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Abstract

We use cooperative game theory to investigate multi-player allocation problems under the almost

diminishing marginal contributions (ADMC) property. This property indicates that a player’s

marginal contribution to a non-empty coalition decreases as the size of the coalition increases. We

develop ADMC games for such problems and derive a necessary and suffi cient condition for the

non-emptiness of the core. When the core is non-empty, at least one extreme point exists, and the

maximum number of extreme points is the total number of players. The Shapley value may not be

in the core, which depends on the gap of each coalition. A player can receive a higher allocation

based on the Shapley value in the core than based on the nucleolus, if the gap of the player is

no greater than the gap of the complementary coalition. We also investigate the least core value

for ADMC games with an empty core. To illustrate the applications of our results, we analyze a

code-sharing game, a group-buying game, and a scheduling profit game.

Keywords: Coalitional games; diminishing contributions; the core; the nucleolus; the Shapley
value.

1 Introduction

Cooperative game theory is concerned with the allocation of a payoff that is jointly made by players

in a multi-player coalition. Since the 1940s, a number of solution concepts have been proposed to

solve the problem of how to allocate the coalition payoff in a fair manner. Among these solution

concepts, the core (Gillies 1953), the Shapley value (Shapley 1953), and the nucleolus (Schmeidler 1969)

have received the most attention from researchers in the management science area. Recent decades

have witnessed a proliferation of publications that use the theory in the analysis of allocation-related

management science problems, including those of Hartman and Dror (1996), Raghunathan (2003),

Sošíc (2006), Dror and Hartman (2007), Nagarajan and Sošíc (2007, 2009), Nagarajan and Bassok

(2008), and Leng and Parlar (2009).

The core (Gillies 1953) usually does not represent a unique allocation scheme. To test the non-

emptiness of the core of a coalitional game, we commonly use the Bondareva-Shapley theorem (Bon-

dareva 1963 and Shapley 1967) to check the balancedness of the game. This theorem may require us
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to examine a large number of proper minimal balanced sets, especially when the number of players

is large (Shapley 1967). Although the Shapley value (Shapley 1953) can be computed with a for-

mula, it does not always belong to the non-empty core. Thus, the Shapley value may not ensure

the stability of the grand coalition. In addition, because the Shapley value requires an evaluation for

each subset, its computation is exponentially diffi cult with a large number of players. The nucleolus

(Schmeidler 1969) is an attractive solution concept, mainly because it always uniquely exists in the

non-empty core. Nonetheless, it may not be easy to obtain the nucleolus because we usually have

to calculate it numerically by solving a series of linear programming (LP) problems in an iterative

manner or by solving a large-scale LP problem. Leng and Parlar (2010) provided a summary regarding

the complexity of computing the nucleolus. The above implies that some properties of the common

solution concepts may not be desirable to researchers and practitioners.

The undesirable properties mentioned above could limit the applications of the core, the Shapley

value, and the nucleolus in the management science area. It behooves us to address the following

critical question: does a class of n-player (n ≥ 3) coalitional games possess the properties that allow

us to (i) derive a closed-form condition to examine the non-emptiness of the core, (ii) obtain a closed-

form nucleolus solution, and (iii) find a closed-form condition to test whether the Shapley value is in

the core? This question is important because we often need closed-form conditions and expressions to

analyze allocation-related problems in management science. To that end, in this paper we find a class

of coalitional games called “almost diminishing marginal contributions (ADMC) games.”This class of

games is developed according to the well-known “law of diminishing returns,”that is, a decrease in the

marginal output as a result of an incremental increase in an input. For details, see, e.g., Samuelson and

Nordhaus (2009). An n-player ADMC game is a coalitional game that satisfies the ADMC property,

that is, a player’s marginal contribution to a non-empty coalition decreases as the size of the coalition

increases.

We derive a necessary and suffi cient condition to check the balancedness of an ADMC game. We

also find that the closed-form nucleolus solution for an ADMC game with a non-empty core is identical

to the Equal Allocation of Non-Separable Contribution/Cost (EANSC) value (Moulin 1985). The non-

separable contribution/cost (NSC) is computed as the value of the grand coalition minus the sum of

all players’(separable) marginal contributions to the grand coalition. If the NSC is non-negative, it

represents the non-separable contribution; otherwise, it means the non-separable cost. For an n-player

ADMC game with a non-empty core, we obtain the extreme points of the core in closed form and

show the existence of at least one extreme point and at most n extreme points.

Regarding the Shapley value for the class of ADMC games, we address the following three questions.

First, is the Shapley value always in the core of an ADMC game with a non-empty core? Second,

can we derive a closed-form condition for the existence of the Shapley value in the core? Third,

which players can receive higher allocations based on the Shapley value in the core than based on the

nucleolus and would thus prefer to use the Shapley value for payoff allocation? For the first and second

questions, we show that the Shapley value may not be in the core and derive a suffi cient condition

that is dependent on the gap of each (n− 1)-player coalition. Although the literature is silent on the

discussion of the third question or any similar one, this question is important because the grand payoff
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to be allocated among all players is a fixed amount. If the Shapley value and the nucleolus differ, then

some players receive higher allocations under the Shapley value—based scheme, whereas some others

receive more from the nucleolus. It is thus interesting to examine each player’s preferred allocation

scheme. Our analysis reveals that a player prefers the Shapley value to the nucleolus if the gap of

the player is no greater than the gap of the (n − 1)-player complementary coalition (i.e., the grand

coalition minus the player).

We also investigate ADMC games with an empty core, for which a common solution concept is the

least core value (Shapley and Shubik 1966, Maschler, Peleg, and Shapley 1979). Due to the complexity

of computing the least core value, we explore the existence of a closed-form solution of the least core

value for an ADMC game with an empty core. We derive a lower bound for the least core value,

and obtain the closed-form solution under a condition. The lower bound and the least core value are

both obtained as the equal allocation of the NSC. We illustrate our result by solving a prize donation

game (Shapley and Shubik 1969). Moreover, to demonstrate the applicability of ADMC games in

management science, we analyze three games: a code-sharing game, a group-buying game, and a

scheduling profit game.

2 Definition and Analysis of ADMC Games

We consider an n-player coalitional game in characteristic function form G ≡ (N, v), where N ≡
{1, 2, . . . , n} is a finite set of players and v : 2N → R is a characteristic function with v(∅) = 0. Any

subset of players is called a coalition. For each coalition S ⊆ N , the characteristic value v(S) stands

for the payoff that can be jointly obtained by all players in coalition S.

Definition 1 A coalitional game G is an almost diminishing marginal contributions (ADMC) game
if v(i) ≤ v(T ∪ {i})− v(T ) ≤ v(S ∪ {i})− v(S), ∀i ∈ N , ∀S ⊆ T ⊆ N\{i}, and S 6= ∅.

The condition in Definition 1 indicates the ADMC property, which can be viewed as a description

of the law of diminishing returns (a fundamental principle of economics, see Samuelson and Nordhaus

2009) with the concepts and terms in cooperative game theory. Three examples are provided in Section

3 to illustrate ADMC games.

2.1 Non-Emptiness of the Core and Extreme Points of a Non-Empty Core

For an ADMC game, we derive a necessary and suffi cient condition for the non-emptiness of the core

and investigate the extreme points of the non-empty core.

2.1.1 A Necessary and Suffi cient Condition for Non-Emptiness of the Core

When the core of game G is non-empty, each player has an incentive to remain in the grand coalition N
if we use an allocation scheme in the core to divide the grand payoff v(N) among n players. For game

G, xi (i ∈ N) represents a payoff allocated to player i in the grand coalition, i.e., v(N) =
∑
i∈N xi.

We can compute the excess of coalition S ⊆ N as eS(x) = v(S)−
∑
j∈S xj , where x ≡ (x1, x2, . . . , xn)
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is an n-tuple imputation. Moreover, eS(x) ≤ 0, ∀S ⊆ N , if and only if game G has a non-empty core
and the imputation x is in the core.

Lemma 1 An ADMC game with a non-empty core possesses the following two properties.

1. At an imputation x in the core, the excess of any coalition S increases as one more player joins

coalition S; that is, eS(x) ≤ eS∪{i}(x), ∀i ∈ N\S and 1 ≤ |S| ≤ n− 1.

2. The largest excess reaches its minimum when the excesses of all (n − 1)-player coalitions are

equal, i.e., eI(x) = eJ(x), ∀I, J ⊆ N , I 6= J , and |I| = |J | = n− 1.

Then, we can obtain a necessary and suffi cient condition for the non-emptiness of the core.

Theorem 1 For an ADMC game, the core is non-empty if and only if the characteristic function v
satisfies the following condition:

∑
j∈N v(N\{j}) ≤ (n− 1)v(N). (1)

We rewrite the condition in (1) as

∑
j∈N (v(N)− v(N\{j})) ≥ v(N), (2)

where the term v(N) − v(N\{j}) (j ∈ N) is the marginal contribution of player j to the grand

coalition, thus reflecting player j’s “added value” to the grand coalition. If the sum of all players’

marginal contributions to the grand coalition is no less than the grand payoff v(N), then at least one

allocation of the grand payoff exists among all players such that no player has an incentive to leave

the grand coalition. In addition, using (2), we find that, for an ADMC game with a non-empty core,

the NSC of all players (Moulin 1985) is non-positive, i.e.,

ξ ≡ v(N)−
∑
j∈N (v(N)− v(N\{j})) ≤ 0. (3)

Example 1 We consider a three-player coalitional game G1 = (N, v1), where N = {1, 2, 3} and the
characteristic values of all possible coalitions are

v(∅) = 0; v(1) = 0; v(2) = 1; v(3) = 2;

v(12) = 4; v(13) = 5; v(23) = 7; v(123) = 9.

It follows from Definition 1 that G1 is an ADMC game. Moreover, using Theorem 1, we conclude that

game G1 has a non-empty core.
In another three-player coalitional game G2 = (N, v2), where v(23) = 6, v(123) = 7, and the

characteristic values of other coalitions are the same as those in coalitional game G1. We find from
Definition 1 and Theorem 1 that G2 is an ADMC game with an empty core. C
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2.1.2 Extreme Points of a Non-Empty Core

In cooperative game theory, an important concept related to a non-empty core is the extreme point

of the core. In the point set topology, an extreme point is a point in a convex set that does not lie on

the open line segment connecting any two points in the set. That is, an extreme point of a convex set

A is a point κ ∈ A such that, if κ = θω + (1 − θ)τ with ω, τ ∈ A and θ ∈ [0, 1], then ω = κ and/or

τ = κ. For any n-player coalitional game with a non-empty core, the maximum number of extreme

points of the core is n!.

Because the non-empty core of a coalitional game is defined by a number of linear inequalities, it

includes the interior and the boundary of a polytope and is thus convex. The extreme points of the

core are the intersections of the planar facets of this polytope. Thus, an extreme point of the core

(denoted by ρ ≡ (ρ1, ρ2, . . . , ρn)) is an imputation x = (x1, x2, . . . , xn) that can be determined by a

set of n linearly independent equations each corresponding to the equality between the characteristic

value of a coalition S ⊆ N and
∑
i∈S xi, while the core conditions are satisfied for other coalitions.

As Derks and Kuipers (2002) defined, the coalition whose characteristic value equals the sum of

its players’allocations is called a tight coalition. Obviously, the grand coalition N is always a tight

coalition. Letting S denote a set of n different tight coalitions that correspond to n linearly independent
equations, we have

ρ ∈ % ≡ {x|v(S) =
∑

i∈S
xi, ∀S ∈ S ⊆ 2N ; v(T ) ≤

∑
i∈T

xi, ∀T ∈ 2N\S}, (4)

where % represents the set of extreme points. For any S ⊆ 2N , solving equations {v(S) =
∑
i∈S xi,

∀S ∈ S} can yield a unique extreme point ρ; and the extreme points for all possible different sets S
form the set %.

Theorem 2 For an ADMC game with a non-empty core, v(N) ≥
∑
j∈N\{i}(v(N)− v(N\{j})), ∀i ∈

N . The core has at least one extreme point, and the maximum number of extreme points is n.

1. If v(N) <
∑
j∈N (v(N) − v(N\{j})), then there are n extreme points ρi = (ρi; ρj , j ∈ N\{i}),

for i ∈ N , where ρi = v(N) −
∑
j∈N\{i}(v(N) − v(N\{j})) and ρj = v(N) − v(N\{j}), for

j ∈ N\{i}.

2. If v(N) =
∑
j∈N (v(N)− v(N\{j})), then there is only one extreme point in which ρi = v(N)−

v(N\{i}), for i ∈ N .

The above theorem indicates that, for an ADMC game with a non-empty core, (i) the value of the

grand coalition is no less than the sum of n− 1 players’marginal contributions to the grand coalition,

(ii) at least one and at most n extreme points exist, and (iii) the extreme points can be computed

in closed form. At any extreme point, at least n − 1 players’allocations are equal to their marginal

contributions to the grand coalition.
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2.2 A Closed-Form Nucleolus Solution and the Shapley Value

For an ADMC game with a non-empty core, we present a closed-form nucleolus solution, derive a

suffi cient condition under which the Shapley value is in the core, and compare the Shapley value and

the nucleolus.

2.2.1 A Closed-Form Nucleolus Solution

Schmeidler (1969) proposed the nucleolus based on the principle of minimizing the “unhappiness”

of the most unhappy coalition(s), of the second most unhappy coalition(s), etc. The unhappiness

of a coalition is defined as the excess of the coalition. That is, the nucleolus solution is an n-tuple

imputation x = (x1, x2, . . . , xn) such that the excess eS(x) of any possible coalition S ⊆ N cannot be

reduced without increasing any other greater excess. The excess eN (x) = 0 because of the collective

rationality under which all players fully share the grand payoff v(N). For the applications of the

nucleolus in management science, see, for example, Barton (1992), Leng and Parlar (2009), and Guo,

Leng, and Wang (2012).

We can use Lemma 1 and Theorem 1 to determine that the nucleolus solution of an ADMC game

with a non-empty core is identical to the EANSC value (Moulin 1985), which means that each player

receives his or her separable contribution and all players equally share the NSC. That is, the nucleolus

solution y = (y1, y2, . . . , yn) is

yi = (v(N)− v(N\{i})) +
ξ

n
, ∀i ∈ N , (5)

where the first term is a separable contribution of player i, and ξ is the NSC of all players, as defined in

(3). Because ξ ≤ 0, the allocation to each player can be explained as the player’s marginal contribution

less the per player share of the non-separable cost.

To further understand the nucleolus solution in (5) from the managerial perspective, we rewrite it as

yi = v̄N +ηi, ∀i ∈ N . Here, v̄N ≡ v(N)/n represents the equal (average) allocation of the grand payoff

v(N) among n players, and ηi ≡ v(N) − v(N\{i}) − m̄ in which m̄ ≡ [
∑
j∈N (v(N) − v(N\{j}))]/n

is the (overall) average marginal contribution of all players to the grand coalition. Thus, a positive,

negative, or zero value of ηi corresponds to the case in which player i makes a marginal contribution

above, below, or equal to the overall average. That is, under the ADMC property, when the core

is non-empty, a player’s payoff allocation in terms of the nucleolus solution is only dependent on all

players’marginal contributions to the grand coalition. This implies that, in the case of ADMC games,

Schmeidler’s original “unhappiness”-based definition of nucleolus (Schmeidler 1969) could be viewed

as a marginal contribution—based allocation.

When a player’s marginal contribution is higher than the overall average (viz., the player is more

important to the grand coalition), the player should receive a greater allocation. This can help

minimize the unhappiness of each coalition. Noting that
∑
i∈N ηi = 0, we conclude that one or more

players can gain more than the average allocation of the grand payoffwhereas some or all of the others

would then gain less. Moreover, the nucleolus solution in (5) is aggregate-monotonic because each

player receives a higher allocation yi (i ∈ N) if the grand payoff v(N) increases. This is important,
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because the nucleolus may not be aggregate-monotonic even on the domain of convex games, although

the aggregate monotonicity property is a desirable one for the solution concepts in cooperative game

theory (Megiddo 1974 and Young 1985).

2.2.2 The Shapley Value

For an n-player coalitional game, the Shapley value for player i ∈ N is computed as φi =
∑
S⊆N\{i} |S|!(n−

|S| − 1)!(v(S ∪ {i})− v(S))/(n!), where S denotes any possible coalition excluding player i, and |S| is
the size of S. Although the Shapley value is a unique, monotonic solution (Megiddo 1974 and Young

1985), it may not belong to the core.

Theorem 3 For an ADMC game with a non-empty core, if

∑
i∈S

v(i) + (n− 1)(v(N)− v(N\{i}))
n

≥ v(S), for S ⊂ N and |S| = n− 1, (6)

then the Shapley value is in the core. Otherwise, the Shapley value may not be in the core.

Theorem 3 indicates that to examine whether the Shapley value is the core, we can check the

condition in (6) for n (n− 1)-player coalitions. We rewrite the condition in (6) as

gS ≥ dS ≡
1

n

∑
i∈S

g{i}, for S ⊂ N and |S| = n− 1,

where, as Driessen (1985) defined, gS =
∑
i∈S(v(N)−v(N\{i}))−v(S) is the gap of coalition S in the

game. Because dS ≤
∑
i∈S g{i}/ |S|, we find that, if gS ≥

∑
i∈S g{i}/ |S|, then the condition in (6) is

satisfied and the Shapley value is in the core. Note that
∑
i∈S g{i}/ |S| is the average of the individual

gaps of all players in coalition S, which is simply called the “average individual gap.”Therefore, if, for

any (n − 1)-player coalition, the gap of the coalition is higher than the average individual gap, then

the Shapley value belongs to the core.

Example 2 We consider the coalitional game G1 = (N, v1) in the first example of Example 1, from

which we learn that G1 is an ADMC game with a non-empty core. Using (5), we compute the nucleolus
as y = (y1, y2, y3) = (4/3, 10/3, 13/3). The condition in (6) is satisfied, which implies that for game

G1, the Shapley value is in the core. We compute the Shapley value as (φ1, φ2, φ3) = (5/3, 19/6, 25/6),

which satisfies all the core conditions and differs from the nucleolus y.

Theorem 3 indicates that, if the condition in (6) does not hold for an ADMC game, then there

are two possible cases: (i) the Shapley value is in the core or (ii) the Shapley value is not in the core.

Next, we provide an example to illustrate case (i). Consider a coalitional game G2 = (N, v2), where

N = {1, 2, 3} and the characteristic values of all possible coalitions are given as

v(∅) = 0; v(1) = 1; v(2) = 1; v(3) = 1;

v(12) = 4; v(13) = 6; v(23) = 6.5; v(123) = 9.
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We find from Definition 1 and Theorem 1 that G2 is also an ADMC game with a non-empty core. Unlike
game G1, the condition in (6) is not satisfied for game G2, because, when S = {1, 3},

∑
i∈{1,3}[v(i) +

(n−1)(v(N)−v(N\{i}))]/n = 17/3 < v(13) = 6, and when S = {2, 3},
∑
i∈{2,3}[v(i)+(n−1)(v(N)−

v(N\{i}))]/n = 6 < v(23) = 6.5. Thus, we cannot immediately determine whether the Shapley value

is in the core. We compute the Shapley value as (φ1, φ2, φ3) = (2.5, 2.75, 3.75), which satisfies all the

core conditions and thus belongs to the core. For game G2, we can use the formula in (5) to obtain
the nucleolus as (y1, y2, y3) = (2, 2.5, 4.5), which differs from the Shapley value.

We then provide another example to illustrate case (ii). Consider a coalitional game G3 = (N, v3),

where N = {1, 2, 3} and the characteristic values of all possible coalitions are given as

v(∅) = 0; v(1) = 0; v(2) = 0; v(3) = 0;

v(12) = 4; v(13) = 6; v(23) = 8; v(123) = 9.

Similar to our analysis of games G1 and G2, we find that G3 is an ADMC game with a non-empty core;
the condition in (6) is not satisfied for game G3, because the condition does not hold when S = {1, 2},
{1, 3}, and {2, 3}. We compute the Shapley value as (φ1, φ2, φ3) = (2, 3, 4), which does not satisfy all

the core conditions, because φ2 + φ3 = 7 < v(23) = 8. It follows that the Shapley value is not in the

core. C

In Example 2, although the Shapley values in games G1 and G2 are in the core, they differ from
the nucleolus. A question may arise as follows: if the Shapley value is in the core of an ADMC game

with a non-empty core, which players would receive higher allocations based on the Shapley value

than based on the nucleolus and would thus prefer the Shapley value for payoff allocation?

Theorem 4 Suppose that, for an ADMC game with a non-empty core, the condition in (6) is satisfied
and thus the Shapley value is in the core. If the gap of player i ∈ N is no greater than the gap of

coalition N\{i}, i.e.,
g{i} ≤ gN\{i}, (7)

then player i’s allocation in terms of the Shapley value is no smaller than that in terms of the nucleolus.

Otherwise, player i may receive more from the nucleolus-based allocation scheme in (5) than from the

Shapley value-based allocation scheme.

The above theorem exposes that if the Shapley value remains in the core, the players that satisfy

the condition in (7) would prefer the Shapley value to the nucleolus, whereas the others may prefer

to use the nucleolus-based allocation scheme. To illustrate our result in Theorem 4, we examine

ADMC games G1 and G2 in Example 2. For game G1, g{1} = g{2,3} = 2, g{2} = 3 > g{1,3} = 2,

and g{3} = 3 > g{1,2} = 2. As computed in Example 2, for game G1, φ1 = 5/3 > y1 = 4/3;

but, φ2 = 19/6 < y2 = 10/3, and φ3 = 25/6 < y3 = 13/3. That is, only player 1 prefers the

Shapley value to the nucleolus, whereas players 2 and 3 prefer to use the nucleolus for the allocation

of v(N). This is consistent with our result in Theorem 4. Similarly, for game G2, g{1} = g{2,3} = 1.5,

g{2} = 2 > g{1,3} = 1.5, and g{3} = 4 > g{1,2} = 1.5. According to Theorem 4, player 1 receives more
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from the Shapley value but at least one of players 2 and 3 receives more from the nucleolus. The

result is consistent with our computation in Example 2: φ1 = 2.5 > y1 = 2, φ2 = 2.75 > y2 = 2.5, and

φ3 = 3.75 < y3 = 4.5.

2.3 The Least Core Value of an ADMC Game with an Empty Core

If the condition in (1) is not satisfied for an ADMC game, i.e.,
∑
j∈N v(N\{j}) > (n − 1)v(N), or

equivalently, the NSC of all players—i.e., ξ, as given in (3)—is positive, then the core of the game is

empty, and the least core and the least core value are two important solution concepts for analysis of

such games. According to Shapley and Shubik (1966) and Maschler, Peleg, and Shapley (1979), the

least core of a coalitional game includes all imputations that are optimal solutions to the following LP

problem:

ε∗ = min{ε :
∑
i∈N xi = v(N); eS(x) ≤ ε, ∀S ⊂ N , and S 6= ∅}, (8)

where ε∗ is the least core value.

When the core is empty, the grand coalition cannot be stable because at least one coalition can

gain more by leaving the grand coalition. This is likely to occur when the coalition(s) do not need to

incur any cost for leaving the grand coalition. Assuming that a coalition leaving the grand coalition

has to pay a “penalty” in amount of ε∗, which is the optimal solution to the LP problem in (8), we

find that all coalitions can be better off if they stay in the grand coalition. This means that the grand

coalition will be stable if a penalty of at least ε∗ is charged. For a coalitional game with an empty core,

the penalty ε∗ is deemed to be the least core value, and all imputations that result in the stability of

the grand coalition (under the penalty scheme) constitute the least core.

Theorem 5 For an ADMC game with an empty core, the least core value ε∗ is no smaller than the
equal allocation of the NSC (i.e., ξ/n). Moreover, ε∗ = ξ/n, if, for any player i ∈ N ,

βi ≥
ξ

n− 1
, (9)

where βi ≡ min{[v(N\{k}) − v(N\{i, k})] − [v(N) − v(N\{i})], ∀k ∈ N\{i}} means the minimum
increase in player i’s marginal contribution when he leaves the grand coalition for an (n − 1)-player

coalition.

Because of the ADMC property, player i ∈ N can achieve an increase in his or her marginal

contribution when the player leaves the grand coalition for an (n − 1)-player coalition. Theorem 5

discloses that, if the minimum increase is no smaller than the equal allocation of the NSC among the

n− 1 players excluding player i, then the least core value reaches its lower bound ξ/n.

The least core and the least core value can also be used to analyze a coalitional game with a non-

empty core, for which the least core value ε∗ is non-positive, and |ε∗| can be viewed as the minimum
bonus that induces at least one coalition to leave the grand coalition. For an ADMC game with a

non-empty core, the least core and the nucleolus coincide, and we can use (5) to calculate the least

core value as ε∗ = ξ/n ≤ 0.
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To illustrate the results in Theorem 5, we analyze Shapley and Shubik’s “prize donation game”

(1969), which is a typical example of externalities. In the game, a donor promises to distribute a

prize Z = $3 among three players, if and only if all players can unanimously agree with a scheme for

allocating the prize among them. Otherwise, if only two players agree, then the donor distributes a

smaller prize x < Z between the two players, and the other player who does not agree receives nothing.

In addition, there is no prize if only one player agrees. The prize donation game can be formulated

as follows: v(∅) = v(i) = 0, for i ∈ N = {1, 2, 3}; v(ij) = x, for i, j ∈ N and i 6= j; and v(N) = Z.

Shapley and Shubik (1969) provided two numerical examples with x = $1.5 and x = $2.5.

Using Definition 1, we find that the prize donation game is an ADMC game, if and only if x ≥ Z/2.
According to Theorem 1, when Z/2 ≤ x ≤ 2Z/3 (e.g., x = 1.5, as in Shapley and Shubik’s first

example), the game is an ADMC game with a non-empty core, and we can use the formula in (5) to

compute the nucleolus solution as yi = Z/3, ∀i ∈ N . When 2Z/3 < x < Z (e.g., x = 2.5, as in Shapley

and Shubik’s second example), it is an ADMC game with an empty core, and we can use Theorem 5 to

compute the least core value. Because βi = 2x−Z (for any player i ∈ N) and ξ/(n−1) = (3x−2Z)/2,

the condition in (9) is satisfied and the least core value can be computed as ε∗ = (3x− 2Z)/3. That

is, if any coalition who disagrees with the allocation of prize Z and leaves the grand coalition has to

pay a “penalty” in amount of (3x − 2Z)/3, then every player will remain in the grand coalition and

agree with the prize allocation.

3 Applications in Management Science

In practice, the search for economies of scale and the reduction of risk are two of the major motivations

for firms to form coalitions or alliances (Porter and Fuller 1986). The economies of scale and risk

pooling could give rise to the ADMC property.

3.1 Application in the Airline and Shipping Areas: Analysis of a Code-Sharing
Game

Strategic alliances are a prevalent form of cooperation between two or among three or more business

entities in network-oriented industries such as air transport, shipping, telecommunications, multimodal

transportation, and logistics industries (Zhang and Zhang 2006). As a common practice in the airline

industry (Oum et al. 2002) and the ocean shipping industry (Sheppard and Seidman 2001), horizontal

cooperation among multiple firms can result in freight cost savings for these firms and is viewed as an

effi cient solution to the improvement of freight transportation (Ergun, Kuyzu and Savelsbergh 2007).

In the airline industry, carriers (e.g., Northwest, Continental, and Delta) cooperate extensively via

code sharing, joint frequent flyer programs, and strategic alliances (e.g., Star Alliance, SkyTeam, and

Oneworld) to expand their networks, improve revenues, reduce costs, and increase customer benefits

(Iatrou and Alamdari 2005).

Under a code-sharing program, two or more airlines share a single flight to increase capacity

utilization and service frequency. However, the marginal contribution made by an airline could decrease

with the number of airlines in the program. Thus, we may construct and analyze an ADMC game to

10



find the allocation of cost savings generated by horizontal cooperation among multiple airlines. This

research issue is important because the lack of a fair mechanism to allocate the cost savings is one of the

major impediments for multi-firm cooperation in logistics (Cruijssen, Cools and Dullaert 2007). For

the airline industry, the study of effective revenue-sharing mechanisms is extremely limited, although

there is a rich literature on strategic alliances (Çetiner 2013).

Next, we develop a code-sharing game in characteristic function form, in which three or more

airlines (n ≥ 3) share a single flight under a codeshare agreement. We learn from Wensveen (2007)

and from Vasigh, Fleming, and Tacker (2008) that for a flight operation, an air carrier incurs a

fixed cost and a variable cost. The fixed cost consists of direct operating (operations-related) costs

that do not vary with changes in available seat-miles (ASMs). Here, a seat-mile is one passenger

seat transported one statute mile. The typical direct operating costs include the costs of the flight

(e.g., flight crew expenses, fuel and oil, airport and en route charges, etc.), maintenance and overhaul

costs, and depreciation and amortization costs. The variable cost is composed of indirect operating

(passenger-related) costs that depend mainly on the ASMs. Such indirect costs include station and

ground expenses, passenger service costs, and others.

According to the above, an airline coalition S ⊆ N incurs the fixed cost Π and the variable cost

π(S) that is dependent on the total ASMs in S. For coalition S, the cost savings can be computed as

the sum of the airlines’operating costs before joining the coalition minus the total operating cost of the

coalition and can be treated as its characteristic value. That is, v(S) =
∑
i∈S(Π+π(i))−(Π+π(S)) =

Π(|S| − 1) +
∑
i∈S π(i)− π(S).

Proposition 1 The code-sharing game is an ADMC game, if Π ≥ Π0 ≡ max{π(N)−π(N\{i})−π(i),

∀i ∈ N}, and the variable cost π(·) is a convex function.

Proposition 1 discloses that a code-sharing game with a suffi ciently large fixed cost and a convex

variable cost is an ADMC game. Such a game is common in practice because of the following two

facts. First, as de Arantes Gomes Eller and Moreira (2014) mentioned, the fixed costs represent

approximately 65% of an airline’s total cost. This means that in the airline industry, the fixed cost

is usually very large. Second, according to the findings of Vasigh, Fleming, and Tacker (2008), the

marginal cost could be increasing, which implies that the variable cost could be a convex function. In

a number of relevant papers (e.g., Barbot 2004), the variable cost is assumed to be a linear function of

the ASMs. Under such an assumption, the two suffi cient conditions in Proposition 1 are met because

π(T ∪ {i}) − π(T ) − π(i) = 0, and π(T ∪ {i}) − π(T ) = π(S ∪ {i}) − π(S), for player i ∈ N and for

coalitions S and T such that S ⊆ T ⊆ N\{i}. Thus, the game is an ADMC game.

Corollary 1 The code-sharing game has a non-empty core, if it is an ADMC game and Π ≥ (n −
1)π(N)−

∑
j∈N π(N\{j}).

Corollary 1 reveals that the code-sharing game is an ADMC game with a non-empty core if the

fixed cost is suffi ciently large. This can occur in reality, because, as mentioned above, the fixed cost is

usually very large in the airline industry. When the core of the code-sharing game is non-empty, we

can use the formula in (5) to compute the nucleolus for the game.
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Moreover, the code-sharing game is an ADMC game with an empty core, if the variable cost π(·)
is a convex function and the fixed cost Π is given such that Π0 ≤ Π < (n− 1)π(N)−

∑
j∈N π(N\{j}).

Using Theorem 5, we find that the least core value ε∗ ≥ [(n−1)π(N)−
∑
j∈N π(N\{j})−Π]/n, where

the equality holds if Π ≥ (n−1){π(N\{i})+π(N\{k})−π(N\{i, k})}−
∑
j∈N π(N\{j}), for i, k ∈ N

and i 6= k.

3.2 Application in the Purchasing Area: Analysis of a Group-Buying Game

Group buying (which is a kind of cooperative purchasing) is a common practice in many professional

fields such as grocery, health care, electronics, industrial manufacturing, and agriculture. Two or

more firms form a purchasing group or consortium (coalition) to obtain a price discount on goods or

services from vendors based on the aggregate purchasing quantity (Chen and Roma 2011). The price

discount obtained by a purchasing group is usually increasing but concave in the purchase quantity

(Schotanus, Telgen, and de Boer 2008). Therefore, the cost savings that a firm can contribute to a

larger purchasing group is smaller, which indicates that the ADMC property may appear in group

buying. Thus, we can construct an ADMC game to determine the allocation of cost savings among

the members in a purchasing group.

We analyze a group-buying game in characteristic function form, in which n ≥ 3 retailers jointly

purchase a product from a supplier to achieve cost savings. As considered by Schotanus, Telgen, and

de Boer (2009) and by Chen and Roma (2011), the supplier charges the retailers a quantity-dependent

unit wholesale price for the product. The wholesale price is modeled as a continuous quantity discount

function (QDF) w(q) = a + d/qe, where a > 0 is the base price, d > 0 is the discount scale, q is the

purchase quantity, and e is the steepness. Schotanus, Telgen, and de Boer (2009) showed that the

QDF with e ∈ [−1, 1.6] fits well with 66 discount schedules in practice.

Retailer i ∈ N purchases qi > 0 units of the product from the supplier. If the retailer uses individual

purchasing, its total purchase cost is qiw(qi) = aqi + d(qi)
1−e. However, if the retailers in coalition

S ⊆ N use group purchasing, they will enjoy a lower wholesale price w(qS) = a + d/(qS)e, where

qS ≡
∑
i∈S qi. As a result, in coalition S, retailer i’s total purchase cost is qiw(qS) = aqi + dqi/(qS)e.

By joining the group-buying coalition S, retailer i can achieve the cost savings as qiw(qi)− qiw(qS) =

d[(qi)
1−e − qi(qS)−e]. Thus, we can compute the characteristic value of coalition S (i.e., the total cost

savings realized by all retailers in S) as

v(S) =
∑
i∈S [qiw(qi)− qiw(qS)] = d

[∑
i∈S(qi)

1−e − (qS)1−e
]
.

Proposition 2 The group-buying game is an ADMC game if q1−e is a decreasing, convex function.
That is, the group-buying game with e ≥ 1 is an ADMC game.

The above proposition indicates that the property of function q1−e is important to determine

whether the group-buying game is an ADMC game. As Schotanus, Telgen, and de Boer (2009)

showed, in practice, the value of steepness e falls in the range [−1, 1.6]. We find that if e is in the

range [1, 1.6], then the function q1−e is decreasing and convex. We can thus conclude that the group-

buying problem can be viewed as an ADMC game, when the steepness for the quantity discount is
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suffi ciently large such that e ∈ [1, 1.6].

Corollary 2 For every group-buying game that is an ADMC game, the core is non-empty.

We learn from Corollary 2 that if a group-buying game is an ADMC game (i.e., e ≥ 1), then its

core is non-empty. This could occur in practice, when steepness e is in the range [1, 1.6].

3.3 Application in the Manufacturing Area: Analysis of a Scheduling Profit Game

Schulz and Uhan (2013) considered a submodular profit game G = (N, v) that involves three or more

agents (n ≥ 3). Each agent has a job with a unit processing time (viz., the processing time of each job

is 1) and a deadline di ∈ Z>0. This implies that if a single agent processes her job on a machine, then
there is no tardiness for the job (if di ≥ 1). If the agent’s job is completed by its deadline, the agent

can earn a profit wi ∈ R≥0; otherwise, the agent obtains nothing. All agents in a coalition S ⊆ N

schedule their jobs on a single machine to maximize the total profit, which is the characteristic value

of the coalition v(S). The machine can process only one job at a time. To have an incentive to join

the grand coalition N , all agents need a scheme for allocating the total profit v(N) among them. We

simply call this game a “scheduling profit game.”As Schulz and Uhan (2013) argued, game G is a
submodular profit game with an empty core.

We consider a variation of the above game, denoted by G′ = (N, v′), which differs from Schulz and

Uhan’s game G (2013) in the following two aspects. First, when a coalition uses the machine to process
its agents’jobs, it incurs a machine setup cost s > 0 before the jobs are processed. Second, if the job

of an agent i ∈ N is completed after its deadline, the agent still gains a profit wi but also incurs a

tardiness loss t ∈ (0,min{wi, i ∈ N}]. In reality, the machine setup cost may not be negligible, and an
agent may still obtain a positive profit despite a loss due to job tardiness. Therefore, in game G′, for
any coalition S ⊆ N and S 6= ∅, v′(S) =

∑
i∈S\LS wi +

∑
i∈LS (wi − t)− s, where LS denotes the set

of delayed jobs under the optimal schedule for coalition S.

Proposition 3 The scheduling profit game G′ with machine setup cost s and job tardiness loss t is
an ADMC game when t ≤ s.

When we consider a machine setup cost and a job tardiness loss in scheduling, the resulting profit

game G′ is an ADMC game if the job tardiness loss is no more than the setup cost. Next, to illustrate
the application of our result in Theorem 1, we use the inequality in (1) to derive a suffi cient condition

for the non-emptiness of the core of G′.

Corollary 3 The core of the scheduling profit game G′ is non-empty if t ≤ min{s, (
∑
j∈N wj −

v′(N))/|LN |}.

When the scheduling profit game G′ has a non-empty core, the formula in (5) can be used to
compute the nucleolus for the game. Moreover, if (

∑
j∈N wj − v′(N))/|LN | < t ≤ s, the game is an

ADMC game with an empty core, and Theorem 5 can be used to find the lower bound of the least

core value.

13



4 Summary and Concluding Remarks

We consider multi-player allocation problems under the ADMC property, for which we develop ADMC

games and derive a necessary and suffi cient condition for the non-emptiness of the core. The nucleolus

solution of an ADMC game with a non-empty core is the EANSC value. For an n-player ADMC game

with a non-empty core, we obtain closed-form solutions for the extreme points of the core, and find

that at least one extreme point exists and that the maximum number of extreme points is n. We also

derive a suffi cient condition under which the Shapley value remains in the core. Moreover, a player

can receive a higher allocation based on the Shapley value in the core than based on the nucleolus, if

the gap of the player is no greater than the gap of the (n−1)-player complementary coalition. For the

ADMC games with an empty core, although it may be diffi cult to compute the least core value, we

derive its lower bound and obtain a closed-form solution under a condition. Both the lower bound and

the closed-form solution are obtained as the equal allocation of the NSC. We analyze a prize donation

game (Shapley and Shubik 1969) to illustrate our results.

To demonstrate the applicability of ADMC games in management science, we analyze three games:

a code-sharing game, a group-buying game, and a scheduling profit game. We show that a code-sharing

game with a suffi ciently large fixed cost and a convex variable cost function, a group-buying game

with a greater-than-one steepness in quantity discount, and a scheduling profit game with a machine

setup cost and a suffi ciently small job tardiness loss are all ADMC games. Such situations could occur

in practice, as indicated by relevant empirical or analytical findings in some publications.

In summary, this paper contributes to the literature by (i) introducing the class of ADMC games,

(ii) deriving a necessary and suffi cient condition for the non-emptiness of the core of an ADMC game,

(iii) computing the extreme points of the core and discussing the Shapley value for ADMC games, and

(iv) presenting various applications in management science. We expect that the new class of games

and our results can help improve the application of cooperative game theory in management science.
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Appendix A Proofs

Proof of Lemma 1. We consider an imputation x = (x1, x2, . . . , xn) in the non-empty core. For

an (n − 1)-player coalition T = N\{i} (i ∈ N), the excess eT (x) = v(T ) − v(N) + xi is non-positive

because v(N) =
∑
j∈N xj =

∑
j∈T xj +xi ≥ v(T ) +xi. For any coalition S ⊆ T and S 6= ∅, under the

ADMC property, we have

eS∪{i}(x)− eS(x) = v(S ∪ {i})− v(S)− xi
≥ v(T ∪ {i})− v(T )− xi
= v(N)− v(N\{i})− xi,

which is non-negative according to our above argument for an (n− 1)-player coalition. Therefore, we

find the first property that eS(x) ≤ eS∪{i}(x), ∀i ∈ N\S and 1 ≤ |S| ≤ n− 1.

According to the above result, whenever the n-tuple imputation x is in the core, the largest excess

is the excess of an (n− 1)-player coalition. The number of (n− 1)-player coalitions is n. We assume
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that among the n coalitions, the excess of coalition I is the largest and the excess of coalition J is

the smallest. That is, eI(x) = max{eM (x), ∀M ⊆ N, |M | = n − 1} and eJ(x) = min{eM (x), ∀M ⊆
N, |M | = n − 1}, for I, J ⊆ N , I 6= J , and |I| = |J | = n − 1. Without loss of generality, we let

I = N\{i} and J = N\{j}, where i, j ∈ N . If eI(x) > eJ(x), then, to reduce the largest excess eI(x),

we can increase the value of xj and decrease the value of xi. As a result, the excess eI(x) is reduced

but the excess eJ(x) is increased, and other excesses are not changed. When eI(x) = eJ(x), we need

not further change the values of xi and xj , because, otherwise, eJ(x) > eI(x). Then, we can similarly

reduce the second largest excess(es), the third largest excess(es), and others until the excesses of all

(n− 1)-player coalitions are equal.

Proof of Theorem 1. We first show the suffi ciency of the condition. For an (n−1)-player coalition

S = N\{i} (i ∈ N), we compute the excess eS(x) as eS(x) = v(S)−
∑
j∈S xj = v(N\{i})− v(N) +xi.

Considering an imputation x = (x1, x2, . . . , xn) such that xi = (v(N)+
∑
j∈N v(N\{j}))/n−v(N\{i}),

for i ∈ N , we can rewrite eS(x) as eS(x) = (v(N) +
∑
j∈N v(N\{j}))/n− v(N), which is non-positive

if the condition in (1) is satisfied.

For an (n − 2)-player coalition S = N\{i, j} (i, j ∈ N), we compute the difference between the
excesses eS∪{i}(x) and eS(x) as follows: eS∪{i}(x)− eS(x) = v(S ∪ {i})− v(S)− xi ≥ v(S ∪ {i, j})−
v(S ∪ {j})− xi, where the inequality follows the ADMC property. Letting T ≡ S ∪ {j} (which is an
(n − 1)-player coalition), we find that v(S ∪ {i, j}) − v(S ∪ {j}) − xi = v(N) − v(T ) − xi, which is
non-negative as shown in our above argument for the (n − 1)-player coalition. It thus follows that

eS∪{i}(x) − eS(x) ≥ 0, and the excesses of all (n − 2)-player coalitions are non-positive. Similarly,

we can show by induction that for the imputation x, all excesses are non-positive, i.e., eS(x) ≤ 0,

∀S ⊆ N . That is, the imputation x is in the core, which means that the core is non-empty.

We now prove the necessity of the condition. When the core is non-empty, at least one feasible

solution exists for the following LP problem: minx1 subject to (i) eS(x) ≤ 0, ∀S ⊆ N and (ii)∑
i∈N xi = v(N), because each feasible solution corresponds to an imputation in the non-empty core.

Next, we find a feasible solution to the above LP problem, which is thus in the core.

We learn from the first result in Lemma 1 that for every imputation x in the core, the largest

excess is the excess of an (n− 1)-player coalition. This means that if the excesses of all (n− 1)-player

coalitions are non-positive, then the excesses of all coalitions are non-positive. That is, in the LP

problem, if, ∀S ⊆ N such that |S| = n − 1, constraint (i) is satisfied, then the constraint is satisfied

for all S ⊆ N . Therefore, we need only examine the excesses of all (n− 1)-player coalitions.

As the second result in Lemma 1 indicates, the largest excess reaches its minimum if the excesses

of all (n − 1)-player coalitions are equal. This implies that if an imputation makes the excesses of

all (n − 1)-player coalitions equal, then it is a feasible solution to the above LP problem, because

any other imputation raises the largest excess and thus makes constraint (i) more diffi cult to satisfy.

Accordingly, we solve the equations eS(x) = eT (x), ∀S, T ⊆ N , where S 6= T , and |S| = |T | = n− 1,

which can be written as {
xi − x1 = v(N\{1})− v(N\{i}), ∀i ∈ N\{1},∑
j∈N xj = v(N).

(10)
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Solving the equations in (10) yields the unique solution xi = (v(N) +
∑
j∈N v(N\{j}))/n− v(N\{i}),

∀i ∈ N , which is in the non-empty core. For this imputation, eS(x) =(
∑
j∈N v(N\{j}) − (n −

1)v(N))/n ≤ 0; this implies that the condition in (1) is satisfied when the core is non-empty. That is,

the condition is also a necessary condition for the non-emptiness of the core.

Proof of Theorem 2. We begin by discussing which coalitions are tight if there exists an extreme

point ρ ∈ %. Peleg and Sudhölter (2007) noted that extreme points can be determined based on
minimal balanced collections (MBCs). According to the Bondareva-Shapley theorem (Bondareva

1963 and Shapley 1967), if and only if the core of a coalitional game is non-empty, then, for each MBC

B, ∑
S∈B δSv(S) ≤ v(N), (11)

where {δS}S∈B is the system of balancing weights for B such that
∑
S∈B:j∈S δS = 1, for every j ∈ N .

We learn from Theorem 1 that the inequality in (1) is the necessary and suffi cient condition for

the non-emptiness of an ADMC game, which is the same as the condition in (11) for the MBC

B = {N\{i}}i∈N with the balancing weights δN\{i} = 1/(n − 1). That is, for an ADMC game,

when the condition in (1) (i.e., the condition in (11) for the MBC consisting of all the (n− 1)-player

coalitions) is satisfied, the core is non-empty, which implies that the conditions in (11) for the other

MBCs are also satisfied. As a result, for an ADMC game with a non-empty core, we need only consider

the MBC consisting of n (n− 1)-player coalitions. Note that the grand coalition N is always a tight

coalition, i.e.,
∑
i∈N xi = v(N). For an n-player ADMC game with a non-empty core, because a set of

n linearly independent equations is needed to uniquely calculate an extreme point, the existence of an

extreme point requires that the minimum number of (n−1)-player tight coalitions is n−1. Therefore,

for any ADMC game with a non-empty core, the maximum number of extreme points is n.

We learn from Theorem 1 that
∑
j∈N (v(N)− v(N\{j})) ≥ v(N). Before computing the extreme

points, we investigate whether it is possible for an ADMC game with a non-empty core to possess the

condition
∑
j∈N\{i} (v(N)− v(N\{j})) > v(N), for i ∈ N . Letting N\{l} = {j1, j2, . . . , jn−2, jn−1}

(where l ∈ N and jn−1 = i) and Sk ≡ N\{l, j1, . . . , jk} (k = 1, 2, . . . , n− 1), we have

v(N) = v(N)− v(N\{l}) + (v(N\{l})− v(S1)) + (v(S1)− v(S2))

+ . . .+ (v(Sn−3)− v(Sn−2)) + v(Sn−2),

where Sn−2 = {jn−1} = {i}. According to the ADMC property in Definition 1, we find that v(N\{l})−
v(S1) ≥ v(N)− v(N\{j1}) and v(St−1)− v(St) ≥ v(N)− v(N\{jt}), for t = 2, . . . , n− 2. Therefore,

v(N) ≥
∑
j∈N\{i}(v(N)− v(N\{j})) + v(i). (12)

Assuming that the condition
∑
j∈N\{i}(v(N)− v(N\{j})) > v(N) (i ∈ N) is satisfied, we can rewrite

the inequality in (12) as

v(N) > v(N) + v(i). (13)

Because the inequality in (13) cannot be satisfied because v(i) ≥ 0, we conclude that the condi-

tion
∑
j∈N\{i} (v(N)− v(N\{j})) > v(N) cannot hold for any ADMC game. Then, we consider the
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following two scenarios.

1. v(N) <
∑
j∈N (v(N)− v(N\{j})). In this case, each extreme point corresponds to a set of (n−

1)-player tight coalitions (i.e., N\{j}, j ∈ N\{i}) and thus, there are n extreme points. For the
set of coalitions N\{j}, j ∈ N\{i}, the extreme point can be obtained as ρj = v(N)−v(N\{j}),
j ∈ N\{i}, and ρi = v(N)−

∑
j∈N\{i} (v(N)− v(N\{j})), i ∈ N .

2. v(N) =
∑
j∈N (v(N)− v(N\{j})). For this case, all the (n − 1)-player coalitions are tight.

Therefore, there are n+1 tight coalitions (including the grand coalition). For any tight coalition,

the corresponding equation is linearly dependent on n linearly independent equations that result

from the other tight coalitions. Thereby, there is only one extreme point in which ρi = v(N)−
v(N\{i}), ∀i ∈ N .

Summarizing the above, we find that, for an n-player ADMC game with a non-empty core, the

core has at least one extreme point, and the maximum number of extreme points is n.

Proof of Theorem 3. Using Definition 1, we find that, for any ADMC game, v(S ∪ {i})− v(S) ≥
v(N)− v(N\{i}), for S ⊆ N\{i} and |S| ≥ 1. Thus, the Shapley value for player i ∈ N is computed

as:

φi =

∑
S⊆N\{i} |S|!(n− |S| − 1)!(v(S ∪ {i})− v(S))

n!

≥ v(i)

n
+ (v(N)− v(N\{i}))

∑
S⊆N\{i},|S|≥1 |S|!(n− |S| − 1)!

n!

=
v(i)

n
+ (v(N)− v(N\{i}))(n− 1)(n− 1)!

n!

=
v(i) + (n− 1)(v(N)− v(N\{i}))

n
.

Therefore, the Shapley value is in the core, if

∑
i∈S

v(i) + (n− 1)(v(N)− v(N\{i}))
n

≥ v(S), for S ⊂ N and |S| ≥ 1. (14)

Suppose that for a non-empty coalition S ⊂ N , the inequality in (14) is satisfied. We re-write this
inequality as

∑
i∈S\{j}

v(i) + (n− 1)(v(N)− v(N\{i}))
n

+
v(j) + (n− 1)(v(N)− v(N\{j}))

n
≥ v(S)− v(S\{j}) + v(S\{j}), (15)

where j ∈ S. According to Definition 1, we have

v(j) + (n− 1)(v(N)− v(N\{j}))
n

= v(N)− v(N\{j}) +
v(j) + v(N\{j})− v(N)

n
≤ v(N)− v(N\{j})

≤ v(S)− v(S\{j}). (16)
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It follows from the inequalities in (15) and (16) that

∑
i∈S\{j}

v(i) + (n− 1)(v(N)− v(N\{i}))
n

≥ v(S\{j}).

We can thus conclude that if the inequality in (14) is satisfied for S ⊂ N , then it is also satisfied for

S\{j} (∀j ∈ S). This result implies that, to examine whether the Shapley value is in the core, we
need not test the inequality in (14) for all possible coalitions, but only to check it for all (n−1)-player

coalitions. Hence, we have the condition as in (6).

However, when the condition in (6) is not satisfied, we cannot decide on whether the Shapley

value belongs to the core. If an (n− 1)-player coalition S exists such that each player i ∈ S makes a
suffi ciently small marginal contribution to any possible coalition including this player, then the sum

of the Shapley values for all players in S (i.e.,
∑
i∈S φi) could be smaller than v(S). Therefore, the

Shapley value may not be in the core, if the condition in (6) is not satisfied.

Proof of Theorem 4. We learn from the proof of Theorem 3 that the Shapley value for player

i ∈ N satisfies the following inequality:

φi ≥ v(N)− v(N\{i})− ς1/n, where ς1 ≡ v(N)− v(N\{i})− v(i).

Recall from our discussion of the nucleolus solution in (5) that the nucleolus for player i ∈ N can be

rewritten as

yi = v(N)− v(N\{i})− ς2/n, where ς2 ≡
∑
j∈N (v(N)− v(N\{j}))− v(N).

To compare the nucleolus yi and the Shapley value φi (for i ∈ N), we compute

ς1 − ς2 = (v(N)− v(i))−
∑
j∈N\{i}(v(N)− v(N\{j})) = g{i} − gN\{i},

where g{i} = v(N)−v(N\{i})−v(i) is the gap of player i and gN\{i} =
∑
j∈N\{i}(v(N)−v(N\{j}))−

v(N\{i}) is the gap of coalition N\{i}. If g{i} ≤ gN\{i}, then ς1 ≤ ς2 and φi ≥ yi.
Otherwise, if g{i} > gN\{i}, then ς1 > ς2; but we cannot find if φi is larger or smaller than yi.

Letting

φi = v(N)− v(N\{i})− ς1/n+ µ, where µ ≥ 0,

we have

yi − φi = (ς1 − ς2)/n− µ,

which is positive if µ is suffi ciently small such that nµ < ς1 − ς2. That is, if g{i} > gN\{i}, then

player i may receive more from the nucleolus—based allocation scheme in (5) than from the Shapley

value—based allocation scheme.

Proof of Theorem 5. According to Theorem 1, we find that the core of an ADMC game is

empty if and only if
∑
j∈N v(N\{j}) > (n − 1)v(N). For an imputation x = {xi, i ∈ N} such that

v(N) =
∑
i∈N xi, we can rewrite the above inequality as

∑
j∈N v(N\{j}) > (n − 1)

∑
i∈N xi, or,
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∑
j∈N [v(N\{j}) −

∑
i∈N\{j} xi] =

∑
j∈N eN\{j}(x) > 0. This means that if the core of an ADMC

game is empty, then player j ∈ N exists such that eN\{j}(x) > 0. Hence, the least core value

ε∗ is larger than or equal to the minimum value of ε1 ≡ max{eN\{j}(x), j ∈ N}. The value of

ε1 is minimized when eN\{j}(x) = eN\{i}(x), ∀i, j ∈ N and i 6= j. That is, when xi = x∗i ≡
[v(N) +

∑
j∈N v(N\{j})]/n− v(N\{i}), for i ∈ N , the minimum value of ε1 is ε∗1 = ξ/n.

To compute the least core value when the condition in (9) is satisfied, we rewrite the condition as

∑
j∈N v(N\{j}) ≤ (n− 1)[v(N\{i}) + v(N\{k})− v(N\{i, k})], ∀i, k ∈ N and i 6= k, (17)

and consider another coalitional game G′ = (N, v′) such that v′(N) = v(N) +nε∗1/(n− 1) and v′(S) =

v(S), ∀S ⊂ N . According to Definition 1, game G′ is an ADMC game, if, for i, j ∈ N and i 6= j,

v′(N)− v(N\{j}) ≤ v(N\{i})− v(N\{i, j}), which is equivalent to the condition in (17). It addition,
it is easy to see that x̄′ ≡ {x̄′i = x∗i + ε∗1/(n − 1), i ∈ N} is an imputation that satisfies the equation
v′(N) =

∑
i∈N x

′
i. Moreover, for j ∈ N , e′N\{j}(x̄

′) = v′(N\{j}) −
∑
i∈N\{j}[x

∗
i + ε∗1/(n − 1)] =

eN\{j}(x
∗) − ε∗1 = 0, where x∗ = {xi = x∗i , i ∈ N}. Thus,

∑
j∈N v

′(N\{j}) = (n − 1)
∑
i∈N x̄

′
i =

(n− 1)v′(N), which indicates that the condition in Theorem 1 is satisfied.

Therefore, if the condition in (17) is satisfied, then game G′ has a non-empty core, viz., the set
{x′ :

∑
i∈N x

′
i = v′(N); e′S(x′) ≤ 0, ∀S ⊂ N , and S 6= ∅} is non-empty. Because the non-empty set

includes element x̄′ and e′S(x̄′) is increasing in |S| (as shown by Lemma 1), the ε∗1-core of game G– i.e.,
{x :

∑
i∈N xi = v(N); eS(x) ≤ ε∗1, ∀S ⊂ N , and S 6= ∅}– contains element x∗; thus, it is non-empty.

Because the least core value ε∗ is no smaller than ε∗1, we find that ε
∗ = ε∗1.

Proof of Proposition 1. For this proof, we should consider the condition in Definition 1 for the code-

sharing game. For all i ∈ N , S ⊆ T ⊆ N\{i}, and |S| ≥ 1, v(S∪{i})−v(S) = Π−π(S∪{i})+π(S)+π(i)

and v(T ∪ {i})− v(T ) = Π− π(T ∪ {i}) + π(T ) + π(i). Therefore,

[v(S ∪ {i})− v(S)]− [v(T ∪ {i})− v(T )] = π(T ∪ {i})− π(S ∪ {i}) + π(S)− π(T ),

which is non-negative when π(T ∪ {i}) − π(T ) ≥ π(S ∪ {i}) − π(S)– viz., the variable cost π(·) is a
convex function.

Next, we consider the condition that v(T ∪{i}) ≥ v(T ) + v(i) = v(T ), ∀i ∈ N , ∀T ⊆ N\{i}, which
is satisfied when Π ≥ π(N) − π(N\{i}) − π(i), ∀i ∈ N , because of the ADMC property. The above
indicates that if the fixed cost Π is suffi ciently large, then the condition is satisfied.

Proof of Corollary 1. Because v(S) = Π(|S| − 1) +
∑
i∈S π(i)− π(S), we can use (1) to obtain the

condition for non-emptiness of the core as Π ≥ (n− 1)π(N)−
∑
j∈N π(N\{j}).

Proof of Proposition 2. We consider the condition in Definition 1 for the group-buying game. For

all i ∈ N , S ⊆ T ⊆ N\{i}, and |S| ≥ 1,

[v(S ∪ {i})− v(S)]− [v(T ∪ {i})− v(T )] = d[(qS)1−e − (qT )1−e + (qT + qi)
1−e − (qS + qi)

1−e],

which is non-negative when (qT + qi)
1−e − (qT )1−e ≥ (qS + qi)

1−e − (qS)1−e, viz., the function q1−e

is a convex function (i.e., ∂2q1−e/∂q2 ≥ 0). Differentiating q1−e twice w.r.t. q yields ∂2q1−e/∂q2 =

22



e× q−1−e × (e− 1), which is positive when e ≤ 0 or e ≥ 1.

In addition, in ADMC games, v(T ∪ {i}) ≥ v(T ) + v(i) = v(T ), ∀i ∈ N , ∀T ⊆ N\{i}, which is
satisfied when v(N) ≥ v(N\{i}), ∀i ∈ N , because of the ADMC property. That is, the characteristic
value of a coalition N\{i} is no larger than that of the grand coalition N , which is satisfied when
e ≥ 1.

Proof of Corollary 2. In the group-buying game, v(S) = d[
∑
i∈S(qi)

1−e − (qS)1−e]. When the

condition in Proposition 2 (i.e., e ≥ 1) is satisfied, the group-buying game is an ADMC game. To

ensure that the condition in (1) is satisfied, we require that
∑
j∈N (qN\{j})

1−e ≥ (n−1)(qN )1−e, which

holds when q1−e is a decreasing function, or, e ≥ 1.

Proof of Proposition 3. We examine the conditions in Definition 1 for game G′. For i ∈ N , we
consider S ⊆ T ⊆ N\{i} and |S| ≥ 1. There are two possibilities for agent i’s job under the optimal

schedule for coalition S ∪ {i}.

1. Agent i’s job is delayed after agent i joins coalition S (i.e., i ∈ LS∪{i}). Then, agent i’s job

is also delayed after agent i joins coalition T (i.e., i ∈ LT∪{i}). Thus, v′(S ∪ {i}) − v′(S) =

v′(T ∪ {i})− v′(T ) = wi − t.

2. Agent i’s job is not delayed after agent i joins coalition S (i.e., i /∈ LS∪{i}). This occurs in two
possible cases. In the first case, LS∪{i} = LS , and v′(S∪{i})−v′(S) = wi. In the second case, an

agent j ∈ S exists such that j /∈ LS but j ∈ LS∪{i}, and we find that v′(S∪{i})−v′(S) = wi− t.
Because i /∈ LS∪{i}, similar to our above discussion for coalition S, when agent i joins coalition
T , this agent’s job may or may not be delayed.

(a) If agent i’s job is delayed (i.e., i ∈ LT∪{i}), then v′(T ∪ {i})− v′(T ) = wi − t.

(b) If agent i’s job is not delayed (i.e., i /∈ LT∪{i}), then there are two possible cases. In the
first case, LT∪{i} = LT , v′(T ∪ {i})− v′(T ) = wi. In the second case, an agent k ∈ T exists
such that k /∈ LT but k ∈ LT∪{i}, and we have v′(T ∪ {i})− v′(T ) = wi − t.

Because LS∪{i} ⊆ LT∪{i}, the condition v′(S ∪ {i})− v′(S) ≥ v′(T ∪ {i})− v′(T ) holds.

Moreover, we require that, for any i ∈ N and T ⊆ N\{i}, v′(T ∪ {i}) ≥ v′(T ) + v′(i). There are

two possibilities for agent i’s job under the optimal schedule for coalition T ∪ {i}.

1. Agent i’s job is delayed after agent i joins T (i.e., i ∈ LT∪{i}). We find that v′(T ∪ {i}) =

v′(T ) +wi− t. As v′(T ) + v′(i) = v′(T ) +wi− s, the inequality v′(T ∪ {i}) ≥ v′(T ) + v′(i) holds

if t ≤ s.

2. Agent i’s job is not delayed after agent i joins coalition T (i.e., i /∈ LT∪{i}). Similar to our

above discussions, there are two possible cases. In the first case, LT∪{i} = LT , and v′(T ∪{i}) =

v′(T ) + wi ≥ v′(T ) + wi − s = v′(T ) + v′(i). In the second case, an agent j ∈ T exists such

that j /∈ LT but j ∈ LT∪{i}. In this case, v′(T ∪ {i}) = v′(T ) + wi − t, and the inequality

v′(T ∪ {i}) ≥ v′(T ) + v′(i) holds if t ≤ s.

23



Summarizing the above, we find that v′(T ∪ {i}) ≥ v′(T ) + v′(i) if t ≤ s.

Proof of Corollary 3. We learn from Proposition 3 that game G′ is an ADMC game if t ≤ s.

Next, we investigate the condition in (1). There are two possible results when agent j joins the grand

coalition N .

1. If agent j’s job is delayed (i.e., j ∈ LN ), then v′(N) = v′(N\{j}) + wj − t, which indicates

v′(N\{j}) = v′(N)− (wj − t).

2. If agent j’s job is not delayed (i.e., j /∈ LN ), then, similar to our discussion in the proof of

Proposition 3, there are two possible cases. In the first case, LN = LN\{j}, and v′(N) =

v′(N\{j})+wj , which indicates v′(N\{j}) = v′(N)−wj . In the second case, an agent k ∈ N\{j}
exists such that k /∈ LN\{j} but k ∈ LN , and we find that v′(N) = v′(N\{j}) + wj − t, or,

v′(N\{j}) = v′(N)− (wj − t).

Based on the above results, the condition in (1) is found as
∑
j∈N\LN (v′(N)−wj)+

∑
j∈LN [v′(N)−

(wj − t)] ≤ (n− 1)v′(N), or, t ≤ (
∑
j∈N wj − v′(N))/|LN |. Hence, we obtain the condition as shown

in this corollary.
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