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Abstract

We consider retail space-exchange problems where two retailers exchange shelf space to increase

accessibility to more of their consumers in more locations without opening new stores. Using

the Hotelling model, we find two retailers’optimal prices given their host and guest space in

two stores under the space-exchange strategy. Next, using the optimal space-dependent prices,

we analyze a non-cooperative game where each retailer makes a space allocation decision for the

retailer’s own store. We show that the two retailers will implement such a strategy in the game,

if and only if their stores are large enough to serve more than one-half of their consumers.

Nash equilibrium for the game exists and its value depends on consumers’utilities and trip

costs as well as the total available space in each retailer’s store. Moreover, as a result of the

space-exchange strategy, each retailer’s prices in two stores are both higher than the retailer’s

price before the space exchange but they may or may not be identical.
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1 Introduction

Can retailers selling different products implement partnership strategies that involve exchanging

shelf space to improve their operating performance? Consider the following problem (and

its solution) that was experienced by the British supermarket chain of food-related products

known as Waitrose [15]: Even though its sales were increasing, many of Waitrose’s potential

customers were having diffi culty accessing its stores because no new stores were being opened.

In order to increase accessibility to more of its customers in more locations without opening new

stores, Waitrose established new channels and implemented a new business model. This was

achieved by initiating strategic relationships with the British retailer of healthcare products

known as Boots. Waitrose and Boots now stock “selective product ranges” in each others’

stores; more specifically, Waitrose’s food products are sold in Boots’s stores, while the latter

retailer’s healthcare products are displayed for sale in Waitrose stores. The cooperation between

Waitrose and Boots can be regarded as an implementation of the retail space-exchange strategy;

see Stych [14] for a magazine article describing this partnership.

Waitrose and Boots have successfully implemented the space-exchange strategy, as indicated

in a report by The Waitrose Press Center [15]. As another successful example of this novel

strategy, Canada’s favourite doughnut store known as Tim Hortons has been working with the

U.S.-based Cold Stone Creamery (a chain stores of ice cream) to implement the space-exchange

strategy and operate their “co-branded”stores. This practice involves 100 stores in the U.S. and

six in Canada. For more information, see Draper [5] for an article describing the partnership

between Tim Hortons and Cold Stone Creamery.

With the novel retailing practice described above, when two retailers (say, 1 and 2) imple-

ment their space-exchange strategy, a retailer’s consumers can buy in either the retailer’s own

store or the other retailer’s store, which means that such a strategy can result in an increased

store choice for consumers. It is reasonable to expect that each consumer would buy in a store

that is closer to his or her residence location, thereby incurring lower travel costs and increasing

the willingness to buy at a higher retail price. Specifically, when two retailers do not exchange

their space, consumers who intend to buy a retailer’s product will have to visit the retailer’s

own store; but, after the space exchange, some consumers may decide to shop at the other

retailer’s store (because it is closer to those consumers). This implies that the space-exchange

strategy will reduce the travelling costs of some consumers who buy a retailer’s product at the
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other retailer’s store. Since each consumer does not need to incur a high travelling cost, he or

she should be willing to buy even if the retail price is increased. Thus, both retailers 1 and 2

may respond by raising their prices to increase their profit margins. This can be regarded as

the most important benefit derived from the space-exchange strategy. We find that each re-

tailer’s pricing and space allocation decisions are important to the success of the space-exchange

strategy, which are the focused research questions in our paper.

One may question why the two retailers do not sell both products 1 and 2 by themselves in

their own stores but instead exchange shelf space for the sale of these products. We present three

reasons for this: First, when the two retailers sell identical products at their sites, they have to

compete for consumers, which may result in the reduction of the two retailers’profits. Second,

the two retailers have more information about their own products and are thus specialized in

their product sales. If each retailer sells his own product and also the other retailer’s product,

then the retailer has to allocate his efforts for the sale of the product that is unfamiliar to the

retailer; this may reduce the retailer’s operational profitability. Third, since the retailers should

have already served their markets before the space exchange, their established reputations may

affect consumers’ purchasing decisions. Hence, to reduce the operational risk, each retailer

should optimally allocate his space to the other retailer and thus take advantage of the other

retailer’s reputation to effi ciently provide more choices to consumers.

As the above discussion indicates, the space-exchange strategy should generate benefits to

both retailers and their consumers; and, in practice, some retailers (e.g., Waitrose and Boots,

Tim Hortons and Cold Stone Creamery) have already successfully implemented this strategy.

Despite the apparent importance of this strategy, our literature search did not reveal any

research papers dealing with space-exchange problems. There are a number of space-related

publications, which do not consider the space exchange-related issues. In one publication that is

closely related to our paper, Jerath and Zhang [9] consider a store-within-a-store arrangement

in which a retailer rents out her retail space to two manufacturers who then have complete

autonomy over retail decisions such as pricing and in-store service. The authors develop an

analytical model to investigate the retailer’s trade-offbetween channel effi ciency and interbrand

competition. They show that the retailer cannot credibly commit to the retail prices and service

levels that two manufacturers can achieve in an integrated channel, and she should thus allow the

manufacturers to set up stores within her store. In another related publication, [4], Martínez-de-

Albéniz and Roels analyze a shelf-space competition problem where a single retailer optimizes
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her shelf space allocation among multiple suppliers’different products based on their sales level

and profit margins. The authors examine the equilibrium situation in the supply chain, and

found that, in general, the retailer’s and the suppliers’incentives are misaligned, resulting in

suboptimal retail prices and shelf space allocations. Other recent representative space-related

publications include Baron, Berman, and Perry [1], Campo, et al. [2], Kurtuluş and Toktay

[10], and Wang and Gerchak [17].

In this paper, we use the Hotelling model [8] in Section 2 to analyze the space-exchange

problem where retailers 1 and 2 are located at two end points of a linear city. For detailed

discussions on the Hotelling model and its extensions, see, e.g., Martin [11] and Tirole [16]. The

Hotelling model has been widely used to analyze marketing- and operations management-related

problems. The recent representative publications, where the Hotelling models are considered,

include, e.g., Dasci and Laporte [3], Ghosh and Balachander [6], Granot, Granot, and Raviv

[7], and Sajeesh and Raju [12].

In our space-exchange problem, retailer i (i = 1, 2) sells product i to his consumers who

are uniformly distributed between the two retailers. Since the success of the space-exchange

strategy naturally depends on whether or not each retailer benefits from this strategy, we begin

our analysis by finding each retailer’s optimal pricing decision and maximum profit when they

do not exchange shelf space, which are later compared with two retailers’profits under the

space-exchange strategy. Next, when the two retailers decide to exchange shelf space, we first

temporarily assume that, in each store, two retailers have suffi ciently large space to serve all

of their consumers, and calculate their corresponding optimal prices with no space (capacity)

constraint.

We then find in Section 3 each retailer’s optimal prices under the space constraint, i.e.,

the retailer’s host space in his own store and his guest space allocated by the other retailer

are arbitrarily given. Using two retailers’optimal space-dependent prices, we next analyze in

Section 4 a non-cooperative game where each retailer maximizes his total profit in two stores to

determine optimal space allocation decision for his own store and find the corresponding optimal

prices for his product in two stores. We perform our best-response analysis for two retailers,

and find that Nash equilibrium for the game may or may not uniquely exist, which depends on

consumers’consumption utilities, trip cost, and the total space in each store. We show that,

adopting the Nash equilibrium, each retailer can achieve a higher profit than before the space

exchange. In Section 5, we discuss possible changes of our major results in the presence of a
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“common”consumer who buys both products 1 and 2, or those when a retailer’s fixed cost of

opening and staffi ng a new store is considered.

2 Preliminaries

As indicated by the practice of Waitrose and Boots and also by that of Tim Hortons and

Cold Stone Creamery, the retail space-exchange strategy applies only when the cooperating

retailers’products are neither substitutable nor complementary, e.g., Waitrose’s food vs. Boots’s

healthcare products; and, Tim Hortons’s doughnuts vs. Cold Stone Creamery’s ice cream.

Thus, we can reasonably assume that the products in categories i = 1, 2 sold by retailer i = 1, 2,

are neither substitutable nor complementary.

The total shelf space that is owned by retailer i is denoted by Si > 0 for i = 1, 2. To

implement the space-exchange strategy, retailer i– who sells product i– decides to allocate the

retail space Sij ∈ [0, Si] to retailer j (j = 1, 2 and j 6= i) who can then sell product j using

the space Sij at the site of retailer i as the “guest retailer.”As a result of the space exchange,

retailer i sells product i in the remaining space Sii ≡ Si − Sij at his own store as the “host

retailer.”As discussed in Section 1, when two retailers exchange shelf space, their customers

may incur lower travel costs, and the two retailers may thus increase their retail prices without

losing customers. This may be regarded as an important reason why retailers (e.g., Waitrose

and Boots, Tim Hortons and Cold Stone Creamery) exchange shelf space. Accordingly, we

consider the Hotelling model [8] to analyze our space-exchange problem, assuming that two

retailers are located at the end points of a “linear city” of length 1, and all consumers are

uniformly distributed along the city.

Since the two retailers are willing to exchange shelf space when they can enjoy more profits

from the strategy, we need to compare the two retailers’profits before and after the exchange

of shelf space. We next begin by computing two retailers’optimal prices and corresponding

maximum profits when they do not exchange shelf space but only operate in their own stores.

2.1 Optimal Pricing Decision with No Space Exchange

When retailers 1 and 2 do not exchange shelf space, they sell products 1 and 2 at the retail

prices p1 and p2, respectively. Total number of consumers for product i is Bi, for i = 1, 2. In

4



this paper, we assume that there is no “common”consumer who intends to buy both products

1 and 2; that is, B1 and B2 are disjoint. In Section 5.1, we will discuss the impacts of relaxing

such an assumption on our major results. As in the Hotelling model [8], each consumer incurs

the transportation cost t per unit of trip length, which includes the consumer’s value of time.

Let x ∈ [0, 1] denote a point in the linear city. Assuming that the locations of retailers 1 and

2 are x = 0 and x = 1, respectively, we can calculate the trip cost of the product 1 consumer

(who is served by retailer 1) at the point x ∈ [0, 1] as tx, and also compute that of the product

2 consumer (who is served by retailer 2) at the point x ∈ [0, 1] as t(1 − x); see Figure 1. In

addition, each product i (i = 1, 2) consumer is assumed to draw a gross utility ūi from buying

a unit of product i.

Figure 1: The trip cost of product 1 consumers (who are served by retailer 1) and that of
product 2 consumers (who are served by retailer 2). Note that the solid and dashed lines
between the two retailers represent the uniform distribution of product 1 consumers and that
of product 2 consumers, respectively.

Using the above, we find that the product 1 consumer at the point x ∈ [0, 1] obtains the

utility ū1 but incurs the purchase cost p1 and the trip cost tx, and the product 2 consumer at

the point x ∈ [0, 1] gets the utility ū2 but incurs the purchase cost p2 and the trip cost t(1−x).

It thus follows that the net utility function of the consumer at location x is calculated as,

ux =

 ux1 ≡ ū1 − p1 − tx, if product 1 bought in retailer 1’s store,

ux2 ≡ ū2 − p2 − t(1− x), if product 2 bought in retailer 2’s store.
(1)

A product 1 consumer should be willing to buy from retailer 1 if ux1 ≥ 0, or, x ≤ x1 ≡ (ū1−p1)/t.

This means that only the product 1 consumers who are located between 0 (retailer 1’s location)

and x1 should decide to buy. Naturally, retailer 1 should set his retail price p1 such that

0 ≤ x1 ≤ 1, or ū1 − t ≤ p1 ≤ ū1. Similarly, retailer 2 should determine her price p2 such that

ū2 − t ≤ p2 ≤ ū2.

Then, we can calculate the demand faced by retailer i (i = 1, 2) as Di = Bi(ūi − pi)/t.

However, each retailer may or may not satisfy his demand, because he only has the space Si to
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stock product i. Assuming that each retailer can display one unit of his product on a unit of

the retail space, we find that retailer i can realize the sales min[Bi(ūi − pi)/t, Si], and achieve
the profit as,

πi = (pi − ci) min[Bi(ūi − pi)/t, Si] = Bi(pi − ci) min[(ūi − pi)/t, Si/Bi], (2)

where ci denotes retailer i’s unit acquisition cost. To determine the optimal price p∗i for retailer

i, we must solve the constrained maximization problem, maxūi−t≤pi≤ūi πi.

Lemma 1 When two retailers do not exchange shelf space, the optimal prices and maximum

profits for retailer i (i = 1, 2) can be found as follows:

Conditions Optimal Price Maximum Profit

Si ≥ Bi ci + 2t ≥ ūi (ūi + ci)/2 Bi(ūi − ci)2/(4t)

ci + 2t ≤ ūi ūi − t Bi(ūi − t− ci)

Si < Bi ci + 2tSi/Bi ≥ ūi (ūi + ci)/2 Bi(ūi − ci)2/(4t)

ci + 2tSi/Bi ≤ ūi ūi − tSi/Bi [ūi − tSi/Bi − ci]Si

Proof. For a proof of this lemma and the proofs of all subsequent lemmas, see online Appendix

A.

2.2 Optimal Retail Prices under the Space-Exchange Strategy with

Suffi ciently-Large Host and Guest Spaces

We consider the two retailers’optimal pricing decisions when they decide to exchange shelf

space. Now, we temporarily assume that each retailer’s host space and guest space are large

enough to serve all of the retailer’s consumers; and, under this assumption, we compute the

retailer’s optimal prices. After the space exchange, each consumer can buy in either retailer 1’s

store or retailer 2’s store, which depends on from which store the consumer can draw a higher

net utility. Consider the product i (i = 1, 2) consumer who resides at the point x ∈ [0, 1] and

decides to buy a unit of product i from retailer i at either his host space [in retailer i’s store] or

his guest space [in retailer j’s (j = 1, 2 and j 6= i) store]. We compute the consumer’s utilities
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drawn from purchasing from two stores as,

ûxi =

 ûxi1 ≡ ūi − pi1 − tx, if product i bought in retailer 1’s store,

ûxi2 ≡ ūi − pi2 − t(1− x), if product i bought in retailer 2’s store,
(3)

where ûxij denotes the product i consumer’s net utility drawn from buying at retailer j’s store,

and pij represents the retail price of product i in retailer j’s store.

Similar to Section 2.1, we can compute the demands faced by retailer i in two stores, as

given in the following remark. For a detailed discussion, see online Appendix C.

Remark 1 We find the demands for retailer i’s product (i = 1, 2) as follows:

1. If pi1 + pi2 ≤ 2ūi − t, then the demands faced by retailer i in retailer 1’s and retailer

2’s stores are computed as Di1 = Bi(pi2 − pi1 + t)/(2t) and Di2 = Bi(pi1 − pi2 + t)/(2t),

respectively. Note that Di1 +Di2 = Bi.

2. If pi1 + pi2 > 2ūi − t, then the demands faced by retailer i are computed as Di1 =

Bi(ūi−pi1)/t andDi2 = Bi(ūi−pi2)/t. The total demand for product i is thus Di1 +Di2 =

Bi(2ūi − pi1 − pi2)/t ≤ Bi.

From the above we find that all product i consumers will buy when pi1+pi2 ≤ 2ūi−t whereas
some consumer(s) may not buy when pi1 + pi2 ≥ 2ūi − t. Note that, if pi1 + pi2 = 2ūi − t, then
the demands for the above two cases are the same. C

The above remark indicates that retailer i can set suitable retail prices pi1 and pi2 to affect

consumers’purchasing decisions. That is, if the retailer does not have suffi cient space in two

retailers’stores, then he may determine his retail prices under the condition that pi1 + pi2 ≥
2ūi − t. Otherwise, if the retailer’s shelf space in the two stores is large enough to satisfy Bi
product i consumers, then the retailer may need to consider the condition that pi1 +pi2 ≤ 2ūi−t
to make his pricing decisions.

Lemma 2 When retailer i (i = 1, 2) has suffi ciently large host and guest shelf space, we find

his optimal prices (p′i1, p
′
i2) and resulting demands (Di1, Di2) in two stores, and compute his

maximum profit, as given in Table 1. �

As the above lemma indicates, retailer i may need to determine his prices in two stores to

serve some, rather than all, of Bi product i consumers, if the product i consumer residing at
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Condition Optimal Prices Demands Maximum Profit

ūi > ci + t p′i1 = p′i2 = ūi −
t

2
Di1 = Di2 =

Bi
2

Bi

(
ūi − ci −

t

2

)
ūi ≤ ci + t p′i1 = p′i2 =

ūi + ci
2

Di1 = Di2 = Bi
ūi − ci

2t
Bi

(ūi − ci)2

2t

Table 1: Retailer i’s optimal prices p′i1 and p′i2, and the resulting demands Di1 and Di2 in
retailer 1’s and retailer 2’s stores, respectively; and the retailer’s maximum profit generated in
the two stores.

the location of retailer j’s store (j = 1, 2, j 6= i) cannot enjoy a positive net utility from buying

product i in retailer i’s store, i.e., ūi ≤ ci + t.

3 Optimal Prices Given the Space Allocation Decisions

In this section, we consider two retailers’optimal pricing decisions given the space-allocation

decisions in two stores. (The results here differ from those in Section 2.2 where we determine

the two retailers’ optimal prices assuming that they have suffi cient host and guest space.)

Subsequently, using each retailer’s optimal space-dependent prices in two stores, we find the

optimal allocation of the total space Si (i = 1, 2) between the two retailers.

Next, we determine retailer i’s (i = 1, 2) optimal pricing decisions (pi1 and pi2) given the

host space Sii in his own store and the guest space Sji = Sj−Sjj in retailer j’s (j = 1, 2, j 6= i)

store. Since one unit of product i is carried per unit of shelf space, the total number of product

i available for sale in two stores can be calculated as Ti ≡ S1i + S2i. Note that each retailer’s

maximum available products in each store can be regarded as the “capacity” for the retailer,

who should thus make his or her optimal pricing decisions under the capacity constraint.

As Lemma 2 indicates, retailer i’s optimal pricing decisions with no capacity constraint

depend on the comparison between ūi and ci + t. Accordingly, we consider the two cases, (i)

ūi > ci + t, and (ii) ūi ≤ ci + t; and for each case, we find retailer i’s optimal prices under the

capacity constraints (i.e., at most Sii and Sji units of product i are available for sale in retailer

i’s own store and in retailer j’s store).

3.1 Optimal Prices when ūi > ci + t

If ūi > ci + t, then we learn from Lemma 2 that retailer i should make his pricing decisions

to serve all Bi product i consumers, which requires this retailer to have a suffi ciently-large
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space to stock Bi units of product i. Additionally, since retailer i’s profit is maximized when

Sii = Sji = Bi/2, his desired host space and guest space should be both equal to Bi/2. However,

the space allocated to retailer i in each store may be different from Bi/2, and the total space

for retailer i in two stores may or may not be large enough to serve all of Bi consumers. More

specifically, if the total space for retailer i is given such that Sii + Sji ≥ Bi, then the total

demand Bi can be satisfied; but, if Sii + Sji < Bi, then only a part of the demand will be

fulfilled.

Lemma 3 Suppose that retailer i’s (i = 1, 2) host space and guest space are given as Sii ∈ [0, Si]

and Sji ∈ [0, Sj], for j = 1, 2, and j 6= i. If ūi > ci + t, then retailer i’s optimal prices in two

stores are found as follows:

1. If retailer i’s total space Sii + Sji in two stores is large enough to serve all of Bi product

i consumers, i.e., Sii + Sji ≥ Bi, then the retailer’s optimal prices in his own store and

retailer j’s store– denoted by p∗ii and p
∗
ij, respectively– are determined as given in Table

2.

Conditions p∗ii p∗ij
Sii ≥ Bi/2
Sji ≥ Bi/2

ūi −
t

2
ūi −

t

2
Sii < Bi/2
Sji > Bi/2

ūi − t
Sii
Bi

max

[
ūi + ci

2
, ūi − t

(
1− Sii

Bi

)]
Sii > Bi/2
Sji < Bi/2

max

[
ūi + ci

2
, ūi − t

(
1− Sji

Bi

)]
ūi − t

Sji
Bi

Table 2: Retailer i’s optimal price p∗ii and p
∗
ij for product i in his host space Sii ∈ [0, Si] and

his guest space Sji ∈ [0, Sj], respectively, when ūi > ci + t and Sii + Sji ≥ Bi.

2. If Sii + Sji < Bi, then the retailer’s optimal pricing decisions are obtained as, p∗ii =

max[(ūi + ci)/2, ūi − tSii/Bi] and p∗ij = max[(ūi + ci)/2, ūi − tSji/Bi]. �

Next, we compare retailer i’s optimal price with no space exchange– as given in Lemma

1– and the optimal price under the space-exchange strategy– as given in Lemma 3, in order to

examine the impact of the strategy on the retailer’s pricing decision.

Lemma 4 When ūi > ci + t (i = 1, 2) and retailer i’s host space and guest space are given as

Sii ∈ [0, Si] and Sji ∈ [0, Sj] (j = 1, 2, j 6= i), respectively, the retailer’s optimal price p∗ii in his

own store is greater than his optimal price p∗i that is obtained when there is no space exchange,
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i.e., p∗ii > p∗i . However, retailer i’s optimal price p
∗
ij in retailer j’s store may or may not be

greater than p∗i . Specifically, if the total space Si in retailer i’s own store is larger than or equal

to Bi(ūi − ci)/(2t), i.e., Si ≥ Bi(ūi − ci)/(2t), then p∗ij is always greater than p∗i . Otherwise,
then p∗ij may not be greater than p

∗
i . �

This lemma says that, if retailer i has a suffi ciently large space in his own store, i.e., Si ≥
Bi(ūi − ci)/(2t), then his prices in two stores under the space-exchange strategy should be

higher than the price when two retailers do not exchange shelf space. Moreover, we note that

Bi(ūi − ci)/(2t) > Bi/2 because ūi > ci + t. This means that the prices should rise as a result

of the space-exchange strategy, if the total available space Si in retailer i’s store is large enough

to satisfy more than a half of product i consumers (including some consumers who are closer to

retailer j’s store). This interesting result may be justified as follows: After the space exchange,

those consumers closer to retailer j’s store could visit retailer j’s store to buy product i. That

is, retailer i may serve fewer consumers in his own store, and may thus raise his retail price to

increase his profit.

Remark 2 Lemma 3 was used for comparing retailer i’s (i = 1, 2) prices under different condi-

tions. We can use the same lemma to calculate the retailer’s maximum profit as given in Table

3. C

Conditions Retailer i’s Maximum Profit
Sii ≥ Bi/2, Sji ≥ Bi/2 π1

i ≡ Bi (ūi − ci − t/2)

Sii <
Bi
2

Sii ≥ Bi

(
1− ūi − ci

2t

)
π2
i ≡ Bi(ūi − ci − t)

+2tSii(1− Sii/Bi)
Sii + Sji
≥ Bi

Sji >
Bi
2

Sii ≤ Bi

(
1− ūi − ci

2t

)
π3
i ≡ Bi(ūi − ci)2/(4t)

+(ūi − tSii/Bi − ci)Sii
Sii >

Bi
2

Sji ≥ Bi

(
1− ūi − ci

2t

)
π4
i ≡ Bi(ūi − ci − t)

+2tSji(1− Sji/Bi)

Sji <
Bi
2

Sji ≤ Bi

(
1− ūi − ci

2t

)
π5
i ≡ Bi(ūi − ci)2/(4t)

+(ūi − tSji/Bi − ci)Sji
Sii ≤ Bi

ūi − ci
2t

Sji ≤ Bi
ūi − ci

2t

π6
i ≡ (ūi − tSii/Bi − ci)Sii

+(ūi − tSji/Bi − ci)Sji
Sii + Sji
< Bi

Sii ≥ Bi
ūi − ci

2t
Sji ≤ Bi

ūi − ci
2t

π7
i ≡ Bi(ūi − ci)2/(4t)

+(ūi − tSji/Bi − ci)Sji
Sii ≤ Bi

ūi − ci
2t

Sji ≥ Bi
ūi − ci

2t

π8
i ≡ Bi(ūi − ci)2/(4t)

+(ūi − tSii/Bi − ci)Sii

Table 3: Retailer i’s maximum profit when ūi > ci + t.
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In Section 2.1 we found retailer i’s optimal pricing decision and computed the corresponding

maximum profit when the two retailers do not exchange shelf space. We now compare retailer

i’s maximum profit (i) with no space exchange and (ii) with space exchange strategy, in order

to examine whether or not two retailers can benefit from the strategy.

Corollary 1 If the two retailers implement the space-exchange strategy when ūi > ci+ t, then

we find that πii (i = 1, . . . , 8, i 6= 6) in Table 3 is greater than retailer i’s profit when two

retailers do not exchange shelf space. However, π6
i in Table 3 may be smaller than the retailer’s

profit with no space exchange. J

As the above corollary indicates, retailer i (i = 1, 2) may be worse off under the space-

exchange strategy, if he cannot use his host space and guest space to serve all of Bi product i

consumers (i.e., Sii + Sji < Bi), and both the host space and the guest space are smaller than

a threshold value [i.e., Sii, Sji ≤ Bi(ūi − ci)/(2t)]. This means that, in order to cooperate for
such a strategy, retailer i should retain a suffi ciently large host space and retailer j (j = 1, 2,

j 6= i) must also allocate a suffi ciently large guest space to retailer i. However, even though

π6
i in Table 3 may be smaller than the profit with no space exchange, retailer i should still be

better off from implementing the space-exchange strategy because he can choose to allocate Sii

units to himself. For example, the retailer can increase S11 to a level such that his profit is π7
i ,

which is higher than the retailer’s profit when there is no space exchange.

3.2 Optimal Prices when ūi ≤ ci + t

When ūi ≤ ci+t (i = 1, 2), we found in Lemma 2 that, if there is no capacity constraint, retailer

i’s profit is maximized when pii = pij = (ūi + ci)/2 (j = 1, 2, j 6= i) and the corresponding

demands in two stores are Dii = Dij = Bi(ūi − ci)/(2t). We now investigate the retailer’s

optimal pricing decisions given his host space and guest space.

Lemma 5 Suppose that retailer i’s (i = 1, 2) host space and guest space are given as Sii ∈ [0, Si]

and Sji ∈ [0, Sj], for j = 1, 2, j 6= i. If ūi ≤ ci + t, retailer i’s optimal prices in two stores

are found as p∗ii = max[(ūi + ci)/2, ūi − tSii/Bi] and p∗ij = max[(ūi + ci)/2, ūi − tSji/Bi]. If

Si ≥ Bi(ūi − t)/(2t), then retailer i’s optimal prices p∗ii and p∗ij under the space-exchange

strategy are both higher than his optimal price p∗i when two retailers do not exchange shelf
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space. However, if Si < Bi(ūi− ci)/(2t), then p∗ii is always greater than p∗i ; but, p∗ij may or may
not be greater than p∗i . We find that p

∗
ij > p∗i when Sji ≤ Si. �

Lemma 5 gives us retailer i’s pricing decisions in two stores, when the product i consumer

residing at the location of a retailer’s store cannot enjoy a positive net utility if he or she

decides to buy in the other retailer’s store (i.e., ūi ≤ ci + t). As Lemma 5 implies, the retailer

should increase his price in his own store, when he cooperates with the other retailer for the

space-exchange strategy. However, after retailer i also operates in retailer j’s store using the

guest space Sji, his price for product i in retailer j’s store may be lower than that in retailer i’s

own store before the space exchange. More specifically, if the total space Si in retailer i’s store

is suffi ciently large [i.e., Si ≥ Bi(ūi − t)/(2t)], then, no matter what the guest space Sji– that
is allocated by retailer j to retailer i– is, retailer i should always set the price pij higher than

p∗i . Otherwise, if retailer i cannot use the total space Si in his own store to serve a half of Bi

product i consumers, i.e., Si < Bi(ūi − ci)/(2t), then the retailer may or may not set a price
higher than p∗i , which depends on the value of the guest space Sji. If the guest space is larger

than the total space Si in retailer i’s own store, then retailer i may choose a price lower than

p∗i in order to entice more consumers to buy product i in retailer j’s store, because the space in

the retailer’s own store is very small. Otherwise, if the guest space Sji is also very small (i.e.,

Sji < S1), then retailer i is unable to serve all (or even, most of) product i consumers, and

should thus increase the prices in two stores to improve his profit.

Lemmas 4 and 5 indicates the comparison between retailer i’s optimal prices with and

without the space exchange, for the case that ūi > ci + t and the case that ūi ≤ ci + t,

respectively. Using these results, we reach a conclusion regarding the impacts of the space-

exchange strategy on the retail prices, as given in the following proposition.

Proposition 1 When retailers 1 and 2 implement the space-exchange strategy, each retailer’s

prices for his products in two stores are higher than the retailer’s price in his own store when

two retailers do not exchange shelf space.

Proof. A proof for this proposition and our proofs for all subsequent propositions are provided

in online Appendix B.

The above proposition indicates that, if two retailers decide to exchange shelf space, then

they should raise their retail prices. Using Lemmas 3 and 5, we can also find the following

result regarding each retailer’s two prices in two stores.
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Proposition 2 Retailer i (i = 1, 2) may determine different prices for product i in two stores.

That is, after two retailers exchange shelf space, the retail prices of the same products at two

stores may not be identical. �

We also note from Lemmas 3 and 5 that retailer i’s optimal pricing decisions when ūi ≤ ci+t

are the same as those when ūi > ci+t and Sii+Sji < Bi. Thus, the retailer’s possible maximum

profits when ūi ≤ ci+t should include those when Sii+Sji < Bi in Table 3. Similar to Corollary

1, we find that, when ūi ≤ ci + t, πki (k = 7, 8)– as given in Table 3– is greater than retailer i’s

profit when two retailers do not exchange shelf space; but, π6
i in Table 3 may be smaller than

the retailer’s profit with no space exchange, which depends on the values of Sii and Sji.

In addition to πki (k = 6, 7, 8) in Table 3, retailer i may achieve the maximum profit π9
i ≡

Bi(ūi − ci)
2/(2t), which occurs when ūi ≤ ci + 2tSii/Bi and ū1 ≤ c1 + 2tS21/B1. Note that

π9
i is not considered for the case that Sii + Sji < Bi in Table 3, because the conditions that

ūi ≤ ci + 2tSii/Bi and ūi ≤ ci + 2tSji/Bi imply that Sii + Sji ≥ Bi, which is contrary to the

case that Sii + Sji < Bi.

Similar to our previous discussion for the case that ūi > ci + t, we find that, if retailer i’s

host space and guest space are both small, then the retailer may not achieve a higher profit

from implementing the space-exchange strategy and may thus lose the incentive to cooperate

with retailer j. On the other hand, if the retailer has a suffi ciently large space in his own store

and/or retailer j’s store, then he should obtain a profit that is higher than the profit with no

space exchange. That is, in order to entice retailer i to exchange his space with retailer j,

retailer j may need to allocate a suffi ciently large space to retailer i.

4 Nash Equilibrium Space-Allocation Decisions

We now investigate the optimal allocation of each store’s shelf space between two retailers in

the equilibrium. That is, we determine the optimal values of Sii and Sij in retailer i’s store

where Sii + Sij = Si, for i, j = 1, 2 and i 6= j. Since the total space in each store (i.e., Si)

is given, retailer i only needs to determine the value of Sii and allocates the remaining space

Sij = Si−Sii to retailer j. To find the optimal space decision, each retailer should maximize the
sum of his profits generated in two stores. Thus, the space allocation problem can be naturally

regarded as a “simultaneous-move”non-cooperative game, and the two retailers’optimal space
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allocation decisions should be characterized by Nash equilibrium.

To solve the non-cooperative game and find the Nash equilibrium, we need to first analyze

each retailer’s best response– i.e., the optimal space decision for a given space allocation decision

of the other retailer. Next, we begin by finding retailer i’s best space allocation decision for his

own store, assuming that retailer j decides to retain the space Sjj and allocate the space Sji to

retailer i.

4.1 The Best-Response Analysis

To implement the space-exchange strategy, retailer i (i = 1, 2) uses the guest space Sji– given

by retailer j (j = 1, 2, j 6= i)– to serve some or all product i consumers, and determines his

host space Sii ∈ [0, Si] and allocate the space Sij = Si−Sii to retailer j. Thus, to find the best
response to retailer j’s space allocation decision, retailer i should find the optimal host space

that maximizes his own profit. As discussed in Section 3, we calculate retailer i’s maximum

profit given the retailer’s host space and guest space, as shown in Table 3.

Next, we assume that the guest space Sji ∈ [0, Sj] is given, and use our results in Table 3 to

find the optimal host space Sii (best response) for retailer i. Because our analysis in Section 3

indicates that retailer i’s optimal pricing decisions depends on the comparison between ūi and

ci + t, we consider the retailer’s optimal space allocation decision for the two cases: ūi > ci + t

and ūi ≤ ci + t.

4.1.1 The Best Response when ūi > ci + t

We now determine retailer i’s best space allocation decision, when the product i consumer

residing at the site of retailer j’s store can gain a positive net utility if he or she visits retailer

i’s store to buy product i (i.e., ūi > ci + t).

Lemma 6 When ūi > ci+t, retailer i’s optimal space allocation decision depends on the values

of Sji and the total space Si in his own store, as shown in Table 4. �

From the above lemma, we learn that, if either the total space Si in retailer i’s own store

or the retailer’s guest space Sji (allocated by retailer j) cannot be used to serve a half of B1

product 1 consumers, then retailer i should make his space allocation decision to serve a part

(rather than all) of Bi consumers. Otherwise, if both Si and Sji are large enough to serve a
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Conditions Optimal Space Decision

Sji
≥ Bi/2

Si ≥ Bi[1−
(ūi − ci)/(2t)]

S∗ii = min[Si, Bi/2],
S∗ij = [0, Si −Bi/2]+.
(All consumers buy.)

Si + Sji
≥ Bi

Si < Bi[1−
(ūi − ci)/(2t)]

S∗ii = Si and S∗ij = 0.
(Some consumers may not buy.)

Bi[1− (ūi − ci)/(2t)]
≤ Sji < Bi/2

S∗ii = Bi − Sji,
S∗ij = Si −Bi + Sji.
(All consumers buy.)

Sji < Bi[1− (ūi − ci)/(2t)]
S∗ii = Bi(ūi − ci)/(2t),
S∗ij = Si −Bi(ūi − ci)/(2t).
(Some consumers may not buy.)

Si + Sji < Bi

S∗ii = min[Bi(ūi − ci)/(2t), Si],
S∗ij = [0, Si −Bi(ūi − ci)/(2t)]+.
(Some consumers may not buy.)

Table 4: Retailer i’s best-response space decision when ūi > ci + t.

half of product i consumers, then the retailer should determine his host space such that all

consumers will buy in two stores. This may reflect the fact that retailer i intends to serve all

product i consumers using his space in two stores. Thus, if retailer j allocates a suffi ciently

large space to retailer i and the total space Si in retailer i’s store is also suffi ciently large, then

retailer i should decide to retain a host space that is large enough to assure that he can serve

all consumers in two stores.

However, if retailer i cannot serve Bi/2 consumers in his guest space Sji, then he should not

retain a large host space to serve all consumers, which may be justified as follows: When the

guest space is so small that less than a half of consumers are willing to buy, retailer i should

have to use his host space to serve more than a half of Bi consumers if he intends to serve all

consumers in two stores. But, in order to sell more than Bi/2 units of product i in retailer

i’s own store, the retailer has to reduce his retail price to a low level, which may thus reduce

his total profit. Similarly, if Si is small, then retailer i should accept a small guest space from

retailer j and should not serve all consumers.

4.1.2 The Best Response when ūi ≤ ci + t

From Lemmas 3 and 5 we find that, if ūi ≤ ci + t, then retailer i’s optimal prices in two stores

are the same as those when ūi > ci + t and Sii + Sji < Bi. Thus, the retailer’s maximum profit

when ūi ≤ ci + t is the same as that when Sii + Sji < Bi in Table 3.
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Lemma 7 If ūi ≤ ci + t (i = 1, 2), then retailer i’s best-response space allocation decision is

the same as that when Si + Sji < Bi in last row of Table 4. �

As the above lemma indicates, retailer i (i = 1, 2) should make his space allocation decision

to serve a part of Bi product i consumers if the product i consumer at the site of retailer j’s

(j = 1, 2, j 6= i) store cannot enjoy a positive net utility when he or she buys in retailer i’s store,

i.e., ūi ≤ ci + t. For this case, if two retailers do not implement the space-exchange strategy,

then some consumers who are closer to the site of retailer j do not buy product i. After the

space exchange, retailer i may need to utilize his guest space to serve those consumers (who

do not buy before the space exchange). Note that, in the linear city, a half of total product

i consumers (i.e., Bi consumers) are closer to retailer j’s store, and they could prefer to buy

in retailer j’s rather than retailer i’s store. This means that, as a consequence of the space

exchange, retailer i may serve less consumers in his store and may thus raise the retail price in

his own store to increase his profit margin. In addition, to assure the retailer’s profit in retailer

j’s store, the retailer should not reduce his price for product i in retailer j’s store to a low level,

which may discourage some consumers from buying product i. Therefore, to maximize retailer

i’s total profit in two stores, the retailer may make his pricing and space allocation decisions

to only serve a part of Bi consumers.

4.2 Nash Equilibrium

We use our above best-response analysis for two retailers to find the Nash equilibrium (SNii , S
N
jj )

(i, j = 1, 2, i 6= j) for the non-cooperative game. Note that the guest space SNij and S
N
ji in two

stores are computed as SNij = Si − SNii and SNji = Sj − SNjj ; and, after each retailer makes his or
her optimal space decision, the retailer’s optimal price is correspondingly determined using our

results in Section 3.

We find from our best-response analysis that in some cases, a retailer may allocate zero

space to the other retailer. For example, if ūi − ci > t, Si + Sji ≥ Bi, Sji ≥ Bi/2, and

Bi[1− (ūi− ci)/(2t)] ≤ Si ≤ Bi/2, then retailer i should not allocate any space to retailer j, as

indicated by Lemma 6. Naturally, to implement the space-exchange strategy, each retailer must

allocate some nonzero space to the other retailer. Therefore, if a retailer does not allocate any

space to the other retailer, then two retailers should not consider the space-exchange strategy

but instead operate with no space exchange.
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Proposition 3 In the Nash equilibrium, retailers 1 and 2 should decide to implement the

space-exchange strategy if and only if Si > max[Bi[1 − (ūi − ci)/(2t)], Bi(ūi − ci)/(2t)], for

i = 1, 2. �

In the above proposition, we note that, for retailer i (i = 1, 2), either [1 − (ūi − ci)/(2t)]
or (ūi − ci)/(2t) must be greater than or equal to 1/2. That is, for the “simultaneous-mover”
game, the total shelf space Si in retailer i’s own store must be large enough to serve more

than a half of Bi product i consumers, in order to let retailer i have an incentive for the space

exchange with retailer j (j = 1, 2, j 6= i). Thus, two retailers should have suffi cient shelf space

in their own stores in order to implement the space-exchange strategy. Otherwise, they may

have no incentive for the space exchange in the game.

One may note that two retailers with small shelf space could also consider the space-exchange

strategy. For example, suppose that retailer i (i = 1, 2) can stock only two units of product

i in his store before the space exchange, i.e., Si = 2, for i = 1, 2. When two retailers do

not exchange shelf space, retailer i would set his price such that the two consumers who are

the closest to the retailer along the Hotelling line would find it worthwhile to buy product

i. If two retailers exchange shelf space, then they may raise their prices without losing any

consumers, and their profits could thus be higher than those in the “no space exchange”case.

This differs from Proposition 3, which is justified as follows: Proposition 3 holds when two

retailers make their decisions in the non-cooperative game whereas the above discussion is based

on the assumption that two retailers jointly make their decisions in the cooperative setting. For

a detailed discussion, see online Appendix E. Note that we use the Hotelling model to analyze

the space-exchange problem; thus, Proposition 3 applies to the non-cooperative setting.

Since two retailers decide to exchange shelf space in the “simultaneous-move”game if and

only if the non-zero space allocation decisions exist in Nash equilibrium, we next analyze our

non-cooperative space-exchange game to find Nash equilibrium under the condition in Propo-

sition 3. We learn from our previous analysis that two retailers make their pricing and space

decisions according to whether or not all consumers for each product can enjoy a positive net

utility from buying at each end point (i.e., the site of each retailer’s store) of the linear city.

Accordingly, we should compare ūi and ci + t for retailer i, in order to compute the Nash equi-

librium for the space-exchange problem. Hence, for our game analysis, we need to consider the

following three cases: (i) ūi ≤ ci + t, for i = 1, 2; (ii) ūi > ci + t and ūj ≤ cj + t, for i, j = 1, 2,
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i 6= j; and (iii) ūi > ci + t, for i = 1, 2.

Our best-response analysis indicates that, when ūi > ci + t, retailer i has a number of

different optimal space decisions dependent on the space in his own store and his guest space.

Therefore, for Case (iii), there should be a number of possible Nash equilibria, which depend

on the total space in each retailer’s store. In order to facilitate our discussion, we first consider

Case (i), and find the corresponding Nash equilibrium. This is then followed by our discussion

by the remaining two cases.

4.2.1 Nash Equilibrium when ūi ≤ ci + t (i = 1, 2)

Using our best-response analysis in Section 4.1, we now solve the two-person non-cooperative

game to find the Nash equilibrium for retailers 1 and 2.

Lemma 8 If ūi ≤ ci + t (i = 1, 2), then Nash equilibrium uniquely exists as SNii = Bi(ūi −
ci)/(2t) and SNjj = Bj(ūj − cj)/(2t), for j = 1, 2 and j 6= i. Retailer i should allocate the space

SNij = Si−Bi(ūi−ci)/(2t) > 0 to retailer j, who allocates the space SNji = Sj−Bj(ūj−cj)/(2t) >
0 to retailer i.

To implement the equilibrium space decision, retailer i should determine the corresponding

prices for product i in his own store and retailer j’s store as pNii = (ūi + ci)/2 and pNij =

ūi − tSNji /Bi, respectively. �

From the above lemma, we find that, to implement the space-exchange strategy, each retailer

allocates a nonzero space to the other retailer. As indicated by Lemma 7, retailer i (i = 1, 2)

should fully use his guest space SNji (j = 1, 2 and j 6= i) to serve some product i consumers who

are closer to retailer j’s store, respectively. However, according to our best-response analysis,

we note that two retailers do not serve all of their consumers, when they choose the Nash

equilibrium. Nevertheless, the two retailers’ prices in both host space and guest space are

higher than their prices determined when there is no space exchange, as shown in Lemma 5.

We also learn from Lemma 8 that each retailer may or may not set an identical price in

two stores. If the space allocated by retailer j to retailer i is SNji = Bi(ūi − ci)/(2t), then

retailer i’s Nash equilibrium prices in two stores (i.e., pNii and p
N
ij ) will be identical. Because

SNji = Sj − Bj(ūi − ci)/(2t), we find that pNii = pNij if Sj = Bi(ūi − ci)/(2t) + Bj(ūj − cj)/(2t).
That is, if Sj equals the space that is needed to stock Bi(ūi − ci)/(2t) units of product i and
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Bj(ūj − cj)/(2t) units of product j, then retailer i should set an identical price (ūi + ci)/2 for

product i in two stores. Otherwise, retailer i should determine different prices.

Moreover, two retailers can achieve higher profits compared with those before they exchange

shelf space, which means that they should have incentives to cooperate with the space-exchange

strategy.

4.2.2 Nash Equilibrium when ūi > ci + t and ūj ≤ cj + t (i, j = 1, 2 and i 6= j)

We now consider the case where all product i (i = 1, 2) consumers can achieve a positive net

utility from buying in two stores (i.e., ūi > ci + t) but some product j (j = 1, 2 and j 6= i)

consumers (e.g., the consumer residing at the site of a retailer’s store) cannot draw a positive

net utility from their purchases in a store (i.e., ūj ≤ cj + t).

Lemma 9 When ūi > ci + t and ūj ≤ cj + t, for i, j = 1, 2 and i 6= j, there exists a unique

Nash equilibrium, which depends on the value of Sj, as given in Table 5. �

Conditions Nash Equilibrium
Sj ≥ Bi/2 +Bj(ūj − cj)/(2t) SNii = Bi/2, SNjj = Bj(ūj − cj)/(2t)
Bi[1− (ūi − ci)/(2t)] +Bj(ūj − cj)/(2t)
≤ Sj ≤ Bi/2 +Bj(ūj − cj)/(2t)

SNii = Bi − Sj +Bj(ūj − cj)/(2t),
SNjj = Bj(ūj − cj)/(2t)

Sj ≤ Bi[1− (ūi − ci)/(2t)]
+Bj(ūj − cj)/(2t)

SNii = Bi(ūi − ci)/(2t),
SNjj = Bj(ūj − cj)/(2t)

Table 5: Nash equilibrium when ūi > ci + t and ūj ≤ cj + t, for i, j = 1, 2 and i 6= j.

Similar to our analysis for Case (i) ūi ≤ ci + t (i = 1, 2), we can use Lemma 3 and 5 to

compute two retailers’corresponding optimal prices for each of three possible Nash equilibria

in Table 5. We find that each retailer’s prices in two stores are both higher than the retailer’s

price before the space exchange. This means that implementing the space-exchange strategy

raises the retail prices. From Lemma 9 we find that, if not all product j (j = 1, 2 and j 6= i)

consumers can enjoy a positive net utility, then the total space Sj in retailer j’s store impacts

two retailers’Nash equilibrium decisions. Moreover, whatever the value of Sj is, retailer j’s

Nash equilibrium space is always determined as Bj(ūj − cj)/(2t). Using Table 5, we obtain

Figure 2 to show retailer i’s Nash equilibrium space decision SNii as a function of Sj.

If Sj is larger than or equal to Bi/2 +Bj(ūj− cj)/(2t), then retailer j allocates a suffi ciently
large guest space to retailer i who can then serve a half of product i consumers in retailer j’s
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Figure 2: The impact of the space Sj (j = 1, 2) on retailer i’s (i = 1, 2, i 6= j) Nash equilibrium
SNii when ūi > ci + t and ūj ≤ cj + t.

store. According to Figure 2, we find that retailer i should retain his host space SNii to serve the

other half of his consumers, in order to serve all Bi consumers. However, when Sj is reduced to

a value between Bi[1− (ūi − ci)/(2t)] +Bj(ūj − cj)/(2t) and Bi/2 +Bj(ūj − cj)/(2t), we learn
from Figure 2 that retailer i should increase his host space mainly because of the following fact:

When Sj decreases, retailer j allocates to retailer i a smaller guest space where retailer i cannot

serve a half of product i consumers. In order to fulfill the demands of all Bi consumers in the

linear city, retailer i should keep a suffi ciently large host space such that all of the consumers

who do not decide to buy in retailer j’s store are willing to shop in retailer i’s store.

When Sj is smaller than Bi[1− (ūi− ci)/(2t)] +Bj(ūj− cj)/(2t), retailer i will obtain a very
small guest space and have to serve a small number of product i consumers in retailer j’s store.

If retailer i still hopes to fulfill all consumers’demands, then the retailer should keep a large host

space to serve most of his consumers. To assure that most consumers (especially those closer

to retailer j’s store) are willing to buy in retailer i’s store, retailer i should set a suffi ciently low

retail price for product i in his host space, which, but, results in a low profit. Therefore, if Sj

is significantly small, then retailer i should determine his host space as SNii = Bi(ūi − ci)/(2t)
in order to guarantee his profit; and as a result, some product i consumers will not decide to

buy.
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4.2.3 Nash Equilibrium when ūi > ci + t (i = 1, 2)

We now solve our non-cooperative game for Case (iii) where both product 1 consumers and

product 2 consumers can gain a positive net utility from buying in any store, i.e., ūi > ci + t,

for i = 1, 2. The analysis for this case is much more complicated than the above two cases, and

there are many possible Nash equilibria. Thus, we only show the existence of Nash equilibrium

in the following theorem but the specific Nash equilibria are provided in online Appendix F.

Lemma 10 When ūi > ci + t (i = 1, 2), then the corresponding Nash equilibrium (SNii , S
N
jj )

(j = 1, 2 and j 6= i) must exist but it may or may not be unique. More specifically, if the total

shelf space of two stores is not the same as that needed to exactly serve two retailers’consumers,

then Nash equilibrium for the game uniquely exists. Otherwise, the Nash equilibrium may not

be unique, which depends on consumers’utilities and trip costs as well as the total available

shelf space in each retailer’s store. All possible Nash equilibria are given in Table 7 (see online

Appendix F). �

Similar to our analysis for the above cases, we can use Lemma 3 to compute two retailers’

corresponding optimal prices for each possible Nash equilibrium given in Table 7. Moreover, we

find from Lemma 3 that each retailer’s optimal prices in both the host space and the guest space

are higher than the retailer’s price when two retailers do not implement the space-exchange

strategy. That is, such a strategy induces two retailers to increase their prices.

5 Further Discussions

In the preceding sections, we analyzed the space-exchange problem and found the Nash equi-

librium pricing and space-allocation decisions. We now provide a further discussion on possible

changes of our major results in the following two settings: We first consider a more realistic

case where there exists at least one “common”consumer who buys both products 1 and 2, and

then investigate whether or not our results will change in the setting where a retailer’s fixed

cost of opening and staffi ng a new store is considered.
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5.1 Presence of Common Consumers

In our model, the set of product 1 consumers and the set of product 2 consumers are as-

sumed to be disjoint. This means that, at any point along the Hotelling line, the product 1

consumer is different from the product 2 consumer. Such an assumption may be applicable

to the space-exchange problem to some extent for the following reason: As indicated by the

practice of Waitrose and Boots and also by that of Tim Hortons and Cold Stone Creamery,

the space-exchange strategy applies only when the cooperating retailers’products are neither

substitutable nor complementary, e.g., Waitrose’s food vs. Boots’s healthcare products; and,

Tim Hortons’s doughnuts vs. Cold Stone Creamery’s ice cream. Hence, it should be unusual

for any common consumer along the line to intentionally buy both products at the same time.

For this case, we could regard the common consumer as a “product 1 consumer”and also a

“product 2 consumer,”who are independent of each other; and then, our existing model could

be still used to analyze the space-exchange problem.

Despite the above argument, in reality, there may still exist some common consumer(s)

who intend to buy both products concurrently. However, if we relax our assumption on the

dependence of the product 1 consumers and the product 2 consumers, then our model may

become intractably complicated and we could not draw any meaningful analytical insights.

Therefore, we do not incorporate such common consumers into our model but subsequently

discuss how our major results would possibly change when a common consumer (who intends

to buy both products concurrently) exists.

We learn from our analysis in Sections 3 and 4 that, in the Nash equilibrium, retailer i

(i = 1, 2) may serve all of Bi consumers or may serve only a part of those consumers. Next, we

provide our discussion for three cases: (a) both retailers i and j (j = 1, 2 and j 6= i) serve all of

their consumers; (b) both retailers i and j do not serve all of their consumers; and (c) retailer

i serves all of Bi consumers but retailer j does not serve all of Bj consumers. For each case, we

discuss a representative situation, as shown in Figure 3, where (a), (b), and (c) represent Cases

(a), (b), and (c), respectively. [Our discussions on other situations in each case are similar to

our discussion for the representative situation.]

We begin by discussing the impacts of the presence of a common consumer in Case (a),

which corresponds to Figure 3(a) where the product i (i = 1, 2) consumers locating at the left

of x̃i buy in retailer 1’s store and those consumers at the right of x̃i buy in retailer 2’s store.
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Figure 3: The impacts of the presence of a common consumer on major results for three
representative situations.

As Figure 3(a) indicates, the product 1 and the product 2 consumers in zone 1 visit retailer 1’s

store to buy products 1 and 2, respectively, when there is no common consumer. If we assume

that there is a common consumer at a point in zone 1, then the consumer will still buy both

products in retailer 1’s store. That is, for Case (a), the presence of common consumers in zone

1 would not increase the demands for two products in each store; thus, it may not result in any

change in two retailers’pricing and space-allocation decisions. Similarly, any common consumer

in zone 3 will decide to buy two products in retailer 2’s store. This does not increase or decrease

the demands faced by two retailers in each store, and would not change two retailers’decisions.

If a common consumer is located in zone 2, then the total demand for each product in two

stores should be unchanged but the demands faced by two retailers in each store may differ

from those with no common consumer. Specifically, if there is no common consumer in zone 2,

then the product 1 and the product 2 consumers will buy in different stores. But, if a common

consumer in zone 2 is closer to x̃2, then he or she may be likely to buy both products in retailer

1’s store. As a result, compared with the “no common consumer”case, the demand for product

2 in retailer 1’s store is increased by 1 unit and that in retailer 2’s store is decreased by 1

unit, whereas the demand for product 1 in each store is not changed. Even though retailer 2

needs to sells one more unit in retailer 1’s store, retailer 1 is unlikely to allocate one more space

to retailer 2 because retailer 1 should keep his host space to serve existing customers. If two

retailers have already used the total space S1, then retailer 2 may respond by increasing his

price p21 for product 2 in retailer 1’s store but decreasing his price p22 for product 2 in his own

store, in order to “move”a consumer from retailer 1’s store to retailer 2’s store. On the other
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hand, if there is an excess space in retailer 1’s store, then retailer 2 should take over one more

unit of the space to satisfy the demand by the common consumer; as a result, two retailers do

not change their pricing decisions.

Next, we discuss the impacts of the presence of a common consumer in Case (b), which

corresponds to Figure 3(b) where the product i (i = 1, 2) consumers residing at the left of

x̃i1 and those at the right of x̃i2 buy in retailer 1’s and retailer 2’s stores, respectively. Using

our arguments for Case (a), a common consumer in zones 1 and 3 would have no impact on

two retailers’decisions; and, the presence of a common consumer in zone 2 would lead to an

increase in the demand faced by one or two retailers at a store. The retailers may change their

prices at two stores if there is no excess space at the store where the demand rises, or may

keep the prices unchanged and use the excess space otherwise. Similarly, we find that, for Case

(c), there would be no change if a common consumer is in zones 1 and 3, but the existence of

a common consumer in zone 2 would result in the price changes at two stores when there is

no excess space. Summarizing our above discussion, we draw the implications as given in the

following remark.

Remark 3 If a consumer intends to buy both products 1 and 2, then the demand faced by one

or two retailers at a store may be increased and two retailers may respond by changing their

pricing and space-allocation decisions. Specifically, the presence of a common consumer close

to a store is unlikely to change two retailers’decisions. However, if a common consumer resides

in a middle point between two stores, then one or two retailers may face an increasing demand

at a store, thereby increasing their prices if there is no excess space at the store or keeping

the prices unchanged but using the excess space. As a result, if a common consumer exists,

then two retailers’profits could be increased. Moreover, our above discussion also implies that

Propositions 1, 2, and 3 should hold in the presence of common consumers. C

5.2 Presence of Fixed Costs

In actual practice, two retailers (e.g., Waitrose and Boots, Tim Hortons and Cold Stone Cream-

ery) may be willing to exchange shelf space instead of opening their own new stores. A mo-

tivation for two retailers to exchange shelf space would be mainly attributed to the fact that

each retailer incurs a fixed cost in opening and staffi ng a new store, but does not pay for such

a cost in exchanging his shelf space with the other retailer. We now examine whether or not
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our major results would change if we consider fixed costs in our Hotelling model. Suppose that

retailer i (i = 1, 2) will decide to (i) open a new store at retailer j’s site (j = 1, 2 and j 6= i), or

(ii) exchange shelf space with retailer j. Each retailer should choose one from the two options

(i) and (ii).

Noting that two retailers’fixed costs are independent of their pricing and space-allocation

decisions, we find that, if each retailer’s store is suffi ciently large, then incorporating such costs

into our model should not change two retailers’decisions, and exchanging shelf space should

result in a higher profit for each retailer compared with opening a new store. Otherwise, if

a retailer’s store is small, then the retailer cannot allot a suffi ciently large space to the other

retailer, who may then respond by opening a new store instead of exchanging shelf space. Such

a result is in agreement with Proposition 3, which indicates that two retailers should decide

to implement the space-exchange strategy in Nash equilibrium, if and only if each retailer’s

total shelf space is large enough to serve more than a half of his consumers. In Section 4 we

perform our game analysis, assuming that each retailer has a suffi ciently large store. Such an

assumption is compatible with the practice that the retailers exchanging shelf space include,

e.g., Waitrose, Boots, Tim Hortons, and Cold Stone Creamery. It thus follows that our results

in this paper do not change if we consider each retailer’s fixed cost of opening and staffi ng a

new store.

6 Summary and Concluding Remarks

This paper is motivated by the practice of Waitrose and Boots (and also, Tim Hortons and Cold

Stone Creamery) where these retailers exchange shelf space to increase their profits. We use the

Hotelling model to analyze a two-retailer problem. Before the space exchange, each consumer

can buy only in one store; but, after two retailers implement the space-exchange strategy, the

consumer can access each retailer’s product in two stores and thus visit a store closer to the

consumer’s location to buy.

We first assume that two retailers do not exchange shelf space, and maximize each retailer’s

profit to find the optimal price for the retailer’s product in his own store. Then, we determine

each retailer’s optimal prices in two stores given his host space and guest space under the space-

exchange strategy, and find that the space-dependent prices are impacted by whether or not all

of the retailer’s consumers can enjoy a positive net utility from buying in any store.
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Using the optimal space-dependent price, we consider a non-cooperative game where each

retailer makes the space allocation decision for his own store to maximize the total profit in

two stores. We show that two retailers should decide to implement the space-exchange strategy

in the game, if and only if the total space in each retailer’s store is large enough to serve more

than a half of the retailer’s consumers. Nash equilibrium for the game may or may not uniquely

exist, depending on consumers’utilities and trip costs as well as the total space in each store.

We also find that, in the Nash equilibrium, each retailer’s prices in two stores may or may not

be identical but they are both higher than the retailer’s price before the space exchange, and

two retailers’profits are higher than those before they implement the space-exchange strategy.

We also discuss possible changes of our major results when there exists a common consumer

who buys both products 1 and 2, and those when a retailer’s fixed cost for opening and staffi ng

a new store is considered.

As we discuss in Section 1, the informational advantage and the risk reduction should be

the two main advantages of the space-exchange strategy. In this paper, we focus on consumers’

increased choices and reduced trip costs, which should be the major advantage for the strategy.

The analysis of the informational advantage and the risk reduction for the space-exchange

problem would be a future research direction.
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Appendix A Proofs of Lemmas

Proof of Lemma 1. We first consider retailer 1’s optimal pricing decision. We learn from
(2) that retailer 1’s profit depends on the comparison between x1 = (ū1− p1)/t and S1/B1. We
perform our analysis for the following two cases:
1. When S1 ≥ B1, retailer 1’s profit function in (2) can be re-written as π1 = B1 × (p1 −
c1)×x1 = B1× (p1− c1)× (ū1− p1)/t. The first- and second-order derivatives of π1 w.r.t.
p1 are thus computed as,

∂π1

∂p1

=
B1 × (ū1 − 2p1 + c1)

t
and

∂2π1

∂p2
1

= −2B1

t
.

Temporarily ignoring the constraint that ū1 − t ≤ p1 ≤ ū1, we find that the optimal
price maximizing π1 is (ū1 + c1)/2, which is smaller than or equal to ū1 because ū1 ≥ c1.
Considering the constraint that ū1 − t ≤ p1 ≤ ū1, we find the optimal price for this case
as p∗1 = max[ū1 − t, (ū1 + c1)/2].
Next, we calculate retailer 1’s maximum profit. From the above, we find that we should
compare (ū1 + c1)/2 and ū1 − t to determine retailer 1’s optimal price and compute the
corresponding maximum profit.
(a) If (ū1+c1)/2 ≥ ū1−t, or, c1+2t ≥ ū1, then retailer 1’s optimal price is p∗1 = (ū1+c1)/2

and his maximum profit is calculated as, π1 = B1 × [(ū1 + c1)/2− c1]× [ū1 − (ū1 +
c1)/2]/t = B1 × (ū1 − c1)2/(4t).

(b) If c1 + 2t ≤ ū1, then retailer 1’s optimal price is p∗1 = ū1− t and his maximum profit
is found as π1 = B1 × (ū1 − t− c1).

2. When S1 < B1, we need to compare x1 and S1/B1 to determine the optimal retail price
for this case. Specifically,
(a) When x1 ≤ S1/B1, or, p1 ≥ ū1 − tS1/B1, retailer 1’s profit function can be re-

written as π1 = B1 × (p1 − c1) × (ū1 − p1)/t. Noting that S1/B1 < 1, we find that
ū1 − tS1/B1 > ū1 − t and the maximization constraint for this case thus becomes
ū1 − tS1/B1 ≤ p1 ≤ ū1. Using our argument for the first case, we find the optimal
price for this case as max[(ū1 + c1)/2, ū1 − tS1/B1].

(b) When x1 ≥ S1/B1, or, p1 ≤ ū1−tS1/B1, retailer 1’s profit function can be re-written
as π1 = B1 × (p1 − c1) × S1/B1, which is increasing in p1. Therefore, for this case,
the optimal retail price is ū1 − tS1/B1.

According to the above, we find that, when S1 < B1, retailer 1’s optimal price is deter-
mined as p∗1 = max[(ū1 + c1)/2, ū1 − tS1/B1]. Next, we calculate retailer 1’s maximum
profit.
(a) If (ū1 + c1)/2 ≥ ū1− tS1/B1, or, c1 + 2tS1/B1 ≥ ū1, then retailer 1’s optimal price is

p∗1 = (ū1 + c1)/2, and his maximum profit is calculated as, π1 = B1 × [(ū1 + c1)/2−
c1]× [ū1 − (ū1 + c1)/2]/t = B1 × (ū1 − c1)2/4.
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(b) If c1 + 2tS1/B1 ≤ ū1, then retailer 1’s optimal price is p∗1 = ū1 − tS1/B1 and his
maximum profit is π1 = (ū1 − tS1/B1 − c1)× S1.

We can similarly compute retailer 2’s optimal price and maximum profit. The lemma is
thus proved.

Proof of Lemma 2. We first perform our analysis for retailer 1. As Remark 1 indicates, there
are two cases in which retailer 1 can set his prices in two stores to affect consumers’demands.
We compute the retailer’s optimal prices for the two cases as follows:
1. Retailer 1 determines his retail prices (p11, p12) under the constraint that p21+p11 ≤ 2ū1−t.
As discussed in Remark 1, for this case, all consumers must have a non-negative utility
and thus decide to buy from retailer 1. Because the demands faced by retailer 1 in two
stores are D11 = B1(p12− p11 + t)/(2t) and D12 = B1(p11− p12 + t)/(2t), we can construct
retailer 1’s profit for this case as,

π1 = B1(p11 − c1)
p12 − p11 + t

2t
+B1(p12 − c1)

p11 − p12 + t

2t
. (4)

Retailer 1’s maximization problem is thus developed as, maxπ1, s.t. p12 + p11 ≤ 2ū1 − t
and −t ≤ p12− p11 ≤ t. Note that the second constraint is involved because, as discussed
previously, all of B1 consumers are uniformly distributed between the sites of retailers 1
and 2.
The first-, second-order, and cross-partial derivatives of π1 w.r.t. p11 and p12 are calculated
as,

∂π1

∂p11

= B1
2(p12 − p11) + t

2t
,

∂2π1

∂p2
11

= −B1

t
< 0;

∂π1

∂p12

= B1
2(p11 − p12) + t

2t
,

∂2π1

∂p2
12

= −B1

t
< 0;

∂2π1

∂p21∂p11

=
B1

t
> 0.

It is easy to show the Hessian’s negative definiteness. Thus, the profit π1 in (4) is jointly
concave in the prices p11 and p12. Setting the first-order derivatives to zero and solving
them, we have the optimal retail prices for the first case as, p12 = p11 = (2ū1 − t)/2 =
ū1 − t/2, which satisfy the constraints that p12 + p11 + t ≤ 2ū1 and −t ≤ p12 − p11 ≤ t.
The corresponding demands in retailer 1’s own store and retailer 2’s store are then cal-
culated as D11 = D12 = B1/2, respectively. Moreover, retailer 1’s maximum profits in
the two stores are both obtained as B1 (ū1 − c1 − t/2) /2; and, the retailer’s total profit
is computed as π1 = B1 (ū1 − c1 − t/2).

2. Retailer 1 determines his prices p11 and p12 such that p11 + p12 ≥ 2ū1 − t. We learn from
Remark 1 that, for this case, some consumer(s) may not buy from retailer 1, who may
thus partially satisfy the demand B1(2ū1 − p11 − p12)/t. The demands for product 1 in
two stores are D11 = B1(ū1−p11)/t and D12 = B1(ū1−p12)/t; it then follows that retailer
1’s profit is computed as,

π1 = B1(p11 − c1)
ū1 − p11

t
+B1(p12 − c1)

ū1 − p12

t
. (5)

Retailer 1 should find his optimal retail prices by solving the following maximization
problem: maxπ1, s.t. p11 +p12 + t ≥ 2ū1 and −t ≤ p12−p11 ≤ t. The first-, second-order,
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and cross-partial derivatives of π1 w.r.t. p11 and p12 are calculated as,

∂π1

∂p11

= B1
ū1 + c1 − 2p11

t
,

∂2π1

∂p2
11

= −2B1

t
< 0;

∂π1

∂p12

= B1
ū1 + c1 − 2p12

t
,

∂2π1

∂p2
12

= −2B1

t
< 0;

∂2π1

∂p12∂p11

= 0.

It is easy to prove that the Hessian’s definiteness is negative, and retailer 1’s profit π1

in (5) is jointly concave in p11 and p12. However, we cannot immediately compute the
optimal prices by solving the first-order conditions (i.e., ∂π1/∂p11 = 0 and ∂π1/∂p12 = 0),
because, otherwise, the demand in terms of optimal prices may be greater than the total
demand B1, which is specified as follows:
Temporarily ignoring the above concern regarding the demand, we solve the equations
that ∂π1/∂p11 = 0 and ∂π1/∂p12 = 0 to make retailer 1’s optimal pricing decisions as
p11 = p12 = (ū1 + c1)/2. The resulting demands in two stores are thus computed as
D11 = D12 = B1(ū1 − c1)/(2t); the total demand is D11 + D12 = B1(ū1 − c1)/t, which
may be greater than B1, depending on the values of ū1, c1, and t. Next, we consider the
comparison between ū1 and c1 + t to determine retailer 1’s optimal prices.
(a) If ū1 ≤ c1 + t, then D11 + D12 ≤ B1; this means that retailer 1 should adopt the

optimal prices p11 = p12 = (ū1 + c1)/2, which satisfy the constraints that p11 + p12 ≥
2ū1 − t and −t ≤ p12 − p11 ≤ t. The retailer may thus fulfill the demands of some
rather than all product 1 consumers. As a result, retailer 1’s profits in two stores are
both calculated as B1(ū1 − c1)2/(4t), and his total profit is π1 = B1(ū1 − c1)2/(2t).

(b) If ū1 > c1 + t, then D11 + D12 > B1, which implies that the optimal prices are too
low and retailer 1 can raise his prices to increase his profit margin without losing any
consumer. Since retailer 1 will satisfy all B1 consumers, similar to Case 1, we can
find his decisions as p11 = p12 = ū1 − t/2, which is higher than the price (ū1 + c1)/2
(that is optimal when ū1 ≤ c1 + t). The demands in two stores are then computed
as D11 = D12 = B1/2, and the total demand is D11 +D12 = B1. Retailer 1’s profits
in two stores are both computed as B1(ū1 − c1 − t/2), and his total profit is thus
π1 = B1(ū1 − c1 − t/2).

Note that, if the retail prices p11 and p12 are both reduced to retailer 1’s acquisition cost
c1 and the product 1 consumer residing at the location 1 (i.e., retailer 2’s store) intends
to buy in retailer 1’s store, then the consumer enjoys the utility ū1 but incurs the cost
c1 + t. The above condition that ū1 ≤ c1 + t means that the product 1 consumer at the
site of retailer 2’s store has a non-positive net utility if he or she goes to retailer 1’s store
to buy a unit of product 1.

We can similarly perform our analysis for retailer 2. This proves the lemma.

Proof of Lemma 3. We first analyze retailer 1’s optimal pricing decisions. We consider
two cases– i.e., S11 + S21 ≥ B1 and S11 + S21 < B1– to determine retailer 1’s optimal pricing
decisions. We first investigate the case that S11 +S21 ≥ B1, which means that retailer 1’s total
space S11 + S21 in two stores is large enough to stock B1 units of products. When S11 + S21 ≥
B1, we need to consider the following three scenarios: (i) S11 ≥ B1/2 and S21 ≥ B1/2; (ii)
S11 < B1/2 and S21 > B1/2; and (iii) S11 > B1/2 and S21 < B1/2. For the scenario (i), we
learn from Lemma 2 that the optimal prices are determined as p11 = p12 = ū1 − t/2, and the
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resulting demands in two stores are both equal to B1/2.
Next we consider the scenario (ii), where, in retailer 1’s own store, retailer 1 cannot satisfy a

half of the total demand. This means that, even though the retailer can carry suffi cient number
of product 1 in two stores, the retailer’s optimal pricing decisions under the capacity constraint
may not result in the fulfillment of the total demand B1. Recall from Remark 1 that retailer 1
may determine his prices such that p11 + p12 ≤ 2ū1 − t or may make his pricing decisions such
that p11 + p12 ≥ 2ū1 − t. Next, we maximize retailer 1’s profit when p11 + p12 ≤ 2ū1 − t and
maximize that when p11 + p12 ≥ 2ū1 − t, and then compare the maximum profits to find the
optimal prices for the retailer.
1. If p11 + p12 ≤ 2ū1 − t, then, according to Remark 1, all product 1 consumers should buy
from retailer 1 in either retailer 1’s store or retailer 2’s store; and, the demands faced
by retailer 1 in two stores are D11 = B1(p12 − p11 + t)/(2t) and D12 = B1(p11 − p12 +
t)/(2t). Temporarily ignoring the capacity (space) constraint, we develop the retailer’s
profit function as,

π1 = B1(p11 − c1)
p12 − p11 + t

2t
+B1(p12 − c1)

p11 − p12 + t

2t

= −B1
(p12 − p11)2

2t
+B1

p11 + p12

2
−B1c1,

which is decreasing in the difference between p12 and p11 but increasing in p11 + p12. This
means that retailer 1 should consider the following two strategies to make his optimal
pricing decisions: (i) The difference between retailer 1’s prices in two stores should be as
small as possible; and (ii) The value p11 +p12 should be as large as possible. Since p11 and
p12 should be determined such that p11 + p12 ≤ 2ū1 − t, the optimal prices should satisfy
the equality that p11 + p12 = 2ū1− t. Because the different between p12 and p11 should be
as small as possible, the difference between D11 and D12 should be minimized under the
constraints that S11 < B1/2 and S21 > B1/2. Therefore, the retailer needs to determine
his prices such that the total demand for product 1 in retailer 1’s and retailer 2’s stores
are equal to S11 and B1 − S11, respectively. That is, solving the following equations:{

B1(p12 − p11 + t)/(2t) = S11,
p11 + p12 = 2ū1 − t,

we can find the retailer’s prices as p11 = ū1− tS11/B1 and p12 = ū1− t(1−S11/B1), which
satisfies the constraint that −t ≤ p12 − p11 ≤ t.

2. If retailer 1’s pricing decisions are made such that p11 + p12 ≥ 2ū1 − t, then some con-
sumer(s) may not buy from retailer 1, who may thus only satisfy a part of the total
demand B1. The retailer’s profits generated in retailer 1’s and retailer 2’s stores are
written as,

(p11 − c1)×min[S11, B1(ū1 − p11)/t] and (p12 − c1)×min[B1 − S11, B1(ū1 − p12)/t].

According to Lemma 2, the optimal price p11 maximizing B1(p11− c1)(ū1− p11)/t should
be equal to (ū1 + c1)/2, and the resulting demand for product 1 in retailer 1’s store is
B1(ū1 − c1)/(2t), which is greater than B1/2 because ū1 > c1 + t. Since S11 < B1/2,
the retailer should increase the price p11 from (ū1 + c1)/2 to a value such that the total
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demand in retailer 1’s store– i.e., B1(ū1 − p11)/t– is equal to the available number S11.
Solving the equation that B1(ū1 − p11)/t = S11 gives the price p11 = ū1 − tS11/B1, which
is greater than (ū1 + c1)/2 since ū1 > c1 + t.
Because of the constraint that p11 + p12 + t ≥ 2ū1, the price p12 should be greater than
or equal to ū1 − t(1− S11/B1), which occurs if and only if the total demand for product
1 in retailer 2’s store– that is, B1(ū1 − p12)/t– is smaller than or equal to the available
quantity B1−S11. Therefore, retailer 1’s profit generated in retailer 2’s store is calculated
as B1(p12−c1)(ū1−p12)/t, which should be maximized subject to p12 ≥ ū1−t(1−S11/B1)
and −t ≤ p12 − p11 ≤ t. Lemma 2 indicates that the optimal price p12 maximizing
B1(p12 − c1)(ū1 − p12)/t is (ū1 + c1)/2. It thus follows that the optimal price p12 is
determined as p12 = max[(ū1 + c1)/2, ū1 − t(1 − S11/B1)]. Because S11 < B1/2 and
p12 ≥ ū1 − t(1− S11/B1), we find that p12 − p11 ≥ −t(1− 2S11/B1) > −t. Note from the
above that (ū1 + c1)/2 < ū1− tS11/B1; thus, p12−p11 ≤ 0 < t. Hence, the constraint that
−t ≤ p12 − p11 ≤ t is satisfied.

In conclusion, we find that, if S11 + S21 ≥ B1 but S11 < B1/2, retailer 1’s optimal prices in
his own store and retailer 2’s store are p11 = ū1− tS11/B1 and p12 = max[(ū1 + c1)/2, ū1− t(1−
S11/B1)]. Similarly, if S11 + S21 ≥ B1 but S21 < B1/2, retailer 1’s optimal prices in his own
store and retailer 2’s store are p11 = max[(ū1 +c1)/2, ū1−t(1−S21/B1)] and p12 = ū1−tS21/B1.
Next, we compute retailer 1’s optimal prices when the retailer’s total space S11 +S21 cannot

stock B1 units of product 1, i.e., S11+S21 < B1. For this scenario, the retailer’s profits in retailer
1’s and retailer 2’s stores are (p11−c1)×min[S11, B1(ū1−p11)/t] and (p12−c1)×min[S21, B1(ū1−
p12)/t]. If p11 ≤ ū1−tS11/B1, then retailer 1’s profit in his own store becomes B1(p11−c1)×S11,
which is increasing in p11. Therefore, the optimal price p11 maximizing B1(p11 − c1) × S11 is
equal to ū1 − tS11/B1. On the other hand, if p11 ≥ ū1 − tS11/B1, then retailer 1’s profit in his
own store becomes B1(p11−c1)×(ū1−p11)/t, which is maximized at the point p11 = (ū1 +c1)/2.
Therefore, retailer 1’s optimal price p11 is obtained as p11 = max[(ū1 + c1)/2, ū1 − tS11/B1].
Similarly, the retailer’s optimal price p12 is obtained as p12 = max[(ū1 + c1)/2, ū1 − tS21/B1].
Similar to the above analysis for retailer 1, we can find retailer 2’s optimal prices. This

proves the lemma.

Proof of Lemma 4. We first consider the price comparison for retailer 1, which will similarly
apply to retailer 2. We find from Lemma 1 that, when the two retailers do not exchange shelf
space, retailer 1’s optimal price p∗1 depends on S1; and we note from Lemma 3 that retailer 1’s
optimal price p∗11 and p

∗
12 under the space-exchange strategy depend on the values of S11 and

S21. Thus, for this proof, we have to compare any pair of optimal prices in two settings.
1. If S11 + S21 ≥ B1, S11 ≥ B1/2, and S21 ≥ B1/2, then p∗11 and p

∗
12 are obviously greater

than ū1 − t. We also find that ū1 − t/2 > (ū1 + c1)/2 because ū1 > c1 + t. Therefore,
p∗11 = p∗12 > p∗1 = max((ū1 + c1)/2, ū1− t), which applies when S1 ≥ B1. We then consider
the comparison when S1 < B1. Because S1 ≥ S11 ≥ B1/2, ū1 − tS1/B1 < ū1 − t/2 =
p∗11 = p∗12. That is, for this case, p

∗
11 = p∗12 > p∗1.

2. If S11 + S21 ≥ B1, S11 < B1/2, and S21 > B1/2, then we can easily show that p∗11 > p∗1.
However, p∗12 may or may not be greater than p

∗
1. More specifically, when S1 ≥ B1, p∗12 >

p∗1; but, when S1 < B1, p∗12 may or may not be greater than p
∗
1. If S1 ≥ B1(ū1 − c1)/(2t),

then, as Lemma 1 indicates, p∗1 is equal to (ū1 + c1)/2 or ū1 − t, which is smaller than
p∗12. Otherwise, if S1 < B1(ū1 − c1)/(2t), then p∗1 = ū1 − tS1/B1. Therefore, a suffi cient
condition under which p∗12 ≥ p∗1 can be found as ū1 − t(1 − S11/B1) ≥ ū1 − tS1/B1, or,
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S11 + S1 ≥ B1.
3. If S11 + S21 ≥ B1, S11 > B1/2, and S21 < B1/2, then we find that p∗12 > p∗1. Moreover,
because S1 + S21 ≥ S11 + S21 ≥ B1, 1− S21/B1 ≤ S1/B1 and p∗11 ≥ p∗1.

4. If S11 + S21 < B1, then p∗11 > p∗1; but, p
∗
12 may or may not be greater than p

∗
1. Similar to

the above proof for item 2, we find that, for this case, a suffi cient condition under which
p∗12 ≥ p∗1 is found as, S21 ≤ S1.

Similarly, we can compare the prices for retailer 2. This proves the lemma.

Proof of Lemma 5. We consider the decisions for retailer 1 in this proof, since those for
retailer 2 are similar. If S11 ≥ B1(ū1 − c1)/2t and S21 ≥ B1(ū1 − c1)/2t, then retailer 1 should
not serve all product 1 consumers, as suggested by Lemma 2, and his prices is determined as
p11 = p12 = (ū1 + c1)/2.
However, if the space allocated to retailer 1 in his own store is smaller than B1(ū1−c1)/(2t),

i.e., S11 < B1(ū1 − c1)/(2t), then the retailer should increase his price p11 from (ū1 + c1)/2 to
the value that can be obtained by solving the equation that B1(ū1 − p11)/t = S11. That is, if
S11 < B1(ū1 − c1)/(2t), then retailer 1’s price should determined as p11 = ū1 − tS11/B1, which
is greater than (ū1 + c1)/2 because S11 < B1(ū1 − c1)/(2t). Note that, if S11 ≥ B1(ū1 − c1)/2t,
then (ū1 + c1)/2 ≥ ū1 − tS11/B1. Therefore, we conclude that, when ū1 ≤ c1 + t, retailer 1’s
price for product 1 in his own store is p11 = max[(ū1 + c1)/2, ū1− tS11/B1]. Similarly, the retail
price in retailer 2’s store is obtained as p12 = max[(ū1 + c1)/2, ū1 − tS21/B1]. For the price
comparison, see the proof of Lemma 4. This proves the lemma.

Proof of Lemma 6. In this proof, we consider retailer 1’s best-response decisions. Retailer
2’s decisions similarly follows. From Lemmas 3 and 5 and Table 3, we find that retailer 1’s
optimal pricing decision and corresponding maximum profit depend on the values of S11 and
S21. Note that retailer 1’s guest space S21 may be greater than, equal to, or smaller than B1/2;
and, retailer 1’s decision S11 cannot exceed his total space S1, which may be greater than or
may be smaller than B1/2. Therefore, we have to consider the following scenarios:
1. If S1 + S21 ≥ B1, then retailer 1 is able to serve all of B1 product 1 consumers. However,
the optimal value of S11 depends on the value of S21, as indicated by Table 3. We consider
two possibilities: S21 ≥ B1/2 and S21 < B1/2. If S21 ≥ B1/2, then we learn from Table
3 that, when S11 ≥ B1/2, retailer 1’s maximum profit is π1

1 ≡ B1 (ū1 − c1 − t/2); when
S11 < B1/2, the retailer’s maximum profit is π2

1 or π
3
1, which depends on the comparison

between ū1 and c1 + 2t(1− S11/B1).
Temporarily ignoring the value of S1, we learn from the proof of Corollary 1 that π3

1 ≤
π2

1 < π1
1; and, to maximize π

3
1, S11 must be determined as S11 = B1[1 − (ū1 − c1)/(2t)].

Note that π3
1 = π2

1 when S11 = B1[1 − (ū1 − c1)/(2t)]. Hence, if S1 + S21 ≥ B1 and
S21 ≥ B1/2, then retailer 1’s optimal decision is given as follows:
(a) If S1 ≥ B1/2, then the retailer’s optimal host space is S∗11 = B1/2 and the space

allocated to retailer 2 is calculated as S∗12 = S1 − B1/2. In addition, the retailer
should only use the guest space B1/2 for his sale in retailer 2’ store. All of B1

product 1 consumers are served when S1 ≥ B1/2.
(b) If S1 < B1/2, then the retailer’s optimal decision is dependent on the comparison

between S1 and B1[1− (ū1 − c1)/(2t)]. More specifically, if B1[1− (ū1 − c1)/(2t)] ≤
S1 < B1/2, then retailer 1’s profit π2

1 is increasing in S11. Therefore, his optimal
host space is S∗11 = S1, which means that the retailer does not allocate any space to

6
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retailer 2. Retailer 1 should accept the guest space (B1 − S1), which is smaller than
or equal to S21 because S1 + S21 ≥ B1. All of B1 product 1 consumers are served
when B1[1− (ū1 − c1)/(2t)] ≤ S1 < B1/2.
Otherwise, if S1 < B1[1 − (ū1 − c1)/(2t)], then retailer 1’s profit π3

1 is increasing
in S11 and the retailer should thus determine his optimal host space as S∗11 = S1.
However, we find from Theorems 3 and 5 and Table 3 that the retailer’s optimal
price in retailer 2’s store is p∗12 = (ū1 + c1)/2 and the resulting sales in his guest
space is B1(ū1 − c1)/(2t), which is smaller than B1 − S1. Thus, when S1 < B1[1 −
(ū1− c1)/(2t)], the retailer only needs the guest space B1(ū1− c1)/(2t) and does not
serve all consumers.

If S1 + S21 ≥ B1 but S21 < B1, then Table 3 indicates that retailer 1’s maximum profit
depends on his guest space in retailer 2’s store. Similar to our above discussion when
S1 < B1/2, we find that, if B1[1 − (ū1 − c1)/(2t)] ≤ S21 < B1/2, then retailer 1 should
accept the space S21 given by retailer 2, and he should determine his optimal host space
as S∗11 = B1 − S21 and allocate the space S∗12 = S1 − B1 + S21 to retailer 2. As a result,
the retailer serves all of B1 product 1 consumers. If S21 < B1[1 − (ū1 − c1)/(2t)], then
retailer 1 still accepts the guest space S21, but determines his optimal host space as
S∗11 = B1(ū1 − c1)/(2t) and allocates to retailer 2 the space S∗12 = S1 −B1(ū1 − c1)/(2t).

2. If S1+S21 < B1, then retailer 1 cannot serve all of B1 product 1 consumers. We learn from
the proof of Lemma 3 that retailer 1’s optimal host space should be S∗11 = min[B1(ū1 −
c1)/(2t), S1]. The retailer should allocate S∗12 = S1−S∗11 = S1−min[B1(ū1− c1)/(2t), S1].
Similarly, retailer 1 only accepts the space min[B1(ū1 − c1)/(2t), S21] from retailer 2.

Summarizing the above and similarly analyzing the best response for retailer 2, we have the
lemma.

Proof of Lemma 7. The proof is the same as that for the case of Si + Sji < Bi (i, j = 1, 2
and i 6= j) in Lemma 6.

Proof of Lemma 8. Since Si > max[Bi[1− (ūi − ci)/(2t)], Bi(ūi − ci)/(2t)], for i = 1, 2, we
find from Lemma 7 that retailer i’s best-response space decision is Bi(ūi − c1)/(2t). When two
retailers retain their host shelf space in Nash equilibrium, we can find that, to implement the
space-exchange strategy, retailer i allocates the space SNij = Si − SNii = Si −Bi(ūi − ci)/(2t) to
retailer j (j = 1, 2 and j 6= i), who allocates the space SNji = Sj−SNjj = Sj−Bj(ūj− cj)/(2t) to
retailer i. Note that SNij > 0 and SNji > 0 because of the condition in Proposition 3, under which
two retailers should decide to exchange shelf space. Then, using Lemma 5, we can compute
two retailers’corresponding optimal prices as given in the lemma.

Proof of Lemma 9. To facilitate our proof, we consider the case that ū1 > c1 + t and
ū2 ≤ c2 + t, and find the corresponding Nash equilibrium. According to Lemma 7, we find
that, if ū2 ≤ c2 + t, then retailer 2’s optimal space decision S∗22 is the same as that when
S2 + S12 < B2 in Table 4. That is, for this case, retailer 2’s optimal space decisions is always
S∗22 = B2(ū2 − c2)/(2tr2); see Figure 4(a). Using our best-response analysis, we draw Figure
4(b) to show retailer 1’s best space decision S∗11 given retailer 2’s decision S22.
Since the line S22 = B2(ū2 − c2)/(2tr2) in Figure 4(a) may intersect with each of three line

segments in Figure 4(b), there are three possible unique Nash equilibria, as given in Table 5.
Replacing 1 and 2 with i and j (i, j = 1, 2 and i 6= j), we prove this lemma.
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Figure 4: Two retailers’best-response space decisions when ū1 > c1 + t and ū2 ≤ c2 + t. Figure
(a) and (b) indicate retailer 2’s and retailer 1’s best responses, respectively.

Proof of Lemma 10. We draw Figure 5 to show two retailers’best responses. To find Nash
equilibrium, we need to discuss where two retailers’best-response functions intersect, because
the intersection point represents a Nash equilibrium.

Figure 5: Two retailers’ best-response space decisions when ū1 > c1 + t and ū2 > c2 + t.
Specifically, Figure (a) indicates retailer 2’s best space decision S22 given retailer 1’s decision
S11, and Figure (b) shows retailer 1’s best space decision S11 given retailer 2’s decision S22.

As Figure 5 indicates, each retailer’s best response is a step function consisting of three
segments. Therefore, we have to consider 13 scenarios, as shown in Figure 6. For each scenario,
we can calculate the corresponding Nash equilibrium, which is represented by the intersection
of two retailers’best-response functions in Figure 6. For our solution, see Table 7 in online
Appendix F. This proves the lemma.

Appendix B Proofs of Propositions

Proof of Proposition 1. This proposition follows Lemmas 4 and 5. That is, for both
the case that ūi > ci + t and the case that ūi ≤ ci + t, if two retailers cooperate under the

8
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Figure 6: Nash equilibria in 13 scenarios. Note that the solid and the dashed step functions
represent retailer 2’s and retailer 1’s best responses, respectively.

space-exchange strategy, retailer i’s prices in two stores (i.e., p∗i1 and p
∗
i2) must be higher than

the retailer’s price p∗i when two retailers do not exchange shelf space.

Proof of Proposition 2. From Lemmas 3 and 5, we learn that, if two retailers exchange
shelf space, then each retailer may charge different prices in two stores. For example, as Lemma
3 indicates, p∗ii = ūi − tSii/Bi is different from p∗ij = max[(ūi + ci)/2, ūi − t(1− Sii/Bi)], when
ūi > ci + t, Sii + Sji ≥ Bi, Sii < Bi/2, and Sji > Bi/2. This proposition is thus proved.

Proof of Proposition 3. The space-exchange strategy is implemented in the “simultaneous-
move”game if and only if each retailer decides to allocate non-zero shelf space to the other
retailer in Nash equilibrium. According to our best-response analysis, we find that, for the
“simultaneous-move”game, two retailers should not exchange shelf space if and only if one or
more of the following six things happen: (i) Si ≤ Bi/2; (ii) Si ≤ Bi[1− (ūi− ci)/(2t)]; (iii) Si ≤
Bi(ūi− ci)/(2t); (iv) Sj ≤ Bj/2; (v) Sj ≤ Bj[1− (ūj − cj)/(2t)]; and (vi) Sj ≤ Bj(ūj − cj)/(2t).
Note that

max[Bi[1− (ūi − ci)/(2t)], Bi(ūi − ci)/(2t)] > Bi/2, for i = 1, 2.

It thus follows that, in Nash equilibrium, two retailers decide to exchange shelf space if and
only if Si > max[Bi[1− (ūi − ci)/(2t)], Bi(ūi − ci)/(2t)].

Appendix C Detailed Discussion for Remark 1

We find from (3) that a product i (i = 1, 2) consumer has no difference between buying in
the two stores if ûxi1 = ûxi2, or, x̂i ≡ (pi2 − pi1 + t)/2t. That is, the product i consumer at
location x̂i can obtain the same utility when he or she buys in retailer 1’s or retailer 2’s store.

9
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As discussed in Section 2, because the Bi product i consumers are uniformly distributed along
the linear city between the two retailers’stores (i.e., between the end points 0 and 1), retailer
i should make his pricing decision (pi1, pi2) such that 0 ≤ x̂i ≤ 1, or, −t ≤ pi2 − pi1 ≤ t. In
addition, whether or not any consumer residing between the two retailers’stores buys from a
store depends on the condition that ûxi ≥ 0. According to (3), we find that, given the retail
price pi1, any consumer who is located at x ≤ x̂i1 ≡ (ūi− pi1)/t should visit retailer 1’s store at
the end point 0 to buy a unit of product i. In order to effectively serve product i consumers,
retailer i should make his pricing decision pi1 such that x̂i1 ≥ 0, or, pi1 ≤ ūi. Similarly, given
the retail price pi2, any consumer at the location x ≥ x̂i2 ≡ (pi2 + t− ūi)/t should buy product i
from retailer i at retailer 2’s store. Retailer i’s price pi2 for product i in retailer 2’s store should
be smaller than or equal to ūi– i.e., pi2 ≤ ūi– so as to assure that x̂i2 ≤ 1.
Noting that x̂i1 + x̂i2 ≡ 2x̂i, we find that, as Figure 7 indicates, either of the two following

cases happens: (i) x̂i1 ≥ x̂i and x̂i2 ≤ x̂i; or, (ii) x̂i1 ≤ x̂i and x̂i2 ≥ x̂i. Accordingly, we consider
the following two cases to compute the demands faced by retailer i in two retailers’stores.

Figure 7: The demands faced by retailer i (i = 1, 2) in two retailers’stores.

1. If x̂i1 ≥ x̂i, or, pi1 + pi2 ≤ 2ūi − t, then x̂i2 ≤ x̂i. We learn from Figure 7(a) that
the product i consumers between the point 0 and the point x̂i1 can gain a non-negative
utility from buying in retailer 1’store, and those consumers between the point x̂i2 and
the point 1 have a non-negative utility from buying in retailer 2’s store. For this case,
all of Bi product i consumers’net utilities must be non-negative when they buy in either
retailer 1’s or retailer 2’s store, and these consumers should be thus willing to complete
transactions with retailer 1. We also find that any consumer residing between the points
x̂i2 and x̂i1 can draw a non-negative utility from purchasing from both retailer 1’s and
retailer 2’s stores. Such a consumer should choose a store where his or her net utility
is higher. Therefore, as Figure 7(a) indicates, any product i consumer residing between
the end point 0 and the point x̂i should buy from retailer 1’s store, and any product 1
consumer between x̂i and the end point 1 should buy from retailer 2’s store. Therefore,
the demands faced by retailer i in the two stores are computed as,

Di1 = Bi
pi2 − pi1 + t

2t
and Di2 = Bi

pi1 − pi2 + t

2t
.

It thus follows that, if retailer i makes his pricing decision (pi1, pi2) such that pi1 + pi2 ≤
2ūi − t, then retailer i should serve all consumers in the market.

2. If x̂i2 ≥ x̂i, or, pi1 + pi2 ≥ 2ūi − t, then x̂i1 ≤ x̂i. Similar to the first case, we note from
Figure 7(b) that any consumer residing between the points x̂i1 and x̂i2 cannot draw a non-
negative utility from shopping in each store, and should be thus unwilling to buy from
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retailer 1. This means that, for this case, some consumer(s) may not decide to purchase
product i. Figure 7(b) indicates that only consumers between the points 0 and x̂i1 should
buy in retailer 1’s store, and only consumers between x̂i2 and 1 should buy in retailer 2’s
store. The demands faced by retailer i in the two stores are thus computed as,

Di1 = Bi
ūi − pi1

t
and Di2 = Bi

ūi − pi2
t

.

The total demand faced by retailer i is thus Bi(2ūi − pi1 − pi2)/t; this means that, if
retailer i’s prices (pi1, pi2) are determined such that pi1 + pi2 ≥ 2ūi− t, then he shall only
serve (2ūi − pi1 − pi2)/t (rather than all) of Bi consumers in the market.

From the above we find that all product i consumers buy when x̂i1 ≥ x̂i whereas some
consumer(s) may not buy when x̂i2 ≥ x̂i. Note that, if pi1 + pi2 = 2ūi − t, then x̂i1 = x̂i2 = x̂i,
and the demands for the above two cases are the same, which means that all consumers will
buy but no consumer can enjoy a non-negative utility from buying from both stores.

Appendix D Proof of Corollary 1

We first compare the profits for retailer 1. For this corollary, we should compare the profit
given in Table 3 and that given in Lemma 1. As Lemma 1 indicates, retailer 1’s maximum
profit when two retailers do not exchange shelf space is dependent on the value of the total
space S1 in retailer 1’s store; but, we find from Table 3 that, when two retailers implement
the space-exchange strategy, retailer 1’s maximum profit depends on the values of S11 and S21.
This means that, for each profit in Lemma 1, we have to compare it with any profit in Table
3. For example, if S1 ≥ B1, then Lemma 1 indicates that retailer 1’s maximum profit with no
space exchange is either B1 × (ū1 − c1)2/(4t) (when c1 + 2t ≥ ū1) or B1 × (ū1 − t− c1) (when
c1 + 2t ≤ ū1). For this case, under the space-exchange strategy, the retailer’s maximum profit
could be any value of πi1 (i = 1, . . . , 8).
1. If S1 ≥ B1 and c1 + t < ū1 ≤ c1 + 2t, then retailer 1’s maximum profit with no space
exchange is π∗1 = B1 × (ū1 − c1)2/(4t). It is easy to find that π3

1, π
5
1, π

7
1, and π

8
1 are all

greater than π∗1. Next, we need to consider π
1
1, π

2
1, π

4
1, and π

6
1.

We first compare π1
1, π

2
1, and π

3
1. It is easy to note that π

2
1 < B1(ū1 − t − c1) + B1t(1 −

S11/B1) because S11 < B1/2. Furthermore, we have,

B1(ū1 − t− c1) +B1t(1− S11/B1) = B1(ū1 − tS11/B1 − c1) < B1(ū1 − t/2− c1) = π1
1,

which means that π2
1 < π1

1. In fact, we can easily show that, when S11 = B1/2, π2
1 arrives

to its maximum value that is equal to π1
1. In addition, we find that π

3
1 is maximized

when S11/B1 = (ū1 − c1)/(2t). However, the retailer cannot choose the space S11 such
that S11/B1 = (ū1 − c1)/(2t), because of the following fact: If ū1 − c1 > 2t, then ū1 >
c1 + 2t(1 − S11/B1) and, as Table 3 indicates, retailer 1’s profit is π2

1 rather than π
3
1.

If ū1 − c1 ≤ 2t, then retailer 1’s profit is π3
1 only when ū1 ≤ c1 + 2t(1 − S11/B1), or,

S11/B1 ≤ 1− (ū1−c1)/(2t). Noting that 1− (ū1−c1)/(2t) < 1/2 and (ū1−c1)/(2t) > 1/2
because ū1 − c1 > t, we find that the profit π3

1 is increasing in S11 when S11 ∈ [0, B1(1−
(ū1 − c1)/(2t))], and it thus follows that when S11 = B1[1− (ū1 − c1)/(2t)], π3

1 arrives to
its maximum π2

1, which is smaller than π
1
1, as argued above.
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Since π1
1 > π2

1 ≥ π3
1, we find that both π

1
1 and π

2
1 are greater than π

∗
1. Similarly, we can also

show that π4
1 ≥ π5

1; thus, π
4
1 is greater than π

∗
1. However, π

6
1 may or may not be greater

than π∗1. Noting that π
6
1 ≥ (S11 + S21)(ū1 − c1)/2, we can derive a suffi cient condition

under which π6
1 ≥ π∗1 as S11 + S21 ≥ B1(ū1 − c1)/(2t), or, S11 + S21 ≥ B1(ū1 − c1)/(2t).

2. If S1 ≥ B1 and ū1 ≥ c1 + 2t, then retailer 1’s maximum profit with no space exchange is
π∗1 = B1 × (ū1 − t − c1). For this case, under the space-exchange strategy, the retailer’s
profit should be one of π1

1, π
2
1, π

4
1, and π

6
1. It is easy to find that π

1
1, π

2
1, and π

4
1 are all

greater than π∗1. But, π
6
1 may or may not be greater than π

∗
1.

3. If S1 < B1 and c1 + 2tS1/B1 ≥ ū1, then retailer 1’s profit with no space exchange
π∗1 = B1×(ū1−c1)2/(4t). This is the same as that when S1 ≥ B1 and c1 +t < ū1 ≤ c1 +2t.

4. If S1 < B1 and c1 + 2tS1/B1 ≤ ū1, then π∗1 = (ū1 − tS1/B1 − c1) × S1, which is smaller
than or equal to B1 × (ū1 − c1)2/(4t) because we can easily show that, for this case, π∗1
arrives to its maximum value B1 × (ū1 − c1)2/(4t) when c1 + 2tS1/B1 = ū1. Therefore,
we can find that π6

1 may or may not be greater than π
∗
1 and π

i
1 (i = 1, . . . , 5, 7, . . . , 8) is

greater than π∗1.
The analysis for retailer 2 is similar to the above. This corollary is thus proved.

Appendix E A Further Discussion on the Result in Propo-
sition 3

We learn from Proposition 3 that each retailer’s total shelf space should be suffi ciently large
in order to assure that two retailers are willing to implement the space-exchange strategy in
the non-cooperative game. One may note that two retailers with small shelf space could be
also likely to consider the space-exchange strategy. For example, suppose that both retailers 1
and 2 have very small shelf space; e.g., retailer i (i = 1, 2) can stock only two units of product
i in his store before the space exchange, i.e., Si = 2, for i = 1, 2. When two retailer do not
exchange shelf space, retailer i would set his price such that the two consumers who are the
closest to the retailer along the Hotelling line would find it worthwhile to buy product i. If two
retailers exchange shelf space, then they may raise their prices without losing any consumers,
and their profits could thus be higher than those in the “no space exchange”case, because of
the following reason: When retailer i allocates a unit of shelf space in his own store to retailer
j (j = 1, 2, j 6= i), the retailer’s host shelf space can be used to serve only the customer who
is the closed to retailer i’s store. That is, Sii = Sij = 1. Hence, in retailer i’s own store, the
retailer does not need to consider the second closest customer, and can increase his price to
a value such that only the closest customer is willing to buy. Meanwhile, retailer i obtains a
unit of guest shelf space from retailer j, and uses it to serve the product i customer who is the
closest to retailer j’s store, setting his retail price as in his own store. As a result of exchanging
shelf space with retailer j, retailer i’s prices (in both stores) are higher than his price before the
space exchange, and the retailer can still serve two customers, as in the “no space exchange”
case.
The above discussion may deliver a result different from that in Proposition 3. In fact, such a

difference appears mainly because Proposition 3 holds when two retailers make their decisions
in the non-cooperative game whereas the above discussion is based on the assumption that
two retailers jointly make their decisions in the cooperative setting. We re-consider the above
example where each retailer’s shelf space can be used to serve only two customers. When retailer
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j allocates a unit of shelf space to retailer i, retailer i’s best response in the non-cooperative
setting is not to also allocate a unit of shelf space to retailer j but to keep all of his shelf space
Si, because, as discussed in Section 4.1, retailer i’s profit is increasing in the space Si when
Si is so small that retailer i cannot serve a half of Bi consumers [i.e., Si ≤ Bi(ūi − ci)/(2t)].
Hence, two retailers’space allocation decisions (Sii = Sjj = 1, for i, j = 1, 2 and i 6= j) cannot
be obtained in equilibrium. That is, two retailers’decisions in Nash equilibrium may not be
the Pareto optimal. Such a result can be actually regarded as “Prisoner’s Dilemma,”which is
indicated as in Table 6 where we note that there is a unique Nash equilibrium (S11, S22) = (2, 2)
because π1(2, 1) > π1(1, 1) > π1(2, 0) > π1(1, 0) and π2(1, 2) > π2(1, 1) > π2(0, 2) > π2(0, 1).
For more information regarding Prisoner’s Dilemma, see, e.g., Straffi n [13, Ch. 12].

Retailer 1
Allocate Do Not Allocate

Retailer 2 Allocate
(π1(1, 1), π2(1, 1))
[(S11, S22) = (1, 1)]

(π1(2, 1), π2(0, 1))
[(S11, S22) = (2, 1)]

Do Not Allocate
(π1(1, 0), π2(1, 2))
[(S11, S22) = (1, 2)]

(π1(2, 0), π2(0, 2))
[(S11, S22) = (2, 2)]

Table 6: The “Prisoner’s dilemma”in the space-exchange game. Retailer i (i = 1, 2)’s decision
“Allocate”means that the retailer decides to allocate a unit of his shelf space to retailer j
(j = 1, 2, j 6= i), and Retailer i’s decision “Do Not Allocate”means that the retailer does
not allocate any space to retailer j but keeps all of his space Si. In addition, πi(Sii, Sji) and
πj(Sij, Sjj) denote retailers i’s and j’s profits when the retailers’space decisions are Sii and
Sjj, respectively. Note that π1(2, 1) > π1(1, 1) > π1(2, 0) > π1(1, 0) and π2(1, 2) > π2(1, 1) >
π2(0, 2) > π2(0, 1).

Moreover, if a retailer’s store is very small, then two retailers may be willing to open new
stores instead of exchange shelf space (if their costs of opening and staffi ng new stores are not
large). For a specific discussion on the impact of fixed costs, see Section 5.2. Our result in
Proposition 3 is also in gear with the practice that the retailers exchanging shelf space include,
e.g., Waitrose, Boots, Tim Hortons, and Cold Stone Creamery.

Appendix F Nash Equilibrium when ūi > c1 + t (i = 1, 2)

For our game analysis for the case that ūi > ci + t (i = 1, 2) in Section 4.2, we provide thirteen
possible Nash equilibria in Table 7.

13



Pricing and Space-Allocation Decisions Online Supplements

Scenario Conditions Nash Equilibrium

(a) S1 ≥
B1
2

+
B2
2
, S2 ≥

B1
2

+
B2
2

SN11 =
B1
2
, SN22 =

B2
2

(b)

B1 +B2 − S2 ≤ S1 ≤
B1
2

+
B2
2
,

S2 ≥
B1
2

+
B2
2
; or

B1
2

+B2[1− (ū2 − c2)/(2t)] ≤ S1 ≤
B1
2

+
B2
2
,

S2 ≥
B1
2

+
B2(ū2 − c2)

2t

SN11 =
B1
2
,

SN22 = B1 +B2 − S1

(c)

B1(ū1 − c1)
2t

− B2(ū2 − c2)
2t

+B2 ≤ S1 ≤ B1 +B2 − S2,

S2 ≥
B1
2

+
B2
2

SN11 =
B1(ū1 − c1)

2t
,

SN22 = B2 +
B1(ū1 − c1)

2t
− S1

(d)
S1 = B1 +B2 − S2,
S2 ≥

B1
2

+
B2
2

B1
2
≤ SN11 ≤ min

[
B1(ū1 − c1)

2t
, S1 −B2[1− (ū2 − c2)/(2t)]] ,
SN22 = B2 − S1 + SN11

(e)
S1 < B1 +B2 − S2,
S2 ≥ B1[1− (ū1 − c1)/(2t)] +

B2(ū2 − c2)
2t

SN11 = B1 +
B2(ū2 − c2)

2t
− S2,

SN22 =
B2(ū2 − c2)

2t

(f)
S1 < B1 +B2 − S2,
S2 ≤ B1[1− (ū1 − c1)/(2t)] +

B2(ū2 − c2)
2t

SN11 =
B1(ū1 − c1)

2t
,

SN22 =
B2(ū2 − c2)

2t

(g) S1 ≤
B1
2

+B2[1− (ū2 − c2)/(2t)], S2 ≥
B1
2

+
B2(ū2 − c2)

2t
SN11 =

B1
2
, SN22 =

B2(ū2 − c2)
2t

(h)
S1 ≥ B1 +B2 − S2,
B2
2

+B1[1− (ū1 − c1)/(2t)] ≤ S2 ≤
B1
2

+
B2
2

SN11 = B1 +B2 − S2,
SN22 =

B2
2

(i)
S1 ≥

B2
2

+
B1(ū1 − c1)

2t
,

S2 ≤
B2
2

+B1[1− (ū1 − c1)/(2t)]

SN11 =
B1(ū1 − c1)

2t
,

SN22 =
B2
2

(j)
B1(ū1 − c1)

2t
+B2[1− (ū2 − c2)/(2t)] ≤ S1 ≤

B2
2

+
B1(ū1 − c1)

2t
,

S2 < B1 +B2 − S1

SN11 =
B1(ū1 − c1)

2t
,

SN22 =
B2
2

+
B1(ū1 − c1)

2t
− S1

(k)
B1(ū1 − c1)

2t
+B2[1− (ū2 − c2)/(2t)] ≤ S1 ≤

B2
2

+
B1(ū1 − c1)

2t
,

S2 = B1 +B2 − S1
S1 −

B2
2
≤ SN11 ≤

B1(ū1 − c1)
2t

,

SN22 = B2 − S1 + SN11

(l)
S1 ≤

B1(ū1 − c1)
2t

+B2[1− (ū2 − c2)/(2t)],

S2 ≥ max

[
B2(ū2 − c2)

2t
+B1[1− (ū1 − c1)/(2t)], B1 −B2 + S1

] SN11 =
B2(ū2 − c2)

2t
+
B1
2
− S2,

SN22 =
B2(ū2 − c2)

2t

(m)
S1 ≤

B1(ū1 − c1)
2t

+B2[1− (ū2 − c2)/(2t)],

S2 ≤
B2(ū2 − c2)

2t
+B1[1− (ū1 − c1)/(2t)]

SN11 =
B1(ū1 − c1)

2t
,

SN22 =
B2(ū2 − c2)

2t

Table 7: Nash equilibria for 13 scenarios when ū1 > c1 + t and ū2 > c2 + t.
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