analysis, IoT-enabled sensory 
monitoring for health management, neuroimaging for cognitive impairment detection, 
AI for emotion recognition and post-stroke assessment, AI for neuroimaging-based brain 
disorder prediction, multimedia content analysis for mental health support, AI-assisted 
diagnostics and personalization in healthcare, advanced signal processing for sleep and 
gait disorders, and neurological health monitoring via mobile technologies.
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This study offers valuable advantages for future researchers in various aspects. Firstly, it 
furnishes researchers with a thorough grasp of the current state and progress of AI-driven 
smart healthcare using multimodal data analysis. Secondly, insights into influential 
authors, institutions, countries/regions, and journals assist researchers in pinpointing 
key figures and resources to learn from and potentially collaborate with in this research 
domain. Findings facilitate the exploration of scientific partnerships and the advancement 
of AI-powered smart healthcare via collective expertise. Thirdly, the examination of 
evolving research themes and their significance over time equips upcoming researchers to 
stay abreast of the most crucial and emerging areas within AI-powered smart healthcare. 
This aids them in making informed decisions on research directions and aligning their 
studies with community interests. It helps them swiftly grasp the essence of related topics. 
Fourthly, researchers can pinpoint the most impactful journals dealing with AI-driven 
smart healthcare via multimodal data analysis, especially those with international reach. 
Moreover, the comprehensive insights from this study empower researchers, policymakers, 
and practitioners to make well-informed decisions regarding involvement in AI and 
multimodal data fusion in smart healthcare endeavors. Furthermore, the utilization of 
STM and bibliometric analysis, leveraging large-scale scientific data, contributes 
methodologically, offering a systematic framework for analyzing underlying topics and 
developmental trends in academic or practical fields. This methodology could be replicated 
or enhanced by future researchers for their investigations.

This study contributes to the cross-disciplinary exploration centered on AI-powered 
smart healthcare grounded in the amalgamation of multimodal data. It offers insightful 
and valuable implications, which can serve as a guiding light for scholars, policymakers, 
and practitioners aiming to grasp the panoramic view and structure of this ever-important 
domain. The identified productive entities also hold potential as exemplars and potential 
collaborators for researchers. Moreover, there is room to enhance and deepen academic 
partnerships, leading to a more comprehensive exploration of the benefits and hurdles 
of AI, particularly those rooted in deep learning, to multimodal data fusion in order to 
optimize decision-making.

The findings furnished bestow actionable insights onto researchers, illuminating 
the decision-making path by unraveling critical themes within the literature. Varied AI 
methods have permeated the landscape of medical and multimodal data fusion, showing 
considerable promise for future advancement. Future endeavors should transcend the 
inquiry into the mere feasibility of adopting deep learning technologies to facilitate 
multimodal health/medical data fusion, expanding into the realm of orchestrating the most 
effective integration of diverse technologies to facilitate potent multimodal data fusion.

Attention should also be dedicated to cutting-edge technologies like contrastive learning 
and GANs, and their synergies with different fusion strategies (such as multi-task, multi-
sensor, multi-dimensional, and multimedia content). This amalgamation could foster 
efficient automated disease diagnosis, bolster computer-assisted prognosis/prediction, 
and construct intelligent health/medical systems, ultimately driving the evolution of and 
advancement in smart healthcare.
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