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a b s t r a c t

Accurate power load prediction plays a key role in reducing resource waste and ensuring stable
and safe operations of power systems. To address the problems of poor stability and unsatisfactory
prediction accuracy of existing prediction methods, in this paper, we propose a novel approach for
short-term power load prediction by improving the sequence to sequence (Seq2Seq) model based on
bidirectional long-short term memory (Bi-LSTM) network. Different from existing prediction models,
we apply convolutional neural network, attention mechanism, and Bayesian optimization for the
improvement of the Seq2Seq model. Moreover, in the data processing stage, we use the random
forest algorithm for feature selection, and also adopt the weighted grey relational projection algorithm
for holiday load processing to process the data and thereby overcome the difficulty of holiday load
prediction. To validate our model, we choose the power load dataset in Singapore and Switzerland as
experimental data and compare our prediction results with those by other models to show that our
method can generate a higher prediction accuracy.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Electricity is significantly important to the sustained, stable,
nd healthy development of human society as a cost-effective
nergy source. However, the current technology cannot realize
he large-scale storage of electricity, since the electricity produc-
ion, transmission, distribution, and consumption occur almost
imultaneously. This behooves power suppliers to make reason-
ble schedules for smooth operations of power systems so as to
chieve a balance between power supply and demand [1,2]. Accu-
ate power load forecasting can optimize the scheduling control
f power grid and achieve smooth operations of power systems,
hich can then result in higher economic and social benefits.
owever, a decrease in thermal power generation, an increase in
enewable energy generation, and a massive increase in electric
ehicle usage have put the supply and demand balance of power
ystem to a new test and made it more difficult to predict the
ower load. It thus follows that we need more sophisticated
ower load forecasting technologies to improve the accuracy
f load forecasting and then better cope with the increasingly
ariable power consumption environment nowadays [3].
In practice, power load forecasting can be divided into long-,

edium-, and short-term predictions [4,5]. The short-term power
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load prediction is more important to efficient operations of power
systems and the reduction of power wastes, which serves as
an important decision basis for stable and sustainable develop-
ments of power systems. The short-term power load forecasting
approaches mainly belong to two categories: traditional meth-
ods and machine learning methods [6]. Traditional short-term
methods mainly include time series analysis [7], Kalman filtering
algorithm [8], gray models [9], etc. Those methods can process
linear data effectively; but, their prediction results are not good
if data is nonlinear. Machine learning methods mainly include
random forest algorithm, support vector machine (SVM), gradient
boosting decision tree, and artificial neural network (ANN), etc.,
which are more suitable for prediction of nonlinear data [10–12].
As ANN has a strong self-learning ability and a generalization
ability, it has been regarded a highly-effective machine learning
method and thus has been widely used for power load fore-
casting [13,14]. Nonetheless, ANN method often cannot obtain
stable prediction results when dealing with time series problems,
because it has disadvantages such as overfitting, slow learning
rate, and tendency to fall into local minima [15].

As an extension of ANN, recurrent neural network (RNN) can
deliver better prediction results when processing time series
data because of its circular structure. However, some issues still
exist in vanishing gradient and gradient explosion in the train-
ing of RNN. To overcome these issues, Atef and Eltawil [16]
proposed a variant of RNN, which was called ‘‘long short-term
memory network’’ (LSTM). Compared with RNN, LSTM has unique
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ate structure that can solve the vanishing gradient and gradi-
nt explosion problems. Nevertheless, the time series prediction
nalysis based on LSTM still cannot achieve satisfactory predic-
ion results, because it only considers historical information and
gnores future information [17]. To better apply LSTM for power
oad forecasting, Wang et al. [18] applied the Bi-LSTM for power
oad prediction and obtained better prediction results. The Bi-
STM is a combination of two LSTMs i.e., forward LSTM and
ackward LSTM, and this structure can make the most of histori-
al and future information to present more accurate prediction
esults [19]. In addition to make the LSTM better capture the
nformation of temporal and spatial features of the input data
hen making predictions, Song et al. [20] carried out hourly heat-

ng load prediction by combining convolutional neural network
CNN) and LSTM, and the results showed that spatial feature
nformation extraction of input data by CNN can improve the
ccuracy of model prediction.
In recent years, the Seq2Seq model with high flexibility in

ealing with time series has been proposed. As the Seq2Seq
odel can effectively solve the relationship between different

ength sequences and dynamically determine the steps of net-
ork structure, many researchers have used the model to work
n the power load prediction-related issues [21]. In addition, the
eq2Seq model can deal with multi-variable predictions well,
ecause it has an Encoder–Decoder structure network where the
ncoding and decoding layers are composed of deep neural net-
ork (such as RNN or LSTM) [22,23]. Moreover, since LSTM has an
utstanding performance in solving the gradient explosion prob-
em, it has been used as the encoder and decoder of the Seq2Seq
odel [24]. Particularly, a Bi-LSTM-based Seq2Seq model for day-
head peak load predictions has been proposed to effectively
mprove the prediction accuracy [25]. To improve the predic-
ion performance on the data sequences of the Seq2Seq model,
esearchers have applied the attention mechanism to solve the
hortcomings of the Seq2Seq model since the core idea of atten-
ion mechanism is to dynamically adjust the weights between
ifferent factors and highlight data sequences [26].
In addition to applying more advanced models for power

oad forecasting, the proper processing of original data and the
yperparameter optimization of prediction model can further
mprove the prediction accuracy [27]. The power load dataset
s a kind of high latitude time series data which is affected
y multiple factors such as electricity price, temperature, time,
olidays, etc. To eliminate the influence of redundant features
n load prediction, we consider the commonly used feature ex-
raction methods at this stage that include minimum redundancy
aximum correlation (mRMR) [28], principal component analy-
is (PCA) [29], independent component analysis (ICA) [30], and
andom forest. However, the methods above such as PCA and
CA have better results for feature extraction for linear data
ut often fail to achieve the desired results when processing
onlinear power load data [31]. Although mRMR can effectively
rocess nonlinear data, it is usually used for feature extraction
n datasets with small data volumes. In contrast, as a decision
ree based nonlinear method, the random forest algorithm not
nly captures the nonlinear relationship between features and
arget variables and indicates the dependencies between features,
ut also automatically determines the importance of features as
ell as being able to effectively handle complex datasets with
igh latitude [32]. Moreover, as the power load data in holidays
s rather different from regular datasets, the load data in holi-
ays need to be processed prior to the prediction. The weighted
rey relational projection (WGRP) algorithm has been used for
rocessing holiday datasets in many recent studies [33].
The choice of hyperparameters is critical in many machine

earning based prediction models, and assigning appropriate hy-
erparameters can improve the predictive performance and the
2

model accuracy [34]. However, many researchers rely on their
experience and repeated experiments to perform hyperparam-
eterization, which requires significant computational resources.
Therefore, many optimization methods such as, particle swarm
optimization (PSO) algorithm, grid search, random search and
genetic algorithm (GA), are used for parametric optimization [35,
36]. Nonetheless, those traditional optimization methods are of-
ten inefficient in optimizing multiple hyperparameters, which is
not only time-consuming but also less effective. As an emerging
hyperparameter optimization method, the Bayesian optimization
(BO) algorithm allows for a more extensive exploration of the
space of hyperparameters, consumes short running time, and
presents good optimization results when optimizing multiple
hyperparameters [37,38].

After reviewing the existing power load forecasting models,
data processing methods, and optimization methods, we propose
a new power load forecasting method different from previous
studies. First, in the data process stage, we use the random forest
algorithm for feature extraction which can eliminate redundant
features, and then use the WGRP algorithm to select similar data
for holidays so that the holiday data can be generalized. Secondly,
we apply the CNN, attention mechanism and BO algorithm to im-
prove the Bi-LSTM-based Seq2Seq power load forecasting model.
The contributions of this paper are summarized in the following
points:

1. We develop a novel power load forecasting approach by
improving the Seq2Seq model with various advanced algo-
rithms and neural networks.

2. We use the Bi-LSTM in the encoder and decoder of Seq2Seq
model to enhance the information utilization. By combina-
tion with the Seq2Seq model, the CNN is used to extract the
input data features and BO algorithm is applied to optimize
the hyperparameters of the model.

3. We introduce the attention mechanism in the Seq2Seq
model to help the decoder focus on key sequence informa-
tion that influences prediction results.

4. For redundant features and holiday data that are not gen-
eral, we use random forest algorithm and WGRP algorithm
for data processing, respectively.

5. We perform a comparative error analysis by comparing the
forecast results of six forecasting models in two electricity
markets. The experimental results expose the effectiveness
and reliability of our model.

The remaining chapters of this paper are organized as follows.
We present the methodology related to the paper in Section 2.
Section 3 proposes our novel power load prediction model. In
Section 4, we introduce the experimental setup and indicate
the effectiveness and reliability of our model by comparing our
prediction results with others from different models. This paper
ends with a summary in Section 5.

2. Methodologies

2.1. Random forest

Random forest algorithm is an ensemble learning method
based on bagging algorithm, which is composed of multiple de-
cision trees in combination. The training set of all decision trees
in the random forest is repeatedly and randomly selected from
original samples with put-back, this process is also called boot-
strap resampling. The random forest algorithm as a represen-
tative method for integrated learning is widely used in various
fields, such as data classification, load prediction, and feature

selection [39]. When we use the random forest algorithm for



Y. Dai, X. Yang and M. Leng Applied Soft Computing 142 (2023) 110335

f
p
G
F
i
t
l
b

i

G

i

t
i

V

i

Y

eature importance measurement, we need to choose the appro-
riate method for measuring feature importance. We apply the
ini Index to measure the importance of features in this paper.
or ease of expression, we use Gini and VIM to denote the Gini
ndex and the feature importance score, respectively. We assume
hat there are m features, which are denoted as X1, X2, . . . , Xm,
decision trees, and K categories. The specific steps are shown
elow.
(1) The Gini of feature Xj, j = 1, . . . ,m at the z-th tree node q

s calculated as

inizq = 1 −

K∑
k=1

p2qk (1)

where pqk means the proportion of category k in node q.
(2) The importance at node q, i.e., the change of Gini at node

q after branching, is calculated as follows:

VIMz
jq = Ginizq − Giniiq − Ginilq (2)

where Giniiq and Ginilq are the Gini of the new nodes after branch-
ng.

(3) Suppose W is the set of all nodes of the occurrence fea-
ures Xj in the z-th tree. Then we can obtain the total feature
mportance of Xj in z-th tree as

IMz
j =

∑
q∈W

VIMz
jq (3)

(4) As there are l decision trees, the importance of feature Xj is

VIMj =

l∑
z=1

VIMz
j (4)

(5) We calculate the importance scores of the remaining features
by repeating the above process, normalize all the obtained im-
portance scores, and then rank them to select the best feature
set.

2.2. WGRP

The WGRP algorithm is a comprehensive evaluation method
that is based on grey system theory. This method addresses the
limitations of the grey relational analysis method by introducing
the concept of weighted sum projection. First, the key factors
that have a great influence on target variables are obtained by
a weighting method, and the relationship between the historical
dataset and the dataset to be predicted is obtained by con-
structing the weighted grey correlation matrix. As a result, we
can obtain the historical dataset that is similar to the forecast
dataset [40]. The specific steps are as follows:

(1) We let Y0 and Yi denote the feature vector of the data to be
predicted and the feature vector of the data at day i, respectively,
.e.,

0 = [y01, y02, . . . , y0n] (5)

Yi = [yi1, yi2, . . . , yin], i = 1, 2, . . . ,m (6)

where m is the total number of influencing factors, and yin is the
nth influencing factor for the ith sample.

(2) We take Y0 as the subsequence, Yi as the parent sequence,
and construct the gray correlation matrix F by calculating the
coefficients of the relationship between Y0 and Yi. Then, we
calculate the weight ϕ of each influencing factor according to the
entropy weighting method, and weigh the gray correlation matrix
to obtain the weighted gray correlation matrix F′.

F =

⎡⎢⎣ F01 · · · F0n
...

. . .
...

⎤⎥⎦ (7)

Fm1 · · · Fmn

3

λ = [ϕ1, ϕ2, . . . , ϕn] (8)

F′
= FλT

=

⎡⎢⎣ ϕ1 · · · ϕn
...

. . .
...

ϕ1Fm1 · · · ϕnFmn

⎤⎥⎦ (9)

where Fmn represents the gray correlation value corresponding to
the nth factor of the mth sample.

(3) Based on what is found in formula (9), we can obtain the
weighted gray correlation projection value between the feature
vector of the data to be predicted and the feature vector of the
data on day i is

Di =

∑n
j=1 ϕjFijϕj√∑n

j=1 ϕ2
j

(10)

(4) The weighted gray correlation projection values of the ob-
tained historical data are sorted from the largest to the smallest,
and the one with the larger projection value is selected as the
similar dataset.

2.3. BO

When we use a model for prediction, tuning the hyperpa-
rameters of the model is essential to obtain the best prediction
performance. Determining the hyperparameters of the model
through experience or multiple attempts is time-consuming and
often does not allow the model to perform to its full potential.
Accordingly, we need to optimize the hyperparameter screening
process of the model so that the model can achieve the best
prediction performance. Compared to other traditional optimiza-
tion methods, the BO algorithm has better optimization results,
faster convergence, and less time consuming. The BO algorithm
is an optimization algorithm based on probability distribution,
and there are two main core processes—i.e., the prior function
and the acquisition function. As usual, the prior function uses
the Gaussian process regression (GP), and the acquisition function
uses the expected improvement (EI) function. We illuminate the
specific optimization process as in Fig. 1.

2.4. CNN

CNN is a deep neural network containing multilayer convo-
lutional structure, which has been widely used in information
retrieval, image processing and face recognition image [41]. The
CNN model adopts the method of local connection and weight
sharing, so it can also be used for data processing, i.e., extract-
ing spatially informative features of the data [42]. In general,
CNN is composed of convolutional layers, pooling layers, and a
fully connected layer. The convolutional layer extracts the ef-
fective features of the input data through convolution, and the
pooling layer optimizes the network by selecting the most rep-
resentative features, thereby reducing the dimensionality [43]. In
addition, the number of convolutional layers and pooling layers
can be freely matched. We learn from a large number of rele-
vant publications that CNN has been used to process time series
data [44].

2.5. Bi-LSTM

As a variant of RNN, LSTM greatly solves the problems of
gradient disappearance and gradient explosion when using RNN
by changing its structure, namely adding multiple ‘‘gate’’ struc-
tures (forget gate, input gate, and output gate), and effectively
controls the flow of information, which has been widely used in
the prediction and classification of time series, as described by Li
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Fig. 1. The optimization process of BO algorithm.

Fig. 2. LSTM unit structure.

et al. [45]. The cell structure diagram of LSTM is shown in Fig. 2,
and the calculation process is as follows:

ft = σ (Wf [at−1, xt ] + bf ) (11)

it = σ (Wi [at−1, xt ] + bi) (12)

Ct = tanh(Wg [at−1, xt ] + bg ) (13)

Ct = ftCt−1 + it C̃t (14)

ot = σ (Wo[at−1, xt ] + bo) (15)

at = ot tanh Ct (16)

where at denotes the output of the hidden layer at the current
time; σ denotes the sigmoid activation function; W and b are the
weight coefficient matrix and bias term, respectively; C and tanh
refer to state volume and hyperbolic tangent activation function,
respectively.

LSTM only considers historical information and ignores future
information. Moreover, Bi-LSTM, which combines forward LSTM
and backward LSTM, was proposed to effectively involve the
future information (ignored by LSTM) by fitting the forward and
reverse data of the sequence. Therefore, Bi-LSTM is better for
load forecasting than LSTM. The structure of Bi-LSTM is shown
in Fig. 3.
4

Fig. 3. The structure of Bi-LSTM.

2.6. Attention mechanism

The attention mechanism simulates the brain signal process-
ing mechanism of human visual receiving signals. In certain sit-
uations, a person pays much attention to someone or something
whereas the person reduces or ignores other things. The atten-
tion mechanism in deep learning is proposed by mimicking the
brain’s attention mechanism, which improves the model accuracy
by assigning different probability weights to inputs to highlight
important factors. In extant attention mechanisms, the most com-
mon ones are additive attention, multiplicative attention, and
self-attention mechanisms [46,47]. Among them, multiplicative
attention, is also known as Luong attention, uses the dot product
of input and query vectors to calculate the weight of attention,
which is used effectively for serial data such as time series data
because it can focus on the specific parts of series and is also
useful for multivariate inputs. Then, multiplicative attention is
more expressive than additive attention, as the latter can only
apply to pairs of inputs whereas the former can be applied to any
number of inputs. Although self-attention has been widely used
in transformer, it requires more complex computations and may
increase the number of parameters to be learned. Therefore, this
paper uses multiplicative attention whose structure and related
calculation are by Niu et al. [46].

2.7. Seq2Seq model

The Seq2Seq model is an Encoder–Decoder structured model,
where the input and output are sequences. The encoder turns
the input sequence into a fixed-length vector expression, and
then the decoder decodes the fixed-length vector to obtain the
required sequence for output. The Seq2Seq model can be encoded
and decoded by LSTM or RNN, and LSTM can effectively solve
the problem of RNN. Therefore, both the encoder and decoder
of Seq2Seq model are usually constructed by LSTM. The basic
structure of Seq2Seq model is shown in Fig. 4. where h represents
the state of the hidden layer in the encoder and Z represents the
hidden layer state of the decoder. ht in current state is determined
by the current input Xt and ht−1 in the previously hidden layer
state, expressed as follows:

ht = f (ht−1, Xt) (17)

Vector C is determined by the state of each hidden layer and is
calculated as follows:

C = r (h1, h2, . . . , hn) (18)

In the decoding process, the decoder takes the hidden vector
C generated by the encoder, the previous hidden layer state

Zt−1, and the previous output yt as inputs, and adds a nonlinear
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Fig. 4. Seq2Seq model.

Fig. 5. Attention-Seq2Seq model.

function g to calculate the current state output yt . The calculation
formula is as follows:

yt = g(yt−1, Zt−1, C) (19)

3. The Bi-LSTM-based Seq2Seq power load forecasting model
with CNN, attention mechanism, and BO algorithm

3.1. Attention-Seq2Seq model

Although the Seq2Seq model is effective in power load predic-
tion, it cannot focus on the data series that have a key impact on
prediction results. The loss of key features is likely to cause the
gradient degradation of neural network. Thus, we introduce the
attention mechanism to connect each output step of the encoder
and each generation step of the decoder. The attention mech-
anism enables the encoder to encode information of arbitrary
length, effectively solving the loss of critical information due to
fixed-length encoding. The Attention-Seq2Seq model structure is
shown in Fig. 5.

As indicated by Fig. 5, when attention mechanism is intro-
duced, a single vector C is the output according to the hidden
layer state of the encoder instead of the previous one. Instead,
multiple vectors are outputs according to the hidden layer state
 s

5

of each step, which thus ensures the integrity of the output
information of the decoder. The vector C obtained by attention
mechanism is calculated as follows:

ai =
exp(eij)∑t
k=1 exp(eik)

(20)

ij = vT
a tanh(Wihi + UiZi + bi) (21)

ci =

t∑
i=1

aihi (22)

In the formulas (20–22), hi represents the state information
of the encoding layer, Zi represents the state information of the
decoding layer, eij refers to the correlation coefficient between the
ith hidden state of the input sequence and the jth hidden state of
the output sequence, and vT

a , Ui and Wi represent the correlation
eight, respectively.

.2. The Bi-LSTM-based Seq2Seq model with CNN and attention
echanism

The proposed model consists of CNN, attention mechanism,
nd Bi-LSTM-based Seq2Seq model. The structure of our model
s shown in Fig. 6. First, the data goes through CNN for spatial
eature extraction. The CNN used in this paper is composed of two
ne-dimensional convolutional (Conv1D) layers and two Pooling
ayers, each following a Conv1D layer. The Conv1D layer extracts
he effective features of the input data through convolution, and
he Pooling layer filters these features to reduce the complexity
f the features. Then, the CNN processed data is passed to the
ncoder of the Seq2Seq model for encoding, and the encoder
an better extract the hidden information of the input data and
mprove the utilization of information by using Bi-LSTM-based
ncoding. After that, the encoded data is passed to the attention
echanism, which enables the encoder to encode information
f arbitrary length, so as to effectively solve the problem of key
nformation loss caused by fixed-length encoding. Finally, the
ata after a series of processing is entered into the decoder for de-
oding and prediction; and, by using the Bi-LSTM-based decoder,
e can better analyze the information to make the power load
rediction more accurate.

.3. The specific stages for our prediction method

Based on the prediction model developed in Section 3.2, the
pecific forecasting process in this paper is shown in Fig. 7, and
ncludes into three main stages:

Stage 1: Data processing. First, we rank the importance of
eatures using the random forest algorithm approach and elim-
nate redundant features by considering various factors affecting
ower load, such as electricity price, temperature, holidays, etc.
econdly, the load data is distinguished between holidays and
on-holidays. The holiday data is processed by the WGRP algo-
ithm, which can help generalize the data. Finally, we normalize
he data.

Stage 2: Model training. The data processed in the first stage
s divided into training set and test set. The training set is brought
nto our model for training. Then, we use the test set to verify
ur model. Meanwhile, in order to reduce the training time of the
odel as well as to fully utilize the performance of the prediction
odel, we optimize the hyperparameters of the model by the BO
lgorithm.
Stage 3: Evaluation of prediction results. Evaluate the fore-

asting performance of the model by using various error anal-
sis methods and compare our prediction results with various
dvanced models. The results show that our method has the

mallest prediction error as well as the best prediction results.
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Fig. 6. The structure of CNN and attention mechanism for the improved,
i-LSTM-based Seq2Seq model.

Fig. 7. Power load prediction process.

4. Case study

4.1. Experimental setup

4.1.1. Datasets
We use the electricity market datasets of Singapore and

Switzerland as the experimental datasets. The electricity data
of Singapore is collected from Energy Market Company Pte Ltd
(EMC) and these data are available from the official website
of EMC. The dataset is collected for the period from January
1, 2019 to June 30, 2021, and the dataset is sampled for 1 h.
The Swiss electricity load data is collected from the ENTSO-E
Transparency Platform (Entsoe), also designed for a sampling
interval of 1 h. In addition, we need to collect various factors
that affect the electricity load, which include real-time prices,
holiday type, hourly, day type, dew point temperature, wind
speed and temperature. The weather information for Singapore
and Switzerland comes from the Nasa weather database, and the
real-time electricity prices for Singapore and Switzerland come
 B

6

from EMC and Entsoe, respectively. Moreover, since the sampling
interval of the collected data is one hour, we perform the hourly
load prediction in this paper.

4.1.2. Data preprocess
After obtaining the data through the public platform, we first

check the dataset to find possible problems such as missing val-
ues, outliers and duplicate data, and the missing values that are
filled by linear interpolation. Secondly, to facilitate the training of
the model as well as to reduce the computation time, we restrict
the dataset to [0,1] using the normalization method. The data
from Singapore from January 1, 2019 to December 31, 2020 is
divided into training and validation sets in a ratio of 9:1, and
data from January 1 to June 30, 2021 is used as the test set. The
data from January 1, 2020 to December 31, 2021 in Switzerland
is divided into training and validation sets in the ratio of 9:1, and
the data from January 1 to May 30, 2022 is used as the test set.
In addition, to better represent the relevant time characteristics,
we set the holiday type as D = [0,1], where 0 and 1 indicate
holidays and non-holidays, respectively. We also set the day
type as T = [1,2,3,4,5,6,7], where the numbers correspond to the
weekdays, and the 24 h in a day are H = [1,2,. . . ,24].

4.1.3. Evaluation criteria
To effectively compare and analyze our prediction models,

root mean square error (RMSE), mean absolute percentage error
(MAPE), mean absolute error (MAE), and determination coeffi-
cient (R2) are commonly used as evaluation indices for each
prediction model. The specific formulas for the four indices are
given as follows:

RMSE =

√1
n

n∑
i=1

⏐⏐Yi − Y ′

i

⏐⏐2 (23)

APE =
1
n

n∑
i=1

⏐⏐Yi − Y ′

i

⏐⏐
|Yi|

× 100% (24)

MAE =
1
n

n∑
i=1

⏐⏐Yi − Y ′

i

⏐⏐ (25)

R2
= 1 −

∑n
i=1(Yi − Y ′

i )
2∑n

i=1(Yi − Y
2
)2

(26)

In the formulas (23–26), n represents the predicted times; Yi
and Y ′

i are the actual value and predicted value of power load
at time slot i, respectively; and Y indicates the average value
alculated from actual value Yi.

.1.4. Model hyperparameters setting
We consider our prediction model and other comparison mod-

ls in Python using TensorFlow and Keras. For each model, the
yperparameters choice of model affects prediction results. Ac-
ordingly, we use the BO algorithm to determine optimal hyper-
arameters. Table 1 summarizes the hyperparameters setting of
eveloped model in this paper. In addition, in this paper, the lag
umber of Bi-LSTM is set to 24.

.2. Results and comparative analysis

To highlight the advantages of our model, we select several
dvanced power load forecasting models and compare prediction
esults generated by our models and others. For ease of reference,
e denote (1) our new model by ‘‘BO-BCA-Seq2Seq’’; (2) the
i-LSTM-based Seq2Seq model with CNN and attention mech-
nism by ‘‘BCA-Seq2Seq’’; (3) the LSTM-based Seq2Seq model
ith CNN and attention mechanism by ‘‘CA-Seq2Seq’’; (4) the
i-LSTM-based Seq2Seq model by ‘‘B-Seq2Seq’’.
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Table 1
Hyperparameters of proposed model.
Hyperparameter Value

Conv1D filters=64
kernel_size=1

MaxPooling1D pool_size=1
Conv1D filters=128

kernel_size=1
MaxPooling1D pool_size=1
Bi-LSTM-based encoder units=128
Bi-LSTM-based decoder units=256
Batch size 128
Epoch 50

Table 2
Error comparison of different models (before feature extraction).
Model MAPE MAE RMSE R2

BO-BCA-Seq2Seq 3.6974 423.2976 642.8244 0.6993
BCA-Seq2Seq 3.8520 449.1344 664.8877 0.6783
CA-Seq2Seq 4.0414 461.9368 689.3017 0.6543
B-Seq2Seq 4.0213 471.0035 692.8483 0.6507
RNN 4.3191 536.8521 722.3408 0.6203
XGBoost 4.6113 512.0717 734.8093 0.6071

Fig. 8. Feature importance ranking table.

.2.1. Influence of feature selection on prediction results
When performing feature selection analysis, we first select

emperature, real-time price, holiday type, hour, dew point tem-
erature,wind speed, and day type in Singapore as candidate
eatures. Then, we use the random forest algorithm (extracted
rom large to small permutations) to sort these candidates ac-
ording to their importance. When we order feature importance
ith random forests, the number of decision trees and the selec-
ion of the maximum number of features affect the accuracy of
andom forest in ranking the importance of features. Therefore,
e determine the selection of related parameters by comparing
APE and total accuracy through several experiments. Finally,
hen the number of final decision tree is set to 100 and the
aximum feature number is set to 4, the MAPE is 1.72% and the

otal accuracy is 98.27%. The ranking table of feature importance
s obtained as shown in Fig. 8.

Fig. 8 indicates that the characteristic importance score of dew
oint temperature and wind speed is 0, which means that these
wo features can be removed. To show that our novel method
an better predict the power load through feature extraction,
e performed load forecasting for Singapore from January 18
o January 24, 2021. We begin by making the load prediction
ith the unfeatured, extracted data, and obtain the model error
omparison as shown in Table 2.
7

Table 3
Error comparison of different models (after feature extraction).
Model MAPE MAE RMSE R2

BO-BCA-Seq2Seq 3.6627 417.9481 639.5653 0.7024
BCA-Seq2Seq 3.6843 426.8203 654.8040 0.6880
CA-Seq2Seq 3.8642 449.8587 659.8390 0.6832
B-Seq2Seq 3.9450 463.7143 652.9624 0.6898
RNN 3.9931 469.6667 657.9415 0.6850
XGBoost 4.1565 484.4464 705.4769 0.6379

Table 4
Comparison of holiday load forecast errors.
Model MAPE MAE RMSE R2

BO-BCA-Seq2Seq 1.8978 219.1910 254.5412 0.8613
BCA-Seq2Seq 2.1130 245.7120 281.4285 0.8305
CA-Seq2Seq 2.1338 248.2894 298.1857 0.8097
B-Seq2Seq 2.2635 259.2483 327.0669 0.7710
RNN 2.3764 272.6471 330.7234 0.7659
XGBoost 2.5200 293.8400 351.2400 0.6803

Table 5
Comparison of holiday load forecast errors.
Model MAPE MAE RMSE R2

BO-BCA-Seq2Seq 1.7550 211.2582 241.2118 0.9116
BCA-Seq2Seq 1.7951 219.4800 245.4491 0.9085
CA-Seq2Seq 1.9266 229.6772 269.3944 0.8897
B-Seq2Seq 2.0959 251.8861 287.0132 0.8748
RNN 2.3629 282.3021 328.6590 0.8359
XGBoost 2.5416 305.7432 332.8487 0.8317

We then use the data after feature extraction to make the
model error comparison (after the feature extraction), as shown
in Table 3. The comparative analysis of error results in Tables 2
and 3 show that after feature extraction, all error indicators of the
models mentioned in this paper are reduced, and the accuracy of
load prediction is improved.

4.2.2. Influences of holiday data on forecasting results
To improve the accuracy of holiday load forecasting, this paper

uses the WGRP algorithm to process the holiday data before
forecasting. In Singapore, April 2, 2021 is its official holiday, and
this paper takes the data of April 2 as the data to be predicted,
and the data from January 1 to April 1, 2021 as the sample data,
while putting the data of the same moment of the sample data
together as a sample set. In this paper, the data on April 2 is
to be projected, and the data from January 1 to April 1, 2021
is the sample data, while the data at the same moment of the
sample data is a sample set. Then, the weighted gray correlation
projection values of all samples in each sample set are obtained
according to the relevant formula of the WGRP algorithm, and
then the projection values of each sample set are ranked, and
then the data corresponding to the large projection values of each
sample set are selected and composed for April 2 in Singapore.
Figs. 9 and 10 are plotted to show prediction results before and
after the holiday data is processed, respectively. Tables 4 and 5
are the error comparison diagrams before and after the holiday
data processing, respectively. Through the comparative analysis
of the results in these two tables, we learn that processing holiday
data with the WGRP algorithm can effectively solve the problem
of low accuracy of holiday load forecasting, and is suitable to all
models considered in this paper.

4.2.3. Comparative analyses of prediction results
We now compare and analyze six prediction models (i.e., BO-

BCA-Seq2Seq, BCA-Seq2Seq, CA-Seq2Seq, B-Seq2Seq, RNN and
XGBoost). In the preceding section, we predict the monthly power
load and holiday load, and also compute the errors for various
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Fig. 9. Load forecasting results on holidays before the holiday data is processed.
Fig. 10. Load forecasting results on holidays after the holiday data is processed.
odels. The prediction results reveal that all error indicators
or the BO-BCA-Seq2Seq model are the lowest. To further show
hat our model outperforms others in the power load prediction,
e also conduct weekly load forecasting and non-holiday load

orecasting, using electricity data from Singapore. According to
he load prediction for Singapore from April 11 to April 17 in
021 as shown in Fig. 11 and the non-holiday load forecast for
ingapore in 2021 as shown in Fig. 13, we can find that the
redicted values of all models are close to the true values in
erms of trend. However, one can note that the predicted values
f our model are closer to the true values than those of the
ther models, which indicates the superiority of our model in
his paper. Nonetheless, it may not be accurate to conclude which
odel is optimal only in accordance with the observation results.
hus, we further analyze the evaluation by comparing the MAPE,
AE, RMSE, and R2 of each model. We find from Table 6 and
ig. 14 that the use of the BO algorithm is effective in increasing
he accuracy of load prediction and improving the predictive
erformance. By comparing the BCA-Seq2Seq model and the B-
eq2Seq model, we expose that introducing CNN and attention
echanism in the Seq2Seq model can improve the accuracy of
rediction. In addition, the prediction accuracy of Seq2Seq model
s higher compared with the traditional single prediction model.

To avoid the problem of one-sidedness caused by using a
ingle dataset, we also perform weekly load and non-holiday
oad forecasting for Switzerland. See Fig. 12 which indicates the
oad prediction for Switzerland from February 6 to February 13
n 2022, and Fig. 15 which shows the non-holiday load forecast
or Switzerland in 2022. Although the volatility of Switzerland
8

Table 6
Comparison of weekly load forecasting errors (Singapore).
Model MAPE MAE RMSE R2

BO-BCA-Seq2Seq 2.9587 373.0500 494.5731 0.8145
BCA-Seq2Seq 3.0110 381.5123 510.6277 0.8022
CA-Seq2Seq 3.1442 400.9776 547.2400 0.7729
B-Seq2Seq 3.1808 404.5096 593.5294 0.7328
RNN 3.2067 405.4656 563.0845 0.7595
XGBoost 3.2604 411.8957 569.3239 0.7542

Table 7
Comparison of weekly load forecasting errors (Switzerland).
Model MAPE MAE RMSE R2

BO-BCA-Seq2Seq 4.8232 394.0333 537.5872 0.3806
BCA-Seq2Seq 4.9055 398.7077 551.7313 0.3476
CA-Seq2Seq 5.0380 409.7991 555.5442 0.3385
B-Seq2Seq 5.2604 434.2994 558.4443 0.3316
RNN 5.3421 435.6984 573.6323 0.2947
XGBoost 5.4634 442.0810 581.2108 0.2760

electricity data is higher than that of Singapore, the predicted
values of our model are still closer to the true values than those
of other models. The weekly load forecasting errors in Table 7
and the non-holiday load forecasting errors shown in Fig. 16
reveal the conclusions similar to those previously made for load
forecasting in Singapore. That is, the proposed model in this
paper has the highest prediction accuracy and the best prediction
performance.
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Fig. 11. Weekly load forecasting results (Singapore).
Fig. 12. Weekly load forecasting results (Switzerland).
Fig. 13. Non-holidays load forecasting results (Singapore).
. Conclusions

In this paper, we develop a novel hybrid power load forecast-
ng method. Our major conclusions are summarized as follows:

1. We find that the random forest algorithm for eliminating
redundant features and the WGRP algorithm for reselecting
holiday load data can improve forecasting accuracy.

2. When the Bi-LSTM applies to the encoder and decoder of
the Seq2Seq model, the ability of the encoder to extract
information can be improved and the decoder can better
9

use past and future information for power load prediction.
The prediction performance of Seq2Seq model is effectively
improved.

3. By introducing CNN, attention mechanism and BO algo-
rithm, the Seq2Seq model load prediction performance and
prediction accuracy can be significantly improved. Among
them, CNN can effectively extract the spatial features of the
input data, attention mechanism can better focus on the
sequence information that has an impact on the prediction
results, and BO algorithm can obtain the best hyperparam-
eters for the model when making predictions.
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Fig. 14. Comparison of non-holidays load forecasting errors (Singapore).

Fig. 15. Non-holidays load forecasting results (Switzerland).

Fig. 16. Comparison of non-holidays load forecasting errors (Switzerland).

10
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4. By comparing the prediction errors for all prediction mod-
els in two electricity markets with four evaluation metrics,
we find that our prediction model possesses the lowest
mean square error, average absolute percentage error, and
average absolute error, which effectively shows that our
model can present better power load forecasting results.

Although the prediction performance is relatively high, our
prediction model could be further extended for future research.
Some more advanced intelligent optimization algorithms may
be added to our model for a further improvement of prediction
efficiency. In addition, to show prediction effectiveness, we may
apply our model to other energy prediction fields.
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