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Abstract

Homoclinic and heteroclinic solutions are two important concepts that are used to investigate

the complex properties of nonlinear evolutionary equations. In this paper, we perform hyperbolic

and linear stability analysis, and prove the existence of homoclinic and heteroclinic solutions

for two-dimensional cubic Ginzburg-Landau equation with periodic boundary condition and even

constraint. Then, using the Hirota’s bilinear transformation, we find the closed-form homoclinic

and heteroclinic solutions. Moreover, we find that the homoclinic tubes (which are formed by a

pair of symmetric homoclinic solutions) and two families of heteroclinic solutions are asymptotic

to a periodic cycle in one dimension.
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1 Introduction

The existence of homoclinic and heteroclinic solutions are important for investigating the complex

dynamics of partial differential equations. In recent years, a number of methods have been devel-

oped to prove the existence of homoclinic solutions in some nonlinear evolutionary equations (NEE)

such as nonlinear Schrödinger Equation [1], Sine-Gordon equation[2], long-short wave equation [3],

DS II equation [4], Boussinesq equations [5], etc. Furthermore, researchers recently found a novel

method which can be used to analyze the homoclinic solutions for Davey-Stewartzon equations

[4, 5], Boussinesq equation [6], Sine-Gordon equation [7], Zakharov equation [8], etc. To use the

novel method for proving the existence of homoclinic/heteroclinic solutions of NEE, we commonly

adopt the following two steps: In the first step, we need to prove that the fixed points or cycles

of NEE are hyperbolic, which shows that the fixed points or cycles are saddle points or cycles. In

the second step, we should perform linearized stability analysis, in order to demonstrate that the

fixed points or cycles are linearly unstable. Then, we can use the Hirota’s bilinear transformation

to derive the explicit homoclinic/heteroclinic solutions.

In the nonlinear science field, the exact homoclinic and heteroclinic solutions are important to

the analysis of complex dynamics for NEE. Among various NEE, the complex Ginzburg-Landau

equation (CGLE) is an important and well-known system. In this paper, we mainly focus on the

homoclinic and heteroclinic solutions of 2D cubic CGLE with periodic boundary condition and

even constraint.

The CGLE is an important system in the area of nonlinear optics that describes the propagation

of optical pulses in optic fibers. Since the CGLE system appeared, the solutions of CGLE have

been extensively examined from many different perspectives; see, e.g., [9—12]. Sakaguchi and Boris

[13] proposed a new model that describes the nonlinear planer waveguide incorporated into a closed

optical cavity, and presented a CGLE with an anisotropy of a novel type which is diffractive in

one direction and diffusive in the other. Dai et al. [14] has examined the 2D Ginzburg-Landau

equation which is similar to that was developed by Sakaguchi and Boris [13]. However, our paper

differs from [14] because of the following facts: (i) We consider Sakaguchi and Malomed’s CGLE

system [13] which is different from that in [14]. (ii) We prove the existence of the homoclinic and

heteroclinic solutions, and also derive the closed-form results of these two solutions. But, Dai et

al. [14] only found the closed-form homoclinic solution. (iii) We investigate the structures of the

homoclinic and heteroclinic solutions, which were not considered by Dai et al. [14].

The CGLE system developed by Sakaguchi and Malomed [13] can be written as follows:

ut = k1u+ (k2 + ik3)uxx + (k2 + ik3)uyy − (k4 + ik5)|u|2u, (1)

with boundary condition of period (2π/p1, 2π/p2) and even constraint; that is,

u(t, x+ 2π/p1, y + 2π/p2) = u(t, x, y) and u(t,−x,−y) = u(t, x, y),
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where k1, k2, k3, k4 and k5 are real constants; p1 and p2 are real constants that should be deter-

mined. Obviously, ei(at+ϕ) is a solution of (1) and also is a fixed point, where ϕ is a real constant,

k1 = k4 and a = −k5. There thus exists a fixed circle consisting of infinite number of fixed points

with different ϕ. To the best of our knowledge, very few closed-form solutions have been found

for this CGLE so far.

The remainder of this paper is organized as follows: In Section 2, we use the novel method

that was developed in [4—8], we prove the existence of heteroclinic and homoclinic solutions. In

Section 3 we derive the explicit heteroclinic and homoclinic solutions. The paper ends with a

further discuss of heteroclinic and homoclinic solutions.

2 Hyperbolic Property and Linearized Stability Analysis

Before exactly deriving the analytical homoclinic/heteroclinic solutions, we should prove the ex-

istence of these two types of solutions. we commonly adopt the hyperbolic property analysis to

show that the fixed point/circle is saddle point/circle and adopt the linearized stability analysis

to determine the number of the unstable modes. We summarize the main results as the following

two lemmas.

Proposition 1 If 3k2
5 + k2

2(k2 + k
′2)2 + k2

3(k2 + k
′2)2 + 2k1k2(k2 + k

′2) + 4k3k5(k2 + k
′2) < 0, then

the fixed circle eiat is a saddle circle.

Proof. Assume that u(x, y, t) = u1(x, y, t) + iu2(x, y, t). Under the assumption, we separate the

real and image parts, and arrive to the following equations{
u1t = k1u1 + k2u1xx − k3u2xx + k2u1yy − k3u2yy − k4(u2

1 + u2
2)u1 + k5(u2

1 + u2
2)u2,

u2t = k1u2 + k3u1xx + k2u2xx + k3u1yy + k2u2yy − k5(u2
1 + u2

2)u1 − k4(u1
1 + u2

2)u2.

We linearize the above equations, and find that
U1t = k1U1 + k2U1xx − k3U2xx + k2U1yy − k3U2yy − k4(2u1U1 + 2u2U2)u1−

k4(u2
1 + u2

2)U1 + k5(2u1U1 + 2u2U2)u2 + k5(u2
1 + u2

2)U2,

U2t = k1U2 + k3U1xx + k2U2xx + k3U1yy + k2U2yy − k5(2u1U1 + 2u2U2)u1−
k5(u2

1 + u2
2)U1 − k4(2u1U1 + 2u2U2)u2 − k4(u2

1 + u2
2)U2,

(2)

where k1 = k4. Since u(x, t) = eiat is a fixed point circle, we find that u1 = cos at and u2 = sin at.

We consider the following simple case: only one wave number k (k
′
) in the x direction (y direction)

and Uj (j = 1, 2) is the eigenfunction of spatial operators (∂xx, ∂yy) around the fixed point circle,

which has the form

Ujxx = −k2Uj and Ujyy = −k′2Uj. (3)
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Using (3), we solve (2) for the eigenvalues of the coeffi cient matrix, and find that, if

3k2
5 + k2

2(k2 + k
′2)2 + k2

3(k2 + k
′2)2 + 2k1k2(k2 + k

′2) + 4k3k5(k2 + k
′2) < 0, (4)

then the eigenvalues are

λ = −k4 − k2(k2 + k
′2)±

√
k2

4 − 3k2
5 − k2

3(k2 + k′2)2 − 4k3k5(k2 + k′2).

Therefore, we find that an eigenvalue is positive but the other is negative; this proves the existence

of saddle points. That is, fixed point solution eiat is a saddle point circle.

Remark 1 The condition (4) is satisfied when k2 and k4 are suffi ciently small and |k5| is suffi -
ciently large when k5 < 0. For example, when k2 + k

′2 = 1 and k5 = k3/2, the condition (4) is

satisfied. C

Proposition 2 If a = −k5, then we can obtain

0 < N <
1

p2

√√
k2

4 + k2
5 − k5

k3(γ2
1 + 1)

, (5)

where N is independent of t and represents the number of the unstable modes. In fact, the number

N determines the complexity of the homoclinic structure. Hence, the fixed point is hyperbolic.

Proof. Consider a small perturbation of the following form:

u(x, y, t) = ū(x, y, t)[1 + ε(x, y, t)], (6)

where ū = ei(at+ϕ) and |ε| � 1. Substituting (6) into (1) and keeping linear terms of ε yields the

following linearized equation

εt = (k2 + ik3)εxx + (k2 + ik3)εyy − (k4 + ik5)ε∗ + [k1 − 2(k4 + ik5)− ia]ε, (7)

where the superscript “*”denotes the complex conjugate. In order to find the solution of the form

ε = Aeiµnx+iµ̄ny+σnt +Be−iµnx−iµ̄ny+σnt,

where A and B are complex constants; µn = p1n and µ̄n = p2n; σn is the growth rate of nth mode,

we need the following equations{
(σn + k2µ

2
n + ik3µ

2
n + k2µ̄

2
n + ik3µ̄

2
n + 2k4 + 2ik5 + ia− k1)A+ (k4 + ik5)B∗ = 0

(σn + k2µ
2
n + ik3µ

2
n + k2µ̄

2
n + ik3µ̄

2
n + 2k4 + 2ik5 + ia− k1)B + (k4 + ik5)A∗ = 0

(8)
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Solving equation (8) for σn, we have

σn = −k2µ
2
n − k2µ̄

2
n − 2k4 + k1 ±

√
k2

4 + k2
5 − (k3µ2

n + k3µ̄2
n + 2k5 + a)2.

Assuming that p1 = γ1p2 and γ1 6= 1, we find that

0 < N <
1

p2

√√
k2

4 + k2
5 − 2k5 − a

k3(γ2
1 + 1)

,

because µn = p1n and µ̄n = p2n. When a = −k5, we can obtain the inequality (5).

The hyperbolic property (in Proposition 1) and our linearized stability analysis (in Proposition

2) ensure the existence of homoclinic/heteroclinic solutions for CGLE.

3 Closed-Form Homoclinic and Heteroclinic Solutions

In this section we use our analytical results in Section 2 to derive the closed-form homoclinic and

heteroclinic solutions.

Theorem 1 The CGLE (1) has two families of the closed-form homoclinic and heteroclinic solu-

tions such as

u1 = eiat
1 + 2b1 cos(p1x+ p2y)eΩ1t+γ + b3e

2Ω1t+2γ

1 + 2b4 cos(p1x+ p2y)eΩ1t+γ + b5e2Ω1t+2γ
, (9)

and

u2 = eiat
1 + 2b1 cos(p1x+ p2y)eΩ2t+γ + b3e

2Ω2t+2γ

1 + 2b4 cos(p1x+ p2y)eΩ2t+γ + b5e2Ω2t+2γ
, (10)

when the parameters satisfy the following relations

λ = −k1 − ik5,

b1 = b2 =
Ω− (k2 + ik3)(p2

1 + p2
2)

Ω + (k2 + ik3)(p2
1 + p2

2)
b4,

b3 =

[
Ω− (k2 + ik3)(p2

1 + p2
2)

Ω + (k2 + ik3)(p2
1 + p2

2)

]2

b5,

b5 =
Ω2 − (k2 + ik3)2(p2

1 + p2
2)2

Ω2
b2

4,

p1 = γ1 sinφ, p2 = sinφ,

(11)

and

Ω1,2 = −(k1 + k2(p2
1 + p2

2))±
√
k2

3 − 2k3k5(p2
1 + p2

2)− k2
3(p2

1 + p2
2)2, (12)

where

p2
2 <

1

γ2
1 + 1

[√
k2

3 + k2
5 − k5

k3

]
. (13)
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Proof. We can easily find that the system (1) has the following plane wave solution:

u = e−ik5tv(x, y, t). (14)

Thus, using (14), we can transform (1) into the following system

vt = (k2 + ik3)vxx + (k2 + ik3)vyy + (k1 + ik5)v − (k4 + ik5)|v|2v. (15)

By the dependent variable transformation v = G/F , the system (15) can be transformed into the

following bilinear form{
[Dt − (k2 + ik1)(D2

x +D2
y)]G · F − (k1 + ik5 + λ)GF = 0,

(k2 + ik3)F ∗(D2
x +D2

y)F · F + (k1 + ik5)FGG∗ + λFFF ∗ = 0.
(16)

where λ is a complex constant which shall be determined later, and the Hirota’s bilinear operator

Dm
x D

k
t [15, 16] is defined as,

Dm
x D

k
t a · b = (

∂

∂x
− ∂

∂x′
)m(

∂

∂t
− ∂

∂t′
)ka(x, t)b(x

′
, t

′
)|x′=x,t′=t.

Assume G and F have the following forms{
G = 1 + (b1e

ip1x+ip2y + b2e
−ip1x−ip2y)eΩt+γ + b3e

2Ωt+2γ,

F = 1 + b4(eip1x+ip2y + e−ip1x−ip2y)eΩt+γ + b5e
2Ωt+2γ,

(17)

where a, p, Ω and γ are real, and b1, b2, b3, b4 and b5 are complex. Substituting (17) into (16), we

find the parameter relations (11) and

Ω2 + 2(k1 + k2(p2
1 + p2

2))Ω + 2(p2
1 + p2

2)(k1k2 + k3k5) + (k2
2 + k2

3)(p2
1 + p2

2)2 = 0 (18)

From equation (18), we find two solutions for parameter Ω such as (12) and the condition (13)

assure that Ω1,2 are real.

When k2 = 0, the solutions given by (9) and (10) represent orbits homoclinic to the fixed

periodic circles. More precisely, we find that

u1 → eiat and u2 → eiat
[

Ω− ik3(p2
1 + p2

2)

Ω + ik3(p2
1 + p2

2)

]2

, as t→ −∞,

and

u1 → eiat
[

Ω− ik3(p2
1 + p2

2)

Ω + ik3(p2
1 + p2

2)

]2

and u2 → eiat, as t→ +∞.

Hence, there exists a phase shift between the homoclinic solutions u1 and u2. That is, if u1(x0, y0, t)

is a homoclinic solution, then u1(x0 +π/p1, y0 +πt/p2) is another homoclinic solution. As a result,
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u1 and u2 form a symmetric pair of homoclinic solutions which shapes homoclinic tubes.

When k2 6= 0, the solutions given by (9) and (10) represent orbits heteroclinic to the fixed

periodic circles; that is,

u1 → eiat and u2 → eiat
[

Ω− (k2 + ik3)(p2
1 + p2

2)

Ω + (k2 + ik3)(p2
1 + p2

2)

]2

, as t→ −∞,

and

u1 → eiat
[

Ω− (k2 + ik3)(p2
1 + p2

2)

Ω + (k2 + ik3)(p2
1 + p2

2)

]2

and u2 → eiat, as t→ +∞.

Therefore, there also exist a phase shift between the heteroclinic solutions u1 and u2. If u1(x0, y0, t)

is a heteroclinic solution, then u1(x0 + 2π/p1, y0 + 2π/p2, t) is another heteroclinic solution. Thus,

u1 and u2 are a symmetric pair of heteroclinic solutions and all of these orbits form the heteroclinic

tubes.

4 Further Discussion

In what follows, we discuss the structure of the homoclinic solutions u1. (Note that the discussion

for u2 is similar to that for u1.) Assume the following transformation

Ω1 − ik3(p2
1 + p2

2)

Ω1 + ik3(p2
1 + p2

2)
=

Ω2
1 − 2ik3Ω1(p2

1 + p2
2)− k2

3(p2
1 + p2

2)2

Ω2
1 + k2

3(p2
1 + p2

2)2
= X + Y i.

Then, we separate the real and imaginary part as follows,

X =
Ω2

1 − k2
3(p2

1 + p2
2)2

Ω2
1 + k2

3(p2
1 + p2

2)2
and Y =

−2k3Ω1(p2
1 + p2

2)

Ω2
1 + k2

3(p2
1 + p2

2)2
.

We thus arrive to the following equation,

u1 = eiat
1 + 2(X + Y i)b4 cos (p1x+ p2y)eΩ1t+γ + (X + Y i)2b5e

2Ω1t+2γ

1 + 2b4 cos(p1x+ p2y)eΩ1t+γ + b5e2Ω1t+2γ
.

Letting Z2 ≡ (Ω2
1 + k2

3p
4)/Ω2

1, we have,

u1 = eiat
1 + 2(X + Y i)b4 cos(p1x+ p2y)eΩ1t+γ + [(X + Y i)Zb4e

Ω1t+γ]2

1 + 2b4 cos(p1x+ p2y)eΩ1t+γ + [Zb4eΩ1t+γ]2
.

It is easy to find that u1 is a smooth plane with (1 + 2)−dimension which depends on variables

(x, y, t) ∈
(

2nπ

p1

,
2(n+ 1)π

p1

)
×
(

2nπ

p2

,
2(n+ 1)π

p2

)
× (−∞,+∞),
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for n = · · · ,−2,−1, 0, 1, 2, · · · , and the parameters space

(a, p1, p2) ∈ R+ ×

−
√√√√ 1

γ2
1 + 1

[√
k2

3 + k2
5 − k5

k3

]
,

√√√√ 1

γ2
1 + 1

[√
k2

3 + k2
5 − k5

k3

]
×

−
√√√√ 1

γ2
1 + 1

[√
k2

3 + k2
5 − k5

k3

]
,

√√√√ 1

γ2
1 + 1

[√
k2

3 + k2
5 − k5

k3

] .
Assuming u1 = ρ1(x, y, t)eiθ(x,y,t), we can show that

ρ2
1 =

a2

G
[1 + 4X cos(p1x+ p2y)E(t) + 2(X2 − Y 2)Z2E2(t) + 4 cos2(p1x+ p2y)E2(t)

4X(X2 + Y 2)Z2E3(t) cos(p1x+ p2y) + (X2 + Y 2)2Z4E4(t)],

where

G(t) ≡ 1 + 4 cos(p1x+ p2y)E(t) + 4 cos2(p1x+ p2y)E2(t)

+2Z2E2(t) + 4Z2 cos(p1x+ p2y)E3(t) + Z4E4(t),

and

E(t) = b4e
Ω1t+γ.

Since X2 + Y 2 = 1, we find that

ρ2
1 =

a2

G
[1 + 4X cos(p1x+ p2y)E(t) + 2(X2 − Y 2)Z2E2(t) + 4 cos2(p1x+ p2y)E2(t)

+a2[4XZ2E3(t) cos(p1x+ p2y) + Z4E4(t)], (19)

Note that

X2 − Y 2 =
[(p2

1 + p2
2 − 2Ω1)2 − 8Ω2

1][(p2
1 + p2

2 + 2Ω1)2 − 8Ω2
1]

(p2
1 + p2

2)2 + 4Ω2
1

.

As a result, when |t| −→ ∞, we find that

ρ2
1 =

a2[Z2E(t) + 4X cos(p1x+ p2y)] + ε1(x, y, t)

Z2E(t) + 4 cos(p1x+ p2y)] + ε2(x, y, t)
, for t > 0;

and

ρ2
1 =

a2[1 + 4XE(t) cos(p1x+ p2y)] + ε3(x, y, t)

1 + 4E(t) cos(p1x+ p2y) + ε4(x, y, t)
, for t < 0,

where, as t→∞, |εi(x, y, t)| � 1 for arbitrary x, y.

Assuming ρ2
1 = a2, we can use (19) to attain the following equation,

2Z2(X − 1) cos(p1x+ p2y)E2(t) + Z2(X2 − Y 2 − 1)E(t) + 2(X − 1) cos(p1x+ p2y) = 0,
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which can be re-written, by using the expressions of X, Y and Z2, as,

(Ω2
1 + k2

3(p2
1 + p2

2)2) cos(p1x+ p2y)E2(t) + Ω2
1E(t) + 4Ω2

1 cos(p1x+ p2y) = 0. (20)

From (20), we obtain

E(t) =

−Ω2
1 ± Ω2

1

√
1− 16

Ω2
1

cos2(p1x+ p2y)(Ω2
1 + k2

3(p2
1 + p2

2)2)

2(Ω2
1 + k2

3(p2
1 + p2

2)2) cos(p1x+ p2y)
. (21)

Note E(t) = b4e
Ω1t+γ. when b4 > 0, we have E(t) > 0. According to the above expression (21), in

order to assure that E(t) > 0, if cos(p1x + p2y) < 0, we then have the following expressions for

E(t):

E(t) =

−Ω2
1 + Ω2

1

√
1− 16

Ω2
1

cos2(p1x+ p2y)(Ω2
1 + k2

3(p2
1 + p2

2)2)

2(Ω2
1 + k2

3(p2
1 + p2

2)2) cos(p1x+ p2y)
, if t > 0 (22)

and

E(t) =

−Ω2
1 − Ω2

1

√
1− 16

Ω2
1

cos2(p1x+ p2y)(Ω2
1 + k2

3(p2
1 + p2

2)2)

2(Ω2
1 + k2

3(p2
1 + p2

2)2) cos(p1x+ p2y)
, if t < 0 (23)

When t > 0, if cos(p1x + p2y) < 0 and | cos(p1x + p2y)| � 1, we then find that E(t) in (22)

approaches infinity, i.e., E(t)→ +∞. When t < 0 and t→ −∞, we choose x, y to get the follows
equation √

16

Ω2
1

cos2(p1x+ p2y)(Ω2
1 + k2

3(p2
1 + p2

2)2) = ε.

Then, we compute E(t) in (23) as,

E(t) =
4Ω1(1−

√
1− ε2)√

Ω2
1 + k2

3(p2
1 + p2

2)2ε
=

4Ω1ε√
Ω2

1 + k2
3(p2

1 + p2
2)2(1 +

√
1− ε2)

.

As a result, when ε → 0, E(t) → 0. On one hand, we learn from the above argument that the

homoclinic flows are periodic about (x, y) and across the plane p + 1 and vibrate in the small

region when (x, y) varies. One the other hand, as t→∞,

θ(x, y, t) = at+ arctan
2Y E(t) cos(p1x+ p2y) + 2XY Z2E2(t)

1 + 2XE(t) cos(p1x+ p2y) + (X2 − Y 2)Z2E2(t)
→∞,

which shows that, when we fix (x, y), the orbits circulates the phase space for infinite times. Note

that we don’t perform the analysis for u2, because it is similar to our above analysis for u1.

Since our analysis for the heteroclinic flows is similar to the above for the homoclinic flows, we

don’t analyze the structure of the heteroclinic flows here.
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5 Concluding Remarks

In this paper, we first proved the existence of homoclinic and heteroclinic solutions for the 2D

cubic Ginzburg-Landau equation. Then, by using the Hirota’s bilinear method, we computed

the closed-form homoclinic and heteroclinic solutions. Moreover, we discussed the structure of

the homoclinic and heteroclinic solutions. In future, we may consider the following interesting

problems: What is the relation between the homoclinic (or heteroclinic) solutions and the chaos

phenomenon arising in CGLE? Whether do there exist the homoclinic and heteroclinic solutions

for the n−dimensional CGLE systems (n ≥ 3)?
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