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a b s t r a c t

Short term power load forecasting plays an important role in the management and development of
power systems with a focus on the reduction in power wastes and economic losses. In this paper, we
construct a novel, short-term power load forecasting method by improving the bidirectional long short-
term memory (Bi-LSTM) model with Extreme Gradient Boosting (XGBoost) and Attention mechanism.
Our model differs from existing methods in the following three aspects. First, we use the weighted grey
relational projection algorithm to distinguish the holidays and non-holidays in the data preprocessing.
Secondly, we add the Attention mechanism to the Bi-LSTM model to improve the validity and accuracy
of prediction. Thirdly, XGBoost is a newly-developed, well-performing prediction model, which is used
together with the Attention mechanism to optimize the Bi-LSTM model. Therefore, we develop a novel,
combined power load prediction model ‘‘Attention-Bi-LSTM + XGBoost’’ with the weight determination
theory-error reciprocal method. Using two power market datasets, we evaluate our prediction method
by comparing it with two benchmark models and four other models. With our prediction method, the
MAPE, MAE, and RMSE for the Singapore’s power market are 0.387, 43.206, and 54.357, respectively;
and those for the Norway’s power market are 0.682, 96.278, and 125.343, respectively. The test results
are smaller than the results for six other models. This indicates that our prediction method outperforms
the LSTM, Bi-LSTM, Attention-RNN, Attention-LSTM, Attention-Bi-LSTM, and XGBoost in effectiveness,
accuracy, and practicability.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Background and motivation

With the continuous growth of power demand, traditional
ower grid faces the challenges in centralized distribution, man-
al monitoring and recovery, and two-way communication [1,2].
mart grid acts as an effective solution to the above issues, since it
s conducive to monitoring power production, transmission, and
onsumption as well as balancing the relationship [3]. However,
he power load often fluctuates greatly due to the influence of un-
ertain factors such as climate, economy, and environment [4]. It
s thereby difficult to estimate the future trend of power demand.
urthermore, the overestimation or underestimation of power
oad is detrimental to power grid strategic decision-makings.
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Therefore, accurate and precise power load prediction is of help
to the power consumption management, reasonable arrangement
of power grid operation mode, and improvement of economic and
social benefits of power systems. Today, power load forecasting
has become one of the important contents to realize the mod-
ernization of power system management and the transformation
of power retail companies to the spot market, which ensures the
safe operations of power systems as well as the balance between
power supply and demand.

1.2. Literature reviews

There are a number of power load prediction methods in
existing literatures, which can be classified as four categories:
(i) Classical prediction methods, (ii) Modern prediction methods,
(iii) Hybrid prediction methods, and (iv) Combined prediction
methods. Among them, classical prediction methods include time
series analysis [5,6], regression analysis [7], and other statistical
methods, which all perform well in solving simple linear prob-

lems by using time series methods to estimate the future power
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Nomenclature

Abbreviations

LSTM Long short-term memory
Bi-LSTM Bidirectional long short-term memory
XGBoost Extreme Gradient Boosting
ANN Artificial neural network
mFFO Modified fire-fly optimization algorithm
PSO Particle swarm optimization
BOA Bayesian optimization
HSVR Hybrid support vector regression
STA State transition algorithm
SVM Support vector machine
GWO Grey wolf optimizer
EEMD Ensemble empirical mode decomposi-

tion
VMD Variational modal decomposition
MMI Modified mutual information
RF Random forest
WGRP Weighted grey relational projection al-

gorithm
MOGWO Multi-objective grey wolf algorithm
RBF Radial basis function network
GRNN Generalized regression neural network
ELM Extreme learning machine
RNN Recurrent neural network
MAPE Mean absolute percent error
MAE Mean absolute error
RMSE Root mean square error

Functions and variables

n1 Selected sample data
A Gray relationship matrix
A′ Weighted grey incidence matrix
γ The weight of each influencing factor
A′

0 The row vector of the sample
A′

i The row vector of other historical sam-
ples

cos θi Cosine value of gray projection angle
Bi Weighted grey correlation projection

value
Xt The current time step input
Ht−1 The previous time step
It Input gate of LSTM
FT Forgetting gate of LSTM
Ot Output gate of LSTM
h The number of hidden units
Ht The hidden state of the current time

step
σ Sigmoid function
Wxi, Wxo, Wxf The weight matrix
bi, bo, bf The offset term
C̃t Candidate memory cells
Ct The cell state of the current time step
Ct−1 The cell state at the previous time
ŷi The predicted value
wj The weight
xij Sample data
2

ŷ(t)
i The model after training t round

ŷ(t−1)
i The reserved function added in the

previous round
Obj(t) The objective function of XGBoost
Ωf (t) The regular term in the objective func-

tion
T The number of leaf nodes
γ Control the number of leaf nodes
τ (t), τ̃ (t) Objective function simplified by

second-order Taylor expansion
ω∗

j Optimal solution of objective function
x The power load data value before nor-

malization
xn The power load data value after nor-

malization
ft The formula of error reciprocal method
ω1 The weight value of Attention-Bi-LSTM
ω2 The weight value of and XGBoost
ε1 The error values of Attention-Bi-LSTM
ε2 The error values of XGBoost
yt The real power load data
ŷt The predicted power load data

load. However, these methods are challenged in dealing with
nonlinear problems. In order to better predict those nonlinear
problems, the nonlinear mapping-based prediction technologies
have been proposed. The input data is embedded into high-
dimensional space, which can transform the nonlinear problems
into linear problems. Modern prediction methods mainly include
fuzzy logic, gray system [8], and machine learning algorithms
[9], etc. Especially, the main two categories of machine learning
algorithms are non-supervised and supervised learning [10]. Non-
supervised learning does not have any training data samples. It is
thus necessary to model the data directly with clustering and di-
mensionality reduction [11]. The supervised learning is trained by
existing training samples to obtain an optimal model. Then, this
model is used to map all new data samples to the corresponding
output results. It is worth noting that above prediction methods
have inherent limitations such as complex calculation [12–14],
poor generalization ability [15], and over fitting [16–18], which
all challenge power load predictions.

To overcome the weaknesses of above prediction methods,
the hybrid prediction models have been developed by various
optimization algorithms used to optimize the prediction perfor-
mance, which include the modified fire-fly optimization (mFFO)
algorithm [19], particle swarm optimization (PSO) [20], and
Bayesian optimization (BOA) [21]. For example, Wang et al. [9]
used the hybrid support vector regression (HSVR) method to
predict the medium and long-term loads, and applied the hier-
archical method based on nested strategy and state transition
algorithm (STA) to optimize the parameters of prediction mod-
els. Barman and Choudhury [22] optimized the parameters of
support vector machine (SVM) using the grey wolf optimizer
(GWO) and predicted the power demand that is significantly
affected by social factors such as culture or religious rituals. More-
over, in general, the hybrid prediction methods consist of data
preprocessing and forecasting parts. Preprocessing data through
different technologies can help eliminate outliers, correct data er-
rors, and improve data quality. The relevant technologies include
(i) data decomposition technologies such as ensemble empiri-
cal mode decomposition (EEMD) [5,23] and variational modal
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ecomposition (VMD) [3], and (ii) feature selection technolo-
ies such as modified mutual information (MMI) [24], random
orest (RF) [25], and weighted grey relational projection algo-
ithm (WGRP) [26]. In summary, the hybrid prediction methods
an significantly reduce prediction error and improve prediction
ccuracy by performing parameter optimization, data decompo-
ition or feature selection. However, the inherent disadvantages
f the single prediction model still cannot be solved.
To further improve and optimize the prediction model and

vercome the inherent defects of various single models in clas-
ical, modern, and hybrid prediction methods, the combined pre-
iction methods began to be proposed by combining two or more
ifferent prediction models with a specific weighting method.
ates and Granger [27] put forward the idea of combined fore-
asting for the first time. They proposed a seminal combined pre-
iction model, which combines two independent airline datasets
ith a weighting system. The results show that the combined
rediction set can produce a lower error than the original pre-
iction. Nie et al. [28], Deng et al. [29], and Chu et al. [30]
lso proved that the performance of combined prediction models
s better than that of single models. Chen et al. [31] used the
STM and XGBoost models to predict the power load, respec-
ively, they then assign weights to the two models according
o the error reciprocal method. For a better weighting method,
he error should be reduced because a smaller error implies a
igher prediction accuracy. Zhuang et al. [32] set an initial weight
f model combination to search for the best weight combined
ith the MAPE-RW algorithm, and then constructed the CNN-
STM-XGBoost combined prediction model, which significantly
educed the error index compared with the single prediction
odels. Nie et al. [33] used the multi-objective grey wolf algo-

ithm (MOGWO) to determine the weights to the radial basis
unction network (RBF), generalized regression neural network
GRNN), and extreme learning machine (ELM). They established
combined prediction model based on the swarm intelligence
ptimization, which can effectively reduce the adverse effects of
eak adaptability of single models and better grasp the charac-
eristics of power load, thus significantly improve the prediction
ccuracy and adaptability.
We can learn from the above literatures review that the recent

mprovement of prediction models with the combination meth-
ds not only needs more than one single prediction model but
lso combines a variety of different algorithms to calculate the
eights for each model [34]. However, the existing combined
rediction models just combine some existing mature prediction
odels without emphasizing the importance of data preprocess-

ng. In this context, we use the WGRP algorithm to preprocess
he data and eliminate the impact of holidays. As for the pre-
iction process, the Bi-LSTM model had been widely viewed as
ne with an excellent forecasting effect since it can fully con-
ider the hidden information and obtain better prediction results.
oreover, since the Attention mechanism has the advantages of

arge-scale parallel processing, distributed information storage,
nd acceptable self-organization and self-learning ability, we add
he Attention mechanism to the Bi-LSTM model [35] to eliminate
he unreasonable impact and emphasize the impact of key in-
ut data. This makes the prediction results more comprehensive
nd is thus called ‘‘Attention-Bi-LSTM model’’ [36]. Although the
i-LSTM model has been improved and optimized, its inherent
efects still cannot be avoided. Hence, to further avoid the defects
f a single prediction model, we should introduce the idea of
ombination and develop another prediction model. For neutral-
ze the error as much as possible, we need a model with excellent
rediction ability. After screening, we select the XGBoost [37]
odel, with specific attribution to the following performances
38]: (i) strong generalization ability; (ii) more flexible by using

3

GART as the base classifier; (iii) controllable complexity by adding
regular terms to prevent over-fitting; and (iv) fast computing
speed because it only depends on the input data value and does
not choose the specific form of loss function to perform leaf split-
ting. As a result, we develop the ‘‘Attention-Bi-LSTM + XGBoost’’
combination model to further improve the prediction accuracy of
‘‘Attention-Bi-LSTM’’ model. In order to verify the effectiveness of
developed prediction method, we apply two power market cases
in Singapore and Norway.

1.3. Our contributions

The novelty and major technical contributions are as follows:

(1) We develop a novel ‘‘Attention-Bi-LSTM + XGBoost’’ com-
bined prediction model.

(2) We use the weighted grey relational projection algorithm
to distinguish the holiday and non-holiday data.

(3) We consider the Attention mechanism in the Bi-LSTM
model to improve the prediction accuracy.

(4) We use the XGBoost model to further improve the perfor-
mance of Bi-LSTM model in a combined manner.

(5) We use two power market datasets and six power load
prediction models to verify the effectiveness and reliability
of our model.

The organization of this paper is as follows: The basic methods
and algorithms used in this paper are introduced in Section 2.
Section 3 introduces the weight method of combining the models.
Section 4 presents the specific steps of our proposed prediction
method. We consider two practical case to verify the prediction
accuracy and stability of our method in Section 5. This paper
ends with concluding remarks and possible future directions in
Section 6.

2. Methodologies

2.1. Weighted grey relational projection algorithm

The WGRP algorithm [26] is a method for measuring the de-
gree of similarity or difference between the development trends
of various factors, i.e., ‘‘grey relational degree’’. This method is not
limited by the sample size. For the data with small sample size
and discreteness, it can avoid the one-way deviation caused by
comparing the index values of single factors of each scheme, and
also can comprehensively analyze the relationship between the
indexes while the size of the module and the cosine of the in-
cluded angle are combined. The proximity between each decision
scheme and the ideal scheme is fully and accurately reflected. It
is also applicable to the regular sample size with small amount of
calculation. Therefore, this paper uses the WGRP algorithm to sort
the factors that affect power load, and assigns weights according
to the importance of these factors. Thus, the prediction results are
general. The details regarding the calculation steps are as follows.

Firstly, select the data of the preceding n1 samples and the
data of the samples to be predicted, calculate the relationship
coefficient between them, and construct the following grey re-
lationship matrix.

A =

⎡⎢⎢⎣
A01 · · · A0m1
...

. . .
...

An11 · · · An1m1

⎤⎥⎥⎦ (1)

where An1m1 represents grey correlation coefficient whose m1th
factor in the n1th sample.

Then, the weight of each influencing factor is calculated by

entropy weight method, and the weighted grey relation matrix is
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btained by weighting the grey relation matrix, as shown below:

′
= AγT

=

⎡⎢⎢⎣
γ1 · · · γm1
...

. . .
...

γ1An11 · · · γm1An1m1

⎤⎥⎥⎦ (2)

where, γ represents the weight of each influencing factor, the first
row in the matrix is expressed as the row vector of the sample
to be predicted of A′

0, the row vector of other historical samples
is expressed as A′

i, and the included angle between each A′

0 and
A′

i is the gray projection angle of the sample, expressed as θi, and
calculate the cos θi.

cos θi =

∑m1
j=1 γjAijγj√∑m1

j=1(γjAij)2
√∑m1

j=1 γ 2
j

(3)

Thus, the weighted grey correlation projection value Bi is

i =

∑m1
j=1 γjAijγj√∑m1

j=1 γ 2
j

(4)

In summary, with the appropriate weighting method, the
WGRP algorithm can determine the key factors that have a great
impact on the target variables, and combines the projection of
each historical sample with the samples to be predicted to obtain
the weighted grey correlation projection value Bi. Finally, we sort
the obtained projection values from large to small, and select
the samples with large projection values as similar samples for
replacement, in order to find the similar sample set from the
samples to the predictions. Then, the adverse impact of holiday
samples with large deviation on the prediction results can be
reduced and the historical load data is more general, which
improve the prediction accuracy.

2.2. Bi-LSTM forecasting model

In the gradient algorithm of recurrent neural network, when
the time steps are too small or too large, the gradient of recurrent
neural network can easily explode and disappear [39]. Therefore,
in order to solve this problem, LSTM uses gating mechanism to
control information, as shown in Fig. 1 [40], and introduces input
gate, forgetting gate and output gate to remove some contents
that are not important to the current situation [34], thereby
prolonging the storage time of information and save some older
information. The input of LSTM gate is the hidden state between
the current time step input Xt and the previous time step Ht−1.
he output is calculated by the full connection layer.

Input gate: It = σ (XtWxi + Ht−1Whi + bi) (5)

orgetting gate: FT = σ (XtWxf + Ht−1Whf + bf) (6)

Gated unit: C̃t = tanh(XtWxc + Ht−1Whc + bc) (7)

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t (8)

Output gate: Ot = σ (XtWxo + Ht−1Who + bo) (9)

here h is the number of hidden units, Xt is the small batch input
f a given time step t , Ht−1 is the hidden state of the previous time

step, σ is sigmoid function, Wxi and Whi are the weight matrix of
he input gate, bi is the offset term of the input gate; Wxf and
hf are the weight matrix of the forgetting gate, bf is the offset

erm of the forgetting gate; C̃t is the candidate memory cells, Wxc
nd Whc are weight matrices of gated unit, bc is the offset term of
he gated unit, Ct is the new cell state at the current time, Ct−1 is
he cell state at the previous time; Wxo and Who are the weight
atrix of the output gate, and b is the offset term of the output
o

4

Fig. 1. Gating mechanism of LSTM.

Fig. 2. Component connection topology of LSTM.

ate. Using the tan h function with the value range in [−1,1] as
he activation function, the information flow in the hidden state
s controlled by multiplying by elements ⊙.

The output gate Ot controls the information flow from the
emory cell to the hidden state, and the final output Ht is

t = Ot ⊙ tan h(Ct ) (10)

nd its component connection topology is shown as in Fig. 2.
Different from the LSTM, the Bi-LSTM (Bi-directional long

hort-term memory) method is composed of forward LSTM and
ackward LSTM. When extracting data features, we take into
ccount the overall information hidden in the data, and extract
eatures from both forward and reverse angles [32]. Then, the
esults of two-way extraction are combined in a specific way and
ummarized from two dimensions, which can eliminate the im-
act of the order of input data in a single LSTM on the final result
o a certain extent and make the results more comprehensive.

.3. Attention mechanism

The core idea of Attention mechanism is to simulate attention
bility of people. For the information to be processed, people
sually focus on a few key points instead of evenly distributing
heir attention to all information. Therefore, the introduction
f Attention mechanism into the prediction model can assign
ifferent weights to the data, eliminate the unreasonable impact
f input data on output data, and improve the impact of key input
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Fig. 3. Structure of attention mechanism.

ata. The model structure of attention is shown in Fig. 3. For the
pecific calculation steps, see, for example, Zheng and Chen [36].

.4. XGBoost power load forecasting model

Extreme gradient boosting is essentially a gradient boosting
ecision tree, which can improve the speed and efficiency of
rediction. It is an optimization of the boosting algorithm that
uilds a decision tree by continuously adding trees and continu-
usly splitting features [30]. When we add a tree, a new function
(x) is learned to fit the residual predicted last time. When the
raining is completed and k trees are obtained, each tree falls to
a corresponding leaf node, and each leaf node corresponds to a
score. It is only necessary to add up the corresponding scores of
each tree to get the predicted value of the sample. The XGBoost
model is as follows:

ŷi =

n∑
j=1

wjxij (11)

here ŷi is the predicted value, n is the number of trees, wj is the
eight, and xij is sample data.
In each iteration, a tree is added on the basis of the existing

ree to fit the residual between the predicted results of the pre-
ious tree and the real value. The iterative process is as follows:

ˆ
(0)
i = 0

ˆ
(1)
i = f1(xi) = ŷ(0)

i + f1(xi)

ˆ
(2)
i = f1(xi) + f2(xi) = yi(1) + f2(xi)

· ·

ˆ
(t)
i =

t∑
k=1

fk(xi) = ŷ(t−1)
i + ft (xi)

(12)

here ŷ(t)
i is the model after training t round; ŷ(t−1)

i is the re-
erved function added in the previous round; and ft (xi) is the
ewly added function. The objective function of XGBoost is as
ollows:

bj(t) =

n∑
i=1

l(yi, ŷ
(t)
i ) +

t∑
i=1

Ω(fi)

=

n∑
i=1

l(yi, ŷ
(t−1)
i + ft (xi)) + Ω(ft )

(13)

f (t) = γ T +
1
2
λ

T∑
ω2

j (14)

j=1

5

The ultimate goal is to find ft that minimizes the objective
function, the

∑t
i=1 Ω(fi) in formula (13) is a regular term in the

objective function, which determines the complexity of the tree.
Moreover, a smaller value results in a lower complexity and the
stronger generalization ability. In formula (14), T is the number
of leaf nodes, ω is the score of leaf node, γ is used to control the
number of leaf nodes, and λ ensures that the score of leaf nodes
is not too large.

In order to find a ft to minimize the objective function, Taylor’s
second-order expansion is carried out at ft = 0, and the objective
function obtained is approximately as follows:

τ (t)
≃

n∑
i=1

[
l(yi, ŷ

(t−1)
i ) + gi ft (xi) +

1
2
hi f 2t (xi)

]
+ Ω(ft ) (15)

where gi = ∂ŷ(t−1) l
(
yi, ŷ(t−1)

)
is the first derivative and hi =

2
ŷ(t−1) l

(
yi, ŷ(t−1)

)
is the second derivative.

Since the prediction score of the first t − 1 trees and the
residual error of y will not affect the optimization of the objective
function, it is directly removed and the objective function is
further simplified as:

τ (t)
=

n∑
i=1

[
gift (xi) +

1
2
hif 2t (xi)

]
+ Ω(ft ) (16)

Formula (16) further simplifies the objective function by su-
erimposing the loss function values of each sample. As each
ample eventually falls into a leaf node, we reorganize all samples
f the same leaf node on the basis of formula (16), in order to
chieve the purpose of simplifying and rewriting the objective
unction. The process is as follows:

bj(t) ≃

n∑
i=1

[
gi ft (xi) +

1
2
hif 2t (xi)

]
+ Ω(ft )

=

n∑
i=1

[
giωq(xi)

+
1
2
hiω

2
q(xi)

]
+ γ T + λ

1
2

T∑
j=1

ω2
j (17)

=

T∑
j=1

⎡⎣(
∑
i∈Ij

gi)ωj +
1
2
(
∑
i∈Ij

hi + λ)ω2
j

⎤⎦ + γ T

Therefore, by rewriting the above formulas, we can rewrite
he objective function into a unary quadratic function about the
eaf node fraction ω. It becomes simple to obtain the optimal ω
and the value of the objective function by using vertex formula
directly. For the rewritten univariate quadratic function about the
leaf node fraction ω, the optimal ω∗

j and objective function can be
btained as follows:

∗

j = −

∑
i∈Ij

gi∑
i∈Ij

hi + λ
(18)

bj = −
1
2

T∑
j=1

(
∑

i∈Ij
gi)2∑

i∈Ij
hi + λ

+ γ T (19)

In order to facilitate calculation and meet the requirements of
ata input, the data shall be normalized in advance. The power
oad data is normalized according to the following formula. The
ata is limited to the range of [0,1].

n
=

x − xmin

xmax − xmin
(20)

here x and xn are the power load data value before and after
normalization, respectively. xmin and xmax are the minimum and
maximum of the power load data value before normalization,
respectively.
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. Attention-Bi-LSTM + XGBoost power load combined predic-
ion model

.1. Weighting method

The research result of Chen et al. [31] shows that the er-
or reciprocal method is not only easy to operate, but also can
ignificantly optimize the prediction performance of the model.
herefore, in this paper, the reciprocal error method is used to as-
ign weights to the model. According to this method, the weights
f Attention-Bi-LSTM and XGBoost are calculated through the er-
or results obtained from the main evaluation index MAPE. Thus,
he prediction model with a smaller error in this combined model
s given a larger weight. Hence, the overall error of the combined
rediction model can be reduced significantly. To confirm the
eight coefficient, the formula of error reciprocal method is as

ollows:

t = ω1f1t + ω2f2t , t = 1, 2, . . . , n (21)

1 =
ε2

ε1 + ε2
(22)

ω2 =
ε1

ε1 + ε2
(23)

where ω1 and ω2 mean the weight value of Attention-Bi-LSTM
and XGBoost respectively; f1t and f2t mean the predicted value
obtained by Attention-Bi-LSTM and XGBoost. The weight value
is obtained from formulas (22) and (23), where ε1 and ε2 are
the error values of the prediction models Attention-Bi-LSTM and
XGBoost respectively.

3.2. Attention-Bi-LSTM + XGBoost combined prediction model

Different from the existing prediction models, the Attention-
Bi-LSTM can not only fully consider the overall information hid-
den in the input data from two dimensions to obtain more com-
prehensive results, but also emphasize the impact of key input
data. Thus, the use of Attention-Bi-LSTM model can improve the
prediction accuracy of results. Moreover, XGBoost, as a newly
proposed prediction model with a low complexity, can prevent
over fitting and has an excellent prediction performance. We
then use Attention-Bi-LSTM and XGBoost methods to forecast the
power load, and obtain the corresponding errors. The weights for
the above two models are calculated by using the error reciprocal
method according to the error results, which gives a greater
weight to the model with a smaller error, so as to maximize
the advantages of the model and reduce the error as much as
possible. Finally, we combine the different prediction results of
above two models by using the error reciprocal method, which
can overcome various inherent defects of a single prediction
model. The framework is shown in Fig. 4.

4. Prediction method

Based on our newly proposed combination forecasting model,
the power load prediction process in our method is shown in
Fig. 5. The prediction steps of the full text are mainly divided into
four stages:

Stage 1: Data preprocessing. First, we select several influenc-
ing features with the greatest correlation, such as time, day type,
holiday type, real-time price. Then, we use the WGRP algorithm
to process the data of holidays to distinguish holiday and non-
holiday data, making the data more general. Finally, we normalize
the data.

Stage 2: Prediction using single models. The Attention mech-
anism is used to optimize the LSTM model, so that the influence
of unreasonable factors can be eliminated and then the influence
6

of key input data can be emphasized to make the results more
comprehensive. Single Attention-Bi-LSTM and XGBoost model are
used to predict the same dataset and prepare for the combination
of the two models according to the prediction results in Stage 3.

Stage 3: Weight the models. After the power load data are
forecasted with Attention-Bi-LSTM and XGBoost methods, we
use the error reciprocal method to obtain the weights accord-
ing to the error predicted, which means that single models are
weighted. Then, the Attention-Bi-LSTM + XGBoost combined pre-
diction model forms.

Stage 4: Evaluation of prediction results. By comparing the
prediction errors for two benchmark models and four other mod-
els with two power markets, we show whether this method can
improve the accuracy of power load forecasting or not.

5. Evaluation and analysis

In this section, we evaluate and discuss the performance of
developed prediction method based on two cases. Simulation
is carried out in Python to verify the effectiveness of the pro-
posed method. Since Attention-Bi-LSTM and XGBoost are relevant
to our model in this paper, we regard them as two bench-
mark models and also select LSTM, Bi-LSTM, Attention-LSTM, and
Attention-RNN as other models for comparison.

5.1. Datasets and experimental environment

After screening the data of several national power markets,
we find that the data of Singapore and Norway power markets
embrace all the influencing factors we need. The relevant data is
complete and comprehensive consideration is more suitable for
the model proposed in this paper. Therefore, we use the data
to evaluate the proposed method and consider the factors such
as day type, time, holiday type, real-time price, etc. These data
include Singapore’s data from January 1, 2019 to December 31,
2020 and Norway’s data from January 1, 2020 to December 31,
2021. The sampling period of historical power load data is 1 h;
and, 80% of the prepared data is used for training and 20% for
testing [41–43]. Finally, we compare the results with the real
value and investigate the errors.

The hardware platform of this experiment is equipped with
Intel i5-1035G1 processor, with 8 GB memory, 477 GB solid
state disk capacity and MX230 CPU graphics card. The method
proposed in this paper is implemented based on Python lan-
guage. The Attention-Bi-LSTM model uses Keras deep learning
framework and XGBoost uses py-xgboost framework.

5.2. Evaluation criteria

We consider the prediction accuracy as our objective to test
the proposed combined model’s efficiency. To evaluate this ob-
jective, we use three standard statistical indicator models. Specif-
ically, we select mean absolute percent error (MAPE) as the main
evaluation index of each prediction model, and choose mean
absolute error (MAE) and root mean square error (RMSE) as the
auxiliary evaluation indices. These statistical indicator models are
used to measure the accuracy rate of the proposed model. The
calculation formulas of MAPE, MAE and RMSE are as follows:

XMAPE =
1
n

n∑
t=1

⏐⏐yt − ŷt
⏐⏐

yt
(24)

MAE =
1
n

n∑⏐⏐yt − ŷt
⏐⏐ (25)
t=1
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Fig. 4. The framework of Attention-Bi-LSTM + XGBoost combined prediction model.

Fig. 5. Power load prediction process in our novel method.

7
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Table 1
Parameter settings of Attention-Bi-LSTM.
Algorithm Parameter meaning Parameter The parameter

value
Setting basis

Attention-Bi-LSTM The number of units Unit 128 It is the key parameter that affects the accuracy of the model and has the
optimal quantity.

Time step time_step 24 Determine whether each input data is related to the previous number of
successively input data.

The number of unit layers num_layers 2 The default value is 1 layer. If it is set to 2, the second layer receives the
calculation results of the first layer.

Hidden layer width batch_size 256 The amount of data entered at one time, through the setting of this
parameter, it can distinguish whether the input data is the same batch of
data.

Iteration times Epochs 40 It depends on the computing power of the computer to determine the
optimal number of iterations.
Table 2
Parameter settings of XGBoost.
Algorithm Parameter meaning Parameter The parameter

value
Setting basis

XGBoost The number of decision trees n_estimators 70 This parameter is very powerful and can adjust the model to the limit
at one time.

The maximum depth of
decision tree

max_depth 7 The common value range is 10–100, and when the sample size and
characteristic quantity are large, it can be modified appropriately.

Training progress of the model silent 1 When the data is huge and the algorithm speed is slow, this parameter
can be used to monitor the training progress.

Sample size of random
sampling place with return

subsample 1 Control the sample size of sampling. The default is 1, which means
100% of the data is extracted at a time, and 0.1 means 10% of the data
is extracted at a time.

Iterative decision tree eta 0.1 eta is the step size of the iterative decision tree, also known as the
learning rate, which is used to ensure that each new tree has the best
prediction effect.

Selection of weak evaluator booster gbtree Some trees are discarded in the process of tree building, which has
better over fitting function than gradient lifting tree.

Parameters of regular terms alpha 10 When alpha and lambda are larger and the penalty is heavier, the
proportion of regular terms is larger and the complexity of the model is
lower.

Control of model complexity gamma 2 Important parameters to prevent over fitting.
XRMSE =

√1
n

n∑
t=1

(yt − ŷt )2 (26)

where n means the quantity of power load data, yt means the real
power load data, and ŷt means the predicted power load data.

5.3. Experimental setup

(1) Parameter settings of Attention-Bi-LSTM
The accuracy of the Attention-Bi-LSTM is mainly determined

by the number of units, dimension of input feature, dimension of
hidden layer state, the number of unit layers, hidden layer width
and iteration times. The parameter settings of Attention-Bi-LSTM
are given in Table 1.

(2) Parameter settings of XGBoost
The accuracy of the XGBoost is mainly determined by the

number of decision trees, training progress of the model, sample
size of random sampling place with return, iterative decision
tree, selection of weak evaluator, objective function of XGBoost,
parameters of regular terms, and control of model complexity.
The parameter settings of XGBoost are provided in Table 2.

5.4. Influence of data preprocessing on prediction results

To verify the significance of the WGRP algorithm, we extract
the short holiday data from May 1, 2020 to May 5, 2020 in the
dataset of Singapore power market from January 1, 2019 to De-
cember 31, 2020. According to the local conditions of Singapore,
8

the characteristics of historical load series, hour, day type, and
holiday type are determined. Then, the prediction accuracy of
benchmark models, other models and our prediction model are
compared before and after data preprocessing. Specifically, as
shown in Table 1, Model 1, Model 3, Model 5, Model 7, Model 9,
Model 11 and Model 13 are not preprocessed by WGRP algorithm.
For holidays, Model 2, Model 4, Model 6, Model 8, Model 10,
Model 12 and Model 14 select the historical data with a high
similarity to this holiday with the WGRP algorithm, to make the
overall historical data general. The detailed description of the 14
models in seven groups is provided in Table 3.

The WGRP performance experimental results of group 1 to 6
are shown as in Fig. 6, and the comparison results of group 7 is
indicated as in Fig. 7. As the curve trend shows, it is not difficult
to reveal that in the seven groups of experiments, the predicted
results of the model pretreated by WGRP are more consistent
with the actual value curve in terms of proximity and trend.
Thus, it follows that WGRP algorithm can make the data more
universal, and using it to preprocess the data has great advantages
in improving the prediction accuracy of the model.

The error analysis of seven groups is shown in Table 4. In
the light of evaluation indicators, the prediction results of Model
2, Model 4, Model 6, Model 8, Model 10, Model 12 and Model
14 pretreated by the WGRP algorithm are all better than those
without the WGRP algorithm in the group. Thus, for the two
benchmark models, four other models, and our prediction model,
the WGRP algorithm can help improve the prediction accuracy.
Therefore, according to all error results of seven groups, we can
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Fig. 6. Comparative experiment of WGRP algorithm of group 1 to 6.
Fig. 7. Comparative experiment of WGRP algorithm of group 7.
onclude that it is necessary to use WGRP algorithm to prepro-
ess holiday data, which proves the superiority of our prediction
ethod.
When the WGRP algorithm is not considered, the predicted

esults are basically consistent with the change trend of the actual
alue; but, the differences between them are large. After we
se the WGRP algorithm, the gap between the prediction results
nd real value can be reduced. Consequently, to decrease the
rediction error, we first use the WGRP algorithm to process the
oliday data in the historical data. Then, in order to verify the
dvantages of the algorithm in improving prediction accuracy
nd reducing error, we employ the same model to predict the
rocessed and unprocessed data. According to the experiment
esults of the seven groups, we find that the prediction results
f data processing are closer to the true value, and the accuracy
9

of prediction can be further improved. Therefore, using the WGRP
algorithm to process the holiday data can convincingly make the
data more general and improve the prediction accuracy.

5.5. Analysis of prediction results

5.5.1. Experiment I: Singapore electricity market
Taking Singapore power load data with hourly resolution as

an example, we do this experiment to verify the applicability of
our proposed power load forecasting approach. First, we use the
Attention-Bi-LSTM and XGBoost models to predict the same set
of data, and obtain the prediction errors of the two models. Sec-
ondly, according to the errors, we assign weights to the above two
prediction models and combine them with the error reciprocal
method. The model with a smaller error is given a higher weight.
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Table 3
Model description.
Group Model Description

Group 1 Model 1 LSTM
Model 2 WGRP-LSTM

Group 2 Model 3 Bi-LSTM
Model 4 WGRP-Bi-LSTM

Group 3 Model 5 Attention-RNN
Model 6 WGRP-Attention-RNN

Group 4 Model 7 Attention-LSTM
Model 8 WGRP-Attention-LSTM

Group 5 Model 9 Attention-Bi-LSTM
Model 10 WGRP-Attention-Bi-LSTM

Group 6 Model 11 XGBoost
Model 12 WGRP-XGBoost

Group 7 Model 13 Attention-Bi-LSTM+XGBoost combined model
Model 14 WGRP-Attention-Bi-LSTM+XGBoost combined model

Table 4
Error analysis of 7 groups of WGRP algorithm comparison experiments.
Group Model XMAPE/% XMAE/kW XRMSE/kW

Group 1 Model 1 1.453 149.915 178.589
Model 2 1.092 113.619 141.969

Group 2 Model 3 1.279 133.021 174.571
Model 4 1.050 109.842 135.554

Group 3 Model 5 1.128 117.693 144.475
Model 6 1.015 105.492 134.449

Group 4 Model 7 1.028 107.183 125.881
Model 8 0.855 90.262 117.171

Group 5 Model 9 0.971 103.063 119.726
Model 10 0.613 64.476 82.995

Group 6 Model 11 0.475 50.053 50.932
Model 12 0.531 56.312 72.032

Group 7 Model 13 0.359 38.341 48.076
Model 14 0.345 36.515 47.714

Specifically, according to the main evaluation index MAPE, the
results are substituted into the error reciprocal formula. Thus,
the weights of Attention-Bi-LSTM and XGBoost are calculated as
0.4252 and 0.5748, respectively. Thirdly, to verify the effective-
ness of the combination model proposed in this paper, we use
the LSTM, Bi-LSTM, Attention-RNN, Attention-LSTM, Attention-Bi-
LSTM, XGBoost and ‘‘Attention-Bi-LSTM + XGBoost’’ combined
orecasting model to predict the data, and compare the seven
rediction results to show that our proposed model is most
ffective. From our results we observe the following issues.
1) Trend comparison between prediction results and real value.

(a) Fig. 8 shows the comparison between the real values and
the prediction results of LSTM, Bi-LSTM, Attention-RNN,
Attention-LSTM, Attention-Bi-LSTM, XGBoost models, and
‘‘Attention-Bi-LSTM + XGBoost’’ combined prediction
model. We learn that the prediction accuracy of ‘‘Attention-
Bi-LSTM + XGBoost’’ combined prediction model is the
highest, and the Bi-LSTM model has the lowest prediction
accuracy.

(b) The predicted value curve of the ‘‘Attention-Bi-LSTM +

XGBoost’’ combined prediction model is the closest to the
real value curve. That is, the fitting effect of our proposed
model is the best, and the change trend is roughly the
same.

(c) Overall, the ‘‘Attention-Bi-LSTM + XGBoost’’ combined pre-
diction model shows the performance of the optimal and
behaves is better than others in prediction accuracy and
sensitivity to proportionality changes. In order to more
10
clearly observe the trend and proximity between the pre-
diction results of each model selected in this paper and
the actual value, we locally enlarge Fig. 8. The locally-
enlarged drawing of the results of 24 h on January 7, 2020
in Singapore is shown in Fig. 9. From Fig. 9, we can observe
that the trend of the prediction result curve of our com-
bined prediction model is more consistent with the real
value curve than the benchmark and other models. Thus,
we conclude that the prediction accuracy of our proposed
method is the highest according to both the overall trend
diagram and the locally enlarged diagram.

2) Error comparison and analysis
The MAPE, MAE, and RMSE values of the above six models are

hown in Table 5. By comparing the error values in Table 5, we
an draw the following conclusions.

(a) Since LSTM is an improvement of recurrent neural network
(RNN), the error of Attention-LSTM is less than that of
Attention-RNN, which shows the necessity of selecting the
LSTM model in this paper.

(b) According to the comparison of LSTM, Attention-LSTM, and
Attention-RNN models, the comprehensive comparison of
the three prediction methods indicates the significant ef-
fect of attention mechanism on prediction accuracy.

(c) Among all the accuracy test standards for benchmark and
other models, the error value of XGBoost is the smallest,
which means that XGBoost has an extremely excellent
prediction performance. We use XGBoost to optimize the
Attention-Bi-LSTM model, which can significantly improve
the accuracy of the Attention-Bi-LSTM model.

(d) Table 5 exposes that the values of MAPE, MAE and RMSE of
the ‘‘Attention-Bi-LSTM + XGBoost’’ combined prediction
model is 0.387, 43.206, and 54.357, respectively, which are
the smallest from a holistic perspective. Therefore, the test
results show that the combined prediction method of the
two models can reduce the prediction error as a whole,
thus being better than the single prediction model and
having the highest prediction accuracy.

.5.2. Experiment II: Norway electricity market
The hourly load data of Norway is used as another test data

n this experiment. The purpose is to further verify and evaluate
he effectiveness of the proposed method by using a different
ataset to compare our results with those from other prediction
pproaches. Similarly, according to the main evaluation index
APE, we find that, with the reciprocal error formula, the calcu-

ated weights of Attention-Bi-LSTM and XGBoost are 0.4273 and
.5727, respectively. Figs. 10 and 11 as well as Table 6 describe
he graphics and error results of experiment II of the proposed
ombined prediction model compared to the existing prediction
odels. The results reveal the insights below.

1) Trend comparison between prediction results and real value
Through the comparison of the seven prediction models in

igs. 10 and 11, we learn that, compared to the benchmark
nd other models, the line of the combined prediction model
roposed in this paper is the closest to the trend and value of
he real value. This indicates it is feasible to optimize the model
ith the combined method. Particularly, we learn from Fig. 10
hat the predicted result curve and the real value curve of the
‘Attention-Bi-LSTM + XGBoost’’ combined model are the closest
in both trend and proximity. Except for our prediction method, all
the curves for the prediction results of the remaining benchmark
and other models have significantly large deviation to the curves
of the real value. That is, from the perspective of graphic trend,
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Fig. 8. Comparison between LSTM, Bi-LSTM, Attention-RNN, Attention-LSTM, Attention-Bi-LSTM, XGBoost and Attention-Bi-LSTM + XGBoost prediction results with
eal values of Singapore power market.
Fig. 9. The local enlarged drawing of Singapore’s results on January 7, 2020 (24 h).
Table 5
Error analysis between LSTM, Bi-LSTM, Attention-RNN, Attention-LSTM, Attention-Bi-LSTM, XGBoost and Attention-Bi-LSTM+XGBoost
Singapore power market.
Types of models Model XMAPE/% XMAE/kW XRMSE/kW

Other models

LSTM 1.011 113.480 147.083
Bi-LSTM 1.155 127.812 168.841
Attention-RNN 0.886 98.16 130.704
Attention-LSTM 0.877 97.691 125.574

Benchmark models Attention-Bi-LSTM 0.711 79.418 105.023
XGBoost 0.526 59.463 62.585

Our proposed model Attention-Bi-LSTM+XGBoost combined model 0.387 43.206 54.357
our proposed model has the highest fitting degree and excellent
prediction performance.
(2) Error comparison and analysis.

Table 6 lists the numerical results of three accuracy tests,
hich show that in the accuracy test, the method proposed in this
aper achieves the minimum results of MAPE, MAE, and RMSE
11
(i.e., 0.682, 96.278, and 125.343, respectively). According to the
evaluation, we conclude that the proposed model is more accu-
rate than those benchmark and other frameworks. In addition, we
further ensure the effectiveness of the attention mechanism and
combination optimization model that were proved in Experiment
I.
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Fig. 10. Comparison between LSTM, Bi-LSTM, Attention-RNN, Attention-LSTM, Attention-Bi-LSTM, XGBoost and Attention-Bi-LSTM + XGBoost prediction results with
eal values of Norway power market.
Fig. 11. The local enlarged drawing of Norway’s results on May 16, 2021 (24 h).
Table 6
Error analysis between LSTM, Bi-LSTM, Attention-RNN, Attention-LSTM, Attention-Bi-LSTM, XGBoost and Attention-Bi-LSTM+XGBoost
of Norway power market.
Types of models Model XMAPE/% XMAE/kW XRMSE/kW

Other models

LSTM 1.886 257.791 301.141
Bi-LSTM 1.648 225.233 279.765
Attention-RNN 1.230 182.122 238.673
Attention-LSTM 1.229 171.672 233.651

Benchmark models Attention-Bi-LSTM 1.091 153.595 210.720
XGBoost 0.814 115.892 148.007

Our proposed model Attention-Bi-LSTM+XGBoost combined model 0.682 96.278 125.343
By comparing with the local enlarged drawing of Singapore’
esults, that is, Fig. 9, we find that the accuracy of the seven
odels used in this paper for the prediction of the Singap-
re electricity market is higher than that of the Norway electricity
arket. This exposes that, as the verification of two markets
12
indicates, our method has good prediction performance. More-
over, our combined prediction method is more suitable for
the data of Singapore power market. That is, according to the
unique characteristics of different market data, we still need to
constantly develop better and suitable prediction models. Then,
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y comparing Figs. 9 and 11, we can find that the trend of
he local enlarged drawing of the Singapore power market is
ore stable, which proves the prediction results of the Singapore
ower market have a better fitting effect. Therefore, we can
raw the conclusion that different power markets have different
haracteristics. In order to evaluate the performance of some
rediction method, it is necessary to use this method to conduct
xperimental evaluation on multiple data sets.

. Conclusions

Power load forecasting plays an important role in balancing
nergy distribution, economy, and the safe and reliable operation
f power systems. An accurate load forecasting can reduce the
ost and risk of power operations, and can improve the envi-
onmental and economic benefits of power grids. Thus, in this
aper, with an aim to enhance the accuracy and stability of
ower load predictions, we propose a novel hybrid Attention-Bi-
STM + XGBoost power load combined forecasting method based
on WGRP algorithm. On the phase of data preprocessing, the
historical load series of holidays are selected by WGRP algorithm,
and better prediction results are obtained. In addition, for the
accuracy comparison between our combined forecasting model
and the benchmark and other models such as Attention-Bi-LSTM,
XGBoost, LSTM, Bi-LSTM, Attention-LSTM, and Attention-RNN, we
perform two case studies using the datasets of Singapore and
Norway power markets. We can draw the following conclusions.

(1) Using the WGRP algorithm to preprocess holiday data can
effectively improve the prediction accuracy of the model.

(2) Attention mechanism allows the Bi-LSTM model to empha-
size the influence of important factors, which can eliminate
redundancy and improve prediction performance.

(3) Adding regular terms to XGBoost can effectively prevent
over fitting and reduce calculation, so as to greatly improve
the efficiency of the algorithm. Therefore, using XGBoost
model for optimization can greatly reduce the error of the
model.

(4) According to the comparison of prediction results com-
pared to two benchmark models and four other models,
we find that XGBoost model has the best prediction per-
formance and the smallest error. Then, compared to the
optimal benchmark model XGBoost, the MAPE of our pre-
diction method is 0.387 and 0.682, which are reduced by
26.43% and 16.22%, respectively; the MAE of our predic-
tion method is 43.206 and 96.278 which are reduced by
27.34% and 16.92%, respectively; the RMSE of our pre-
diction method is 54.357 and 125.343 which are reduced
by 13.15% and 15.31%, respectively. Hence, we can cer-
tainly draw the conclusion that the prediction result of the
‘‘Attention-Bi-LSTM + XGBoost’’ combined model has the
lowest errors and is the closest to the actual value than
those of the single models, and the trend of the proposed
model is roughly the same as the real values.

In conclusion, the combined forecasting method proposed in
his paper is more effective than the single classical and mod-
rn prediction methods, hybrid prediction methods, and other
xisting combined prediction methods. Our model can reduce
he error and obtain a higher power load prediction accuracy to
educe the unnecessary waste in power markets and improve the
eliability and safety of power system operations.

In the future, we may further improve our model from the
ollowing aspects:

(1) We shall use more evaluation indicators of regression pre-
diction model to verify the accuracy and further improve
the reliability of our proposed model.
13
(2) The weight of our proposed model is only calculated ac-
cording to the error, which is one-sided. Next, we shall find
an optimization method to weight assignment method, so
that the weight can be calculated by the data, and the
weight changes according to the selected data.

(3) We shall find a suitable method to further optimize the
parameters of our prediction model, and try to use more
advanced models for combination, in order to continuously
improve the prediction performance.

(4) XGBoost model is a part of our prediction method. We use
its basic model but do not optimize its hyper-parameters.
Therefore, in the future work, we should use methods such
as Bayesian optimization to optimize the hyper-parameters
of XGBoost to further improve its prediction performance.

We expect that, in the future, we can consider the above
issues, and also strive to apply the method to more fields.
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