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Free shipping offers by eBusiness companies have become an effective means of attracting and keeping customers. Many business-to-
consumer and business-to-business (B2B) companies now offer free shipping to buyers who spend more than a specificamount. In this
paper we consider a B2B environment and assume that the buyer may be enticed to increase her purchase amount in order to qualify
for free shipping. The seller’s and the buyer’s decisions (i.e., free shipping cutoff level and purchase amounts, respectively) affect each
other’s objective functions. Thus, we model the problem as a leader-follower game under complete information where the leader is
the seller and the follower is the buyer. We assume that if the cutoff level announced by the seller is lower than the buyer’s purchase
amount, the seller absorbs the shipping cost. Otherwise, the buyer compares the values of two functions to determine whether she
should increase her purchase amount to qualify for free shipping. We first determine the best response function for the buyer for
any given value of the seller’s cutoff level and present some structural results related to the response function. We then compute the
Stackelberg solution for the leader-follower game and discuss the managerial implications of our findings. The results obtained are
demonstrated with the help of two examples. We also present a complete sensitivity analysis for the Stackelberg solution and the

objective function values for variations in the unit shipping cost.

1. Introduction

Although free shipping started out as a temporary market-
ing ploy to attract online shoppers to Internet sites during
the 1999 holiday season, it has now become an integral part
of doing business for many business-to-business (B2B) and
business-to-consumer (B2C) companies. In recent surveys
of Internet shoppers, the Boston Consulting Group found
that along with guaranteed transaction security and price
discounts, free shipping was one of the best means of entic-
ing buyers to return to Internet sites (Bayles, 2001). In ad-
dition to the free shipping offers advertised by almost every
B2C company, a large number of B2B companies also of-
fer free shipping. For example, Natural Sense,! a Canadian
aromatherapy products company, offers free shipping for
online B2B orders over C$300. The printer and fax supplies
company B2Bdirect.com? provides free shipping for orders
over $200 and the trade show display company Showstop-
perExhibits.com? is offering free ground shipping within
the continental United States for any order amount. There
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1Isnow even a new web site, www.freeshipping.com, that lists
over 1000 online stores providing free shipping.

The recent prevalence of free shipping offers by the B2B
companies may be partially attributed to the commercial
availability of the Internet. Even though the traditional
Electronic Data Interchange systems were expected to pro-
vide seamless interaction between sellers and buyers, this
has not materialized and most companies have turned to
the Internet to conduct their businesses online (Johnston
and Mak, 2000). We expect the availability of free shipping
offers to increase in the coming years in parallel with the
continued growth of the Internet.

As different B2B sellers have begun offering free ship-
ping for different purchase levels, a natural question to ask
is the following: “what is the best cutoff level for purchase
amounts at or above which the buyer receives free ship-
ping?” Choosing a high cutoff level may result in some lost
business for the seller since the buyers would have to spend
more money than they initially intended in order to qualify
for free shipping. On the other hand, setting a low cutoff
point may entice a buyer to increase her purchase quantity
and may generate higher gross revenues but this may also
be costly for the seller since he has to absorb the shipping
costs. Thus, the best cutoff level chosen by the seller must
provide a tradeoff between the cost of lost business (for high
cutoff levels) and cost of shipping (for low cutoff levels).
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To our knowledge, there has been no previous attempt
to model the interaction between the seller and the buyer
in the free shipping problem. Thus, in order to model this
problem in the B2B context we make some assumptions
about the purchase behavior of the buyer. We assume that,
in the absence of a free shipping offer, the buyer determines
her optimal purchase quantity as a dollar amount y, by
solving the problem of maximizing a “net revenue” func-
tion. But if the seller offers free shipping and announces a
cutoff level x, the buyer determines her purchase amount
in a different manner: (i) if the cutoff level x announced
by the seller is lower than the buyer’s purchase amount y,
the buyer still purchases y and the seller absorbs the ship-
ping cost; (ii) otherwise, the buyer compares the values of
two functions to decide whether she should increase her
purchase amount y to x in order to qualify for free ship-
ping: more specifically, if the buyer’s net revenue with y is
larger than that obtained with x, then the buyer purchases
y and pays for the shipping cost. Otherwise, the buyer in-
creases her purchase quantity to x, and the seller absorbs
the shipping cost. Furthermore, we assume that a third
party (i.e., an external logistics company) is employed to
ship the goods from the seller to the buyer. Hence, the ship-
ping cost is assumed to be the same regardless of who pays
for it.

Since the decisions made by the buyer and the seller affect
their respective objectives, the free shipping problem can be
modeled using a game-theoretic framework. In this paper
we restrict our attention to a static game under complete
information where each player’s objective function is com-
mon knowledge between the players; see, Gibbons (1992,
Chs. 1 and 2). In such a case each player consciously at-
tempts to optimize his/her own objective recognizing that
each objective function depends on both decision-makers’
(players’) decisions. In the B2B context, the seller would
normally announce his decision first and the buyer would
react to the announcement by choosing a purchase amount.
Thus, it is reasonable to assume that in the game-theoretic
analysis of the free shipping decision problem the seller is
the leader and the buyer is the follower. For this scenario,
we determine the Stackelberg strategy (Basar and Olsder,
1982) for each player in a static game of complete infor-
mation which is played only once, i.e., the buyer makes a
one-time purchase only.

We should note that the assumptions we have made re-
garding the B2B buyer’s purchase behavior may not be di-
rectly applicable in the B2C context. For example, unlike
the B2B buyers, individual buyers usually don’t go to a B2C
web site planning to spend a certain amount of money. Also,
whereas a B2B buyer such as a university bookstore may
not be averse to purchasing, say, a few more boxes of writing
pads to qualify for free shipping, the B2C buyers normally
do not purchase multiple copies of the same item. Finally,
in the B2C context a large number of buyers make differ-
ent purchase decisions independently of one another. Thus,
the B2C seller can simply consider the collective decisions
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of the B2C buyers as a probability distribution rather than
a strategic decision made by an individual customer. Thus,
it would be incorrect to use our model to determine the free
shipping policy for the B2C seller.

In Section 2 we introduce the objective functions of the
seller and the buyer. In Section 3 we determine the best
response function of the buyer: if the seller announces his
cutoff level decision, then the buyer can determine her best
response to this announcement by solving an optimization
problem that maximizes her objective. In Section 3 we also
provide some structural results for the buyer’s best response.
In particular, we show that if the seller announces his free
shipping cutofflevel, the buyer’s best response is determined
by two threshold values implying that for low, medium and
high levels of announced cutoff level, the buyer behaves dif-
ferently. In Section 4, we use the properties of the buyer’s
best response function and compute the Stackelberg strat-
egy for each player. Section 5 describes the results of a sensi-
tivity analysis where we examine the variations in the Stack-
elberg solution and the corresponding objective functions
for changes in the unit shipping cost. The paper ends with
a summary and discussion of future research avenues.

2. Objective functions of the players

In this section we describe the objective functions of the
seller and the buyer. Since each player’s objective function
is influenced by the other player’s decision, we develop pro-
cedures in Section 3 to compute the buyer’s best response to
an arbitrary decision of the seller. Information obtained on
the best responses is later used in Section 4 to identify the
Stackelberg equilibrium in a leader-follower scenario where
the seller announces a Free Shipping (FS) cutoff level which
is followed by the buyer’s purchase amount decision.

We start by defining x as the seller’s FS cutoff level
(in $) and y as the buyer’s purchase amount (in §). The
total shipping cost of goods worth y dollars is given by a
continuous function C(y) for which we assume C(0) = 0,
0<C'(y) <1, C"(y) <0and C(y) < y. This implies that
the shipping cost is increasing and concave in y but due to
economies of scale the marginal cost is less than unity. Fur-
thermore, we assume that the production cost K(y) incurred
by the seller has the property K(0)=0, 0 < K'(y) < 1,
K’(y) <0 and K(y) < y, i.e., it is also an increasing and
concave function in y. Since the seller’s marginal revenue
(i.e., one) should be more than his marginal cost we assume
1 > C'(y) + K'(y). Finally, since the seller’s gross revenue
should be larger than his total cost, we also assume that
y > Cy) + K(y).

When the buyer purchases goods worth y dollars, she sells
them in a retail market and receives a gross revenue of R(y)
(in $). There may be variable costs such as the inventory
carrying costs, but we assume that they are deducted from
the revenue. We assume R(0) = 0, R'(y)|,=o > 1 (to elimi-
nate trivial solutions) and R”(y) < 0, i.e., the gross revenue
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function is also increasing and strictly concave in its ar-
gument. We also assume that since the market demand is
finite, there exists a y for which the gross revenue equals
total purchase cost, i.e., R(y) = y. Note that a similar as-
sumption about the form of the revenue function has been
made by others; see, e.g., Erlenkotter and Trippi (1976) who
developed a model that integrates capital investment deci-
sions with output and pricing decisions. In most practi-
cal situations the seller’s production cost K(y) should be
less than the buyer’s gross revenue R(y), thus the condition
K(y) < R(y) is assumed.

When two players arbitrarily select a FS cutoff level x
and a purchase amount y, one of two things can happen:

1. If x < y, then FS takes place and the seller absorbs the
shipping cost and incurs the production cost. In this
case the seller receives y dollars and spends K(y) dol-
lars for production and C(y) dollars to ship the amount
purchased, and the buyer pays y dollars and obtains a
gross revenue of R(y). Thus, the seller’s net revenue is
y — C(y) — K(y) and the buyer’s net revenue with FS is
R(y) —y.

2. If y < x, then the buyer has the option of increasing her
purchase amount to the higher cutoff level in order to
benefit from FS. If the buyer increases her purchase to
the cutoff level x, then the buyer’s and seller’s net rev-
enues are R(x) — x and x — C(x) — K(x), respectively.
Otherwise, the buyer purchases y and the buyer’s and
seller’s net revenues are R(y) — y — C(y) and y — K(y),
respectively. Thus, when y < x, the buyer determines her
actual purchase amount by comparing R(x) — x with
R(y) — y — C(p) as follows:

(a) If

R(x) —x = R(y) —y — C(p),

then the buyer stays with her original decision to

purchase y dollars worth of goods and obtains a net

revenue (without FS) of R(y) —y — C(p). In this

case the seller receives the net revenue of y — K(y).
(b) If

R(x) —x = R(y) —y — C(p),

then the buyer increases her purchase quantity to
x and obtains a net revenue (with FS) of R(x) — x.
In this case the seller receives a net revenue of x —
C(x) — K(x).

Remark 1. Let us define:
V(y)=R(y) -y, (1)

as the net revenue to the buyer when she purchases y dol-
lars worth of goods and receives FS. Differentiating V' (y)
we find V'(y) = R'(y) — 1. Since V"(y) = R"(y) < 0 and
R(y) = y forsome y > 0, the net revenue function is strictly
concave with V(0) = V(y) = 0. This implies that V(y) has
a unique maximizing value v satisfying R’(v) = 1. Thus,
the net revenue function V'(y) starts at zero, increases until
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v, and then decreases and reaches zero at j. Hence, V' (y)
should be increasing at the point y = 0. The assumption of
R'(y)ly=0 > 1 made above implies that V'(y)|,—o > 0 which
eliminates the trivial solution y* = 0. Since the buyer would
not be willing to purchase goods that would result in a neg-
ative revenue for y > j, it follows that the feasible set of
values for y is the interval [0, ¥]. In light of this observa-
tion, the seller also limits his FS cutoff level to the interval
[0, y]. A

We now define Ji(x, y) and J3(x, y) as the net revenue
functions of the seller and buyer, respectively. Using the
above arguments we have:

y—Cy)—K@y), if x<y=jy,
x—C(x)— K(x), if y<x<yand
Jilx,y) = Viy)—Cl) = V(x),
y — K@), if y<x<jyand
Vix) = V() - CO),
(2)
and
Jo(x, y) = max{V(y) — 1< C(y), V(x)},
V(y), ifx<y=<jy,
V(x), ify <x<yand

= V(y)—Cy) < V(x), (3)
V(y)— C(y), ify <x<jand

Vix) < V(y) = CO).

where, as defined in Equation (1), the net revenue to the
buyeris V(y) = R(y) — y.

Remark 2. As we assumed, the seller and the buyer in our
model have a B2B relationship; for example, the seller may
be supplying office products (such as writing pads) to a
bookstore at wholesale prices. However, many office prod-
ucts companies (such as Office Depot and Staples) also have
retail outlets where they sell products to the public at higher
prices. Thus, the seller in our model is assumed to be such an
entity which would be aware of the buyer’s revenue func-
tion R(y) since it would be similar to the seller’s revenue
function at its retail outlet.

What happens if there is more than one buyer in the
market? In a competitive environment the revenue functions
of all buyers should be similar to one another. Thus, we
assume that all buyers have identical revenue functions and
the seller can set his FS cutoff level assuming that R(y) is
common to all buyers. A

In this game-theoretic problem, the seller wants to max-
imize J1(x, y) and the buyer wants to maximize J>(x, y).
The Stackelberg strategy for the seller (the leader) and the
buyer (the follower) is found as follows: the buyer solves
the optimization problem “max J>(x, y)” for any value of
x that may be chosen by the seller and determines her
(buyer’s) best response function y(x) that maximizes her
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objective. The seller then solves the optimization problem
“max J(x, y(x))” to determine the best FS cutoff level that
will maximize his objective. The seller’s objective function
J1 is fairly sensitive to his choice of the FS level x since J is
not only a function of x but also a function of the buyer’s
best response y(x). In our presentation below, we will im-
plement this general procedure to compute the Stackelberg
strategy for the seller and the buyer in the FS game.

As we noted above, when the shipping cost is a con-
tinuous function, the net revenue functions Ji(x, y) and
Jo(x, y) of the players have to be expressed in terms of
piecewise function consisting of three terms. If the ship-
ping cost becomes a step-function then the net revenue
functions would have to be expressed as piecewise func-
tions consisting of a large number of terms depending on
the definition of the specific step-function. Thus, it would be
quite difficult to obtain any insights into the model and its
solution. However, in that case, one can still solve the prob-
lem numerically and determine the Stackelberg strategy for
both players using the procedure described in the previous
paragraph.

3. Buyer’s best response function

With the players’ objective functions given by Equations (2)
and (3), we now examine the optimal decision of the buyer
in response to an arbitrary decision of the seller. In other
words, if the seller announces his FS cutoff level decision as
x = X, we find the best response yr that the buyer should
choose to maximize her objective function. This result will
be useful when we consider the leader-follower Stackelberg
strategy in Section 4.

We now assume that the seller has announced his FS cut-
off level % and in light of this announcement the buyer has
to find her best response decision y = yg that maximizes
the objective function J>(X, y) given in Equation (3). First,
note that if the buyer decides to choose a y € [X, j], then
her objective function assumes the form:

Su(X,y)=V(y), foryel[x, ]

46))

(a)
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On the other hand, if the buyer chooses a y € [0, X], then
her objective is:

V() ify <% <7yand
i) V) — CO) < V().
2=V v - ), ify <% <7and

V(x) = V(y) = CO).

Hence, the optimal solution y to maximize Jx(X, y) is
given by:

arg max Jo(X, y)
yel0.3]

56, if maxye[o,gc] V(y)
_ o =rm.
argmax,efo, i if V(%) < max,ep, 3
Viy)—CO), Viy) = CO).

To identify the buyer’s best response, we first recall from
remark 1 that the function V(y) = R(y) — y is concave
and maximized at a point v € (0, y) that satisfies R'(v) = 1.
Given the value of v, we consider two possible cases (Propo-
sitions 1 and 2 below). These correspond to the relative val-
ues of v and X, and identify the best response for the buyer
in each case.

We first consider a lemma that determines the value max-
imizing V(y)forx <y <.

Lemma 1. For X < y <y, the value y* that maximizes the
buyer’s net revenue function V(y) (or, Jo1(X, y)) is given as:
P ifx <w,
A E
with the corresponding maximum values:
V(v),
V(%)
Proof. The result follows by noting that V(y) is a concave
function which increases over [0, v] and decreases over [v, J]
with V(0) = V(y) =0. When X <vandforx <y <j (as

in Fig. 1(a)), the V(y) function first increases until v and
then decreases, so it is optimal to choose y# = v which

ifx<v,
ifv<x.

V¥ =

499

wh———
y

0 v

(b)

Fig. 1. (a) When % < v, the buyer’s net revenue function V() is maximized at y# = v; (b) when X > v the V() function is maximized

at y* = %.
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maximizes V(y). Similarly, when v < X and for ¥ <y <y
(as in Fig. 1(b)), the V' (y) function is decreasing, thus it is
maximized at y# = %. [ ]

The next proposition determines the optimal purchase
quantity for the buyer when X < v.

Proposition 1. If X <, [i.e, if the seller decides on a FS
cutoff level X that is less than or equal to the value v that
maximizes V(y)), then the buyer’s best response is to purchase
goods worth v dollars, i.e., to choose yr = v and benefit from
ES.

Proof. First, referring to Fig. 1 (a and b) used in Lemma 1,
note that for any y € [0, X] we have V(y) — C(y) < V(X) —
C(y) < V(%). Thus,

Jn(k,y)=V(X) < V(v) = Ju(X, v).

Since ordering more than X and receiving FS results in
a higher objective function value for the buyer than order-
ing less than X, it follows that when & < v the buyer’s best
response is yr = v. [ ]

The next proposition identifies the buyer’s best response
yr When v < X.

Proposition 2. If'v < X, [i.e., the seller decides on a FS cutoff
level X that exceeds the value v maximizing V(y)], then the
buyer’s best response is obtained as follows:

1. If the C(y)+ V(X) and V(y) curves do not intersect (or,
intersect only at one point), then the buyer’s best response
is to choose yr = X.

2. Ifthe C(y) + V(X)and V(y) curves intersect at two points,
say yy and y» with y; < y,, then the buyer’s best response
YR I8 found by maximizing [V (y) — C(y)] with respect to
y over the region [y1, y2). In that case the value that max-
imizes the buyer’s objective is given as:

y° =arg max V(y)— C(y),
yeb.y]

which is less than X.

Proof. To show part 1 we refer to Fig. 2 and observe that if
the two curves C(y) + V(%) and V' (y) do not intersect (or,
intersect at only one point), then for any y € [0, ] we have

CH)+VE)
P —— )
N ,//// V(y)
v S
0 v iy

Fig. 2. The C(y) + V(%) curve does not intersect V().

1123
Qo) V&)
P ~_Co)+ 7%
&) oA | f
A : ] c
n(x) /| i | (y)
: | ! Vo)
' 1 | IN I
0 " yr v Y2 XoX y\

Fig. 3. The C(y) + V(X) curve intersects V(y) at two points y;
and y».

V() < C») + V() o, V() — C(») < V(%). This gives:

: V(y) = Cy) = V(%)

From Equation (4), we have that:

max
ye[0,x

arg max Jp(X,y) = X, and max Jn(x,y) = V(X).
yel0.5] yel0.5]

Furthermore, Lemma 1 shows that:

arg max Jo1(%, y) = X, and max Jy(x, y) = V(X).
ye[xJl yelxjl

Since using y = X results in a better objective function
value than any other y, it follows that the best response for
the buyer is to order goods worth % and receive the FS.

To show part 2, we refer to Fig. 3 and consider the case
when the two curves intersect at two points y; and y, with
y1 < »»2. Then for any y € [y, y2], we have V(y) > C(y) +
V(%), that is, V(y) — C(y) > V(X). Thus, from Equation
(4) we have:

V(%) < max V(y) — C(y) = max V(y)— C(y).
yel0,3] Ye1.2]
Since

ax Jn(X,y) = max V(y)— C(»),
yel0,3] yeb.yl

max Jo1(X,y) = V(%),
vel.7]

the optimal y = »° should be computed by solving the max-
imization problem maxyp,, ,,] V'(y) — C(»). Obviously, we
have y° < X. [ |

To summarize, the buyer’s best response yr to the seller’s
decision X is:
v, IfXx <o,
JR =X,

]

Yo

if v < X and part 1 of Proposition 2 holds,

if v < X and part 2 of Proposition 2 holds.
)
The managerial implications of this result are as follows:
when the cutoff point X is less than v (which maximizes
the buyer’s net revenue function V' (y)) the buyer should
purchase v units, maximize her net revenue function and
take advantage of FS. But when the cutoff point X is raised
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to a level exceeding v, the buyer’s best response changes:
when % is only slightly higher than v, the C(y) 4+ V(X) curve
(shown in Figs. 2 and 3) is likely to be above the V'(y) curve
since V' (X) would be almost as high as the maximum value
of V(y). In this case part 1 of Proposition 2 would hold
and the buyer would increase her purchase quantity to take
advantage of FS so that yg = %. However, for much higher
levels of the cutoff point % it may not be worthwhile for
the buyer to immediately raise her purchase to X. Since FS
requires a large purchase, the buyer’s best response would
be to choose the level y° in the interval [y, y»]. Thus, as
X gradually increases from zero to y, the buyer’s reaction
changes its structure at two threshold levels: (i) at x| = v
and (ii) at some X, for which C(y) + V(X,) and V(y) are
tangential to one another at some point y = yr.

Example 1. As an example, consider a case where the ship-
ping cost function is linear, i.e., C(y) = ¢y with ¢ € (0, 1),
and the buyer’s gross revenue function is given as R(y) =
a,/y. We choose ¢ = 0.2 and a = 1. For this “normalized”
problem we obtain V(y) = ,/y — y so that y =1, i.e,, the
players’ decisions are constrained to take values in the
unit interval and the value maximizing V(y) is v = 0.25.
Hence, we find X = v =0.25 as the first threshold level
where the buyer’s response changes its structure. To de-
termine the second threshold level X,, we first find the
point y = yt where the two curves C(y) + V(x,) and V(y)
are tangential to one another: equating the derivatives,
we get C'(y) = V'(y), or yr = 0.1736 as the point where
the two curves are tangential. The second threshold level
X is then found by solving C(yt)+ V(x2) = V(yr), or
% = V' (V(yr) — Clyr)) ~ 0.4957.

For X €[0.4957, 1], the two curves C(y)+ V(X;) and
V(y) intersect at two points. From Proposition 2, we
have y° = argmax,¢[y, ,,; V(y) — C(y) = 0.1736. Note that
as the shipping cost function is linear, we have V" (y) —
C"(y) = V"(y) < 0. Thus, the optimal solution y° can be
obtained by solving V'(y) — C'(y) = 0, i.e., for this case,
yo=yr.

Thus, the buyer’s best response (as depicted in Fig. 4) is
obtained as:

0.25, for0 < X <0.25,
YR = 1} X, for 0.25 < x < 0.4957,
0.1736, for0.4957 < x < 1.

For low values of the cutoff level X less than v = 0.25,
the buyer purchases her optimal amount v = 0.25 which
maximizes J>(X, y) = V(»). In this case the buyer does not
pay for shipping.

Consider now the moderate levels of the cutoff level X
between 0.25 and 0.4957. For this case we have, from Equa-
tion (3), max,<;z<1[V(y) — C(y)] < V(%); i.e., purchasing X
(where the seller absorbs the shipping cost) is better than
purchasing any y < X (where the buyer has to pay for ship-
ping). Thus, the buyer is enticed to increase her purchase
amount to above v = 0.25 in order to qualify for FS.

Leng and Parlar
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Fig. 4. The buyer’s best response yr following the seller’s FS cutoff
level announcement of X.

If the cutoff level is greater than 0.4957, the buyer’s pur-
chase quantity becomes 0.1736 which is smaller than v =
0.25. Atfirst sight, this case where the buyer reduces her pur-
chase amount to a level below v for high values of the cutoff
level may seem unintuitive. But some reflection reveals that
if the cutoff level X is high and exceeds 0.4957, then we
have, from Equation (3), max,<z<i[V(y) — C(»)] = V(X);
i.e., purchasing X (where the seller absorbs the shipping
cost) is worse than purchasing the optimal y (< %) that
maximizes V(y) — C(y) (where the buyer has to pay for
shipping). This results in an optimal purchase quantity that
is lower than v.

4. Stackelberg solution

In the previous section we considered the optimal deci-
sions of the buyer as a response to the seller’s announced
decision. A solution concept that uses the best responses
and that seems to be reasonable in the present context is
the Stackelberg strategy where one player assumes the role
of the “leader” and the other is the “follower.” Here, the
leader announces his strategy first and the follower must
make a decision to optimize her objective function after ob-
serving the leader’s decision. But since the game is played
under complete information, the leader can determine, a
priori, the follower’s response and optimize his objective
accordingly. This solution concept was first introduced by
the Austrian economist von Stackelberg (1934) and later
used by economists (e.g., Intriligator, 1971; Gibbons, 1992)
to analyze duopolistic competition. In recent years re-
searchers in the marketing and operations research com-
munities have also started using the Stackelberg strategy
in different areas; see; e.g., Lal (1990) and Charnes et al.
(1995) who analyze franchising coordination games and
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Li et al. (2002) who present a game-theoretic model in a
manufacturer-retailer supply chain. For a rigorous treat-
ment of the Stackelberg strategy the text by Basar and
Olsder (1982) can be consulted.

In our game-theoretic framework we assume that the
leader is the B2B seller (e.g., Natural Sense) which an-
nounces his/its FS cutoff level X. Given this information,
we apply the method of backward induction to find the
Stackelberg solutions. More specifically, at the first stage
of the backward induction the buyer chooses an optimal
purchase amount yg = f(X) as a function of % that max-
imizes her objective function J>(X, y). Since the seller can
determine the buyer’s reaction yr for each %, in the second
stage the seller must optimize his objective function Ji(x, y)
subject to the constraint y = f(x), i.e., he must maximize
J1(x, f(x)) over x € [0, ].

In order to analyze the Stackelberg solution for both
players, we first note that as x varies, so do the endpoints
of the interval [y, y»]; see Fig. 3. Thus for the sake of gen-
erality we write the interval as [y;(x), y2(x)] and the buyer’s
best response of, Equation (5) as:

v, 1ifx<nv,
y(x)={x, ifv< xandpart] of Proposition 2 holds,
y°, 1ifv < x and part 2 of Proposition 2 holds,
(6)
where X is replaced by x, and
y° =arg max | V(y)— C@»). 7

Ye(x),y2(x)

The seller’s problem in the first stage of the game is given
as:

max Ji(x, y(x)). ®)
x€[0,7]

Once the seller determines his FS cutoff level (i.e., his Stack-
elberg decision) by solving Equation (8), he announces it as
xs. The buyer’s order quantity Stackelberg decision is then
computed from Equation (6).

Depending on the relative positions of the shipping cost
function C(y) and the buyer’s net revenue function V(y),
the Stackelberg solution assumes different forms. The next
two sections analyze these cases separately.

4.1. Stackelberg solution when C(y) and V(y)
intersect once

In this section we consider the case where C(y) and V(y)
intersect only once (i.e., at the origin) and C(y) > V(y) for
y € (0, ¥). (The case where the two curves intersect at the
origin and are tangential to one another at one or more
pointsis covered by the present discussion). Under this case,
the Stackelberg solution assumes a particularly simple form
obtained by the following theorem.

Theorem 1. If C(y) and V(y) intersect only at y = 0, then
the Stackelberg solution for both players is (xs, ys) = (¥, y).
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Proof. Inorder to find a Stackelberg solution for the seller’s
decision, we first consider the buyer’s reaction y(x) to the
seller’s decision x and then maximize the seller’s objective
function J1(x, y(x)).

When the seller’s FS cutoff level x is less than v, i.e., when
x < v, we observe from Equation (6) that the buyer’s best
response is y(x) = v. In this case we find from Equation (2)
that Ji(x, y(x)) = v — C(v) — K(v) is the seller’s objective
function value, which is a constant.

However, when v < x < y, the buyer’s decision depends
on the number of times the C(y) + V(x) and V(y) curves
intersect. Since in this case the shipping cost curve C(y)
and the net revenue curve V(y) intersect only at y =0,
for any x € (0, y) we have C(y)+ V(x) > V(y), i.e., the
C(y)+ V(x) and V(y) curves do not intersect. Referring
to Equation (6), we see that the buyer’s best response
in this case is y(x) = x. On the other hand, from Equa-
tion (2), the seller’s objective function value is given as
J1(x, y(x)) = x — C(x) — K(x). Hence, the seller’s objec-
tive function Ji(x, y(x)) can be written as:

v—C(v) — K(v) :
(constant),
x — C(x) — K(x),

if x <w,

Ji(x, y(x)) = )

ifv<x<jy.

Note in Equation (9) that for x < v, the seller’s ob-
jective assumes a constant value whereas for v < x, the
objective is a monotonically increasing function of x for
x € [v, y] due to C'(x) + K'(x) < 1. Thus, the Stackelberg
solution xg for the seller is xg = ¥. Using Equation (6) we
find that the Stackelberg solution yg for the buyer is also

ys=J. u

Remark 3. In this case, the objective function values for the
seller and the buyer are, respectively, J; (¥, 7) =y — C(j) —
K() > 0 and J>(y, y) = V(¥) = 0. For this unlikely case,
due to a high shipping cost the supplier decides to provide
FS only if the buyer is willing to purchase y units. In order
to take advantage of FS the buyer then purchases y units
resulting in a net revenue of V(y) = 0. It is interesting to
note that the buyer would also obtain a net revenue of zero
when no trade takes place, i.e., when x = y = 0 we have
J>(0,0) = V(0) = 0 in which case the seller’s objective is
reduced to J1(0, 0) = 0.

Since either the Stackelberg solution or the “no trade”
solution results in zero net revenue for the buyer, she may be
able to enter into an agreement with the seller who obtains
a positive revenue if the Stackelberg solution is used. Or, the
seller could reduce the FS cutoff level by a small amount
¢ so that the buyer is willing to participate. That is, after
the seller reduces his cutoff level y to y — &, the buyer’s
best response becomes ¥ — & resulting in Ji(j —¢,) —
)= —e)—C(y—e)—K(y—e)>0and L(y — &,y —
e)=V(y —e)>0; a mutually beneficial outcome for
both. A
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Fig. 5. The C(y) + V(r) and V(y) curves are tangential for some
7 in the interval [v, ].

4.2. Stackelberg solution when C(y) and V(y) intersect more
than once

We now consider the more complicated case in which the
shipping cost curve C(y) and the buyer’s net revenue curve
V(y) intersect more than once. In this case the Stackelberg
solution assumes a form that again depends on the relative
positions of C(y) and V(y).

Suppose that the shipping cost curve C(y) intersects the
buyer’s net revenue curve V'(y) at the origin and some other
point(s) in the interval (0, y). Then, referring to Fig. 5, we
observe that for some 7 € [v, y], the C(y) + V(r) and V(y)
become tangential to one another at some point y = yr.
For x € (z, ¥], we have that C(y) 4+ V(x) < C(y) + V(7),
thus C(y) + V(x)and V(y) intersect more than once. More-
over, there exists some y such that C(y)+ V(x) < V(y),
or, V(x) < V(y) — C(y). On the other hand, for x € [v, 7],
we have C(y) + V(x) > C(y) + V(r) implying that C(y) +
V(x) and V(y) do not intersect.

The next theorem provides the Stackelberg solution for
each player when C(y) and V(y) intersect more than once.

Theorem 2. When C(y) intersects V(y) more than once, the
Stackelberg solution (xs, ys) is obtained as:

(t.71),  ift—C(x)—K(r) = y° = K(»°),

(x°,»°), ift—Cx)—K() =y° = KO°),

(10)
where x° is an arbitrary value in the interval [t, ], and y° =
arg MaXyefy, (x),»(x) V') — C).

(xs,¥s) = {

Proof. First, consider the case for x < v. In this case, as in
Theorem 1 we find Ji(x, y(x)) = v— C(v) — K(v), a con-
stant.

The case v < x < y requires the analysis of two subcases:
in the first case we have x € [v, t] and the C(y) + V(x) and
V(y) curves do not intersect. In this region, the buyer’s
purchase quantity is always the same as the seller’s FS cutoff
decision as shown in part 1 of Proposition 2. Thus, we find
Ji(x, y(x)) = x — C(x) — K(x).

For the second case in which x € [z, ] and t is larger
than v, we know from Equation (6) that the buyer’s best
responseis y° = arg maxye[y, (x), (v ¥'(v) — C(»). From the
argument at the beginning of this section, we have V' (y°) —
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C(y°) > V(x)and from Proposition 2 we have that y° is less
than x. Therefore, the seller’s objective is y° — K(3°) if he
chooses x € [z, y].

To summarize, the seller’s objective function is:

v—C)—K(@): ifx=<v,
(constant),
Ji(x, y(x)) = x — C(x) — K(x), ifv<x<r,
y°—K(»°): fr<x<y.
(constant),

In order to find the seller’s best decision, we compare
the maximum value of each expression. Using arguments
similar to those in Theorem 1, we know that in [0, 7]
the seller’s best decision is v with the locally maximized
objective value given as Ji(t, 7) = v — C(t) — K(7). In the
interval [z, ¥], the seller’s objective is y° — K(y°) which is
constant, then any value of x in [z, ¥] results in the same
objective value for the seller. Hence, the seller can select an
arbitrary value x° in [z, j], i.e., x° € [z, J]. By comparing
Ji(z, ) with y° — K(y°) we find the Stackelberg solution
in the case where C(y) and V'(y) intersect at more than one
point. [ ]

Remark 4. In this case, the curve C(y) intersects V' (y) more
than once, which implies that for some purchase quantity
the buyer can obtain a revenue higher than the shipping
cost. Hence, even if the buyer pays the shipping cost, the
buyer’s net revenue (i.e., V' (y) — C(y)) could be positive.
Furthermore, if the cutoff level is lower than 7, the buyer can
increase her net revenue by increasing the purchase quantity
to the cutoff level. However, for a high cutoff level larger
than 7, the buyer’s net revenue is decreased if she increases
her purchase amount to qualify for FS. As a result, the
buyer has to choose an optimal solution by maximizing her
net revenue of V(y) — C(y). A

Example 2. We continue with the problem presented in ex-
ample 1 but now consider the production cost function for
the seller to be K(y) = ky where k € (0, 1). For this example
we choose k = 0.4. For the given parameter values, we find
that the C(y) and V' (y) curves intersect more than once, i.e.,
atzero and at 0.694. Thus, Theorem 2 applies and the Stack-
elberg solution (xg, ys) is found by using Equation (10). We
know from example 1 that T = X, = 0.4957 is the point for
which the curves C(y) + V(r) and V(y) become tangen-
tial to one another. Since y° was computed as 0.1736, the
Stackelberg solution can be found by simply comparing
the values of Ji(z, 7) and y° — K(»°). In particular, we find
that at © = 0.4957 the seller’s objective assumes the value
Ji(t, t) = 0.1983, which is larger than y° — ky° = 0.1042.
Thus, for this case the Stackelberg strategy for the two play-
ers is obtained as (xs, ys) = (7, T) = (0.4957, 0.4957) with
Ji(r, 1) = 0.1983 and J,(z, T) = 0.2083 as the players’ ob-
jective function values.
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5. Sensitivity analysis

In the previous examples with (c, k, a) = (0.2, 0.4, 1) the
Stackelberg solution was found to be (z, 7) since Ji(z, 7) >
y° — ky°. For different parameter values the solution may
move away to (7, 7). In this section we present a sensitivity
analysis and show that the results may be different to (z, 7).
As in example 2, we fix a = 1 and £ = 0.4 and vary c to
observe the variations in the players’ Stackelberg decisions
(xs, ys) and their respective objective functions (J1, J»). The
analysis of variations in the unit shipping cost ¢ reveals im-
portant insights about the nature of the Stackelberg solu-
tions when the buyer’s decisions are impacted by the FS
policy.

Since we assumed that C'(y) + K'(y) < 1, we have ¢ +
k < 1. Thus, the feasible range for c is (0, 1 — k), or (0, 0.6)
when k£ = 0.4. In this section, we let ¢ vary in this range and
obtain the Stackelberg solutions for both players as shown
in Fig. 6.

This graph depicts two distinct regions defined by the
point ¢; = 0.491006 where the Stackelberg solutions fol-
low different patterns. In region 1, we have that c €
(0, ¢1] and (xs, ys) = (7, t). Here, the buyer matches the
seller’s cutoff point and as ¢ increases so does the cutoff
point.

In region 2, the unit shipping cost ¢ varies in the interval
(c1,0.6) and we find that the Stackelberg solutions devi-
ate from (z, ). From Theorem 2, we have that (xs, ys) =
(x°, y°) where x° is an arbitrary value in the interval [z, y].
In the sensitivity analysis, we assume x° = y = 1. In this
interval, the seller has an incentive to set a high cutoff level
to avoid incurring the shipping cost, since the unit shipping
cost ¢ is very high. In return, the buyer reacts by lowering
her purchase quantity to very low levels (even lower than
any quantity in region 1).

The effect of varying the unit shipping cost on the play-
ers’ objectives is observed in Fig. 7. In region 1, as ex-
plained above, the buyer increases her purchase quantity

1.0
08
0.6

0.4

02r

0 — ¢
0 0.2 0.4 cy 0.6

Fig. 6. Stackelberg strategies xs and ys when ¢ is varied over
(0, 0.6). Regions 1 and 2 are defined, respectively, as the intervals
(0, ¢1) and (cy, 0.6) where ¢; = 0.491 06.
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Fig. 7. Objective functions of the two players for different values of
the unit shipping cost ¢. Regions 1 and 2 are defined, respectively,
as the intervals (0, ¢;) and (¢, 0.6) where ¢; = 0.491 06.

to qualify for FS, i.e., ys = xs = 7 where t € [v, y] and the
buyer’s objective assumes the value J,(z, t) = V(r). From
remark 1, we know that V(y) decreases in the interval [v, ].
Asindicated in Fig. 6, the Stackelberg solution t is increas-
ing in ¢ € [0, ¢;]. Hence, when c increases in region 1, the
buyer’s net revenue V(tr) decreases, as shown in Fig. 7.
In region 1 where the buyer matches the seller’s FS cut-
off level, the seller’s objective initially improves. However,
as ¢ grows larger (beyond about 0.10) the seller’s objective
decreases due to increases in the shipping costs he must
pay.

In region 2 where ¢ € (¢, 0.6), the deterioration of both
players’ objectives continues and both players experience
worsening values for J; and J,. More specifically, in re-
gion 2, the buyer pays the shipping cost in addition to the
purchase cost. Hence, the value of her objective becomes
worse when ¢ moves from region 1 to region 2. Furthermore,
since increasing values of ¢ result in higher total shipping
costs, the buyer’s objective (net revenue) decreases, as in-
dicated in Fig. 7. In region 2, the seller’s net revenue is the
buyer’s purchase quantity y° — ky°, where y° is obtained by
solving the equation V'(y) — C'(y) = 0, or, V'(y) = c. Since
V"(y) < 0 (from remark 1), we know that »° is decreasing
in ¢ € [c1, J]. As a result, the value of the seller’s objective
function decreases over region 2. Moreover, since the buyer
doesn’t increase her purchase quantity to the cutoff level
when the unit shipping cost ¢ € [ci, J], the seller’s objective
function value in region 2 is lower than any other value in
region 1.

6. Summary and concluding remarks

In this paper we presented a game-theoretic analysis of a
FS problem between a seller and a buyer in the B2B con-
text. If the seller’s FS cutoff level is lower than the buyer’s
purchase amount, then the former absorbs the shipping
costs. Otherwise, the buyer compares the values of two
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functions to determine whether she should increase her pur-
chase amount to qualify for FS. The first step in our anal-
ysis involves the computation of a best response function
for the buyer. We showed that if the seller announces his
FS cutoff level first, then the buyer’s best response depends
on the shape of her net revenue function and the shape
of the shipping cost function. In particular, the buyer’s
best response is determined by using a policy with two
critical levels. Assuming that the seller is the leader and
the buyer is the follower, the Stackelberg solution for this
leader-follower game was computed using the properties
of the buyer’s best response functions. We presented two
numerical examples and a sensitivity analysis along with
the managerial implications for all the significant results
obtained.

One of the crucial features of our model was the assump-
tion that each player’s objective function is common knowl-
edge for both players; i.e., we modeled a game with com-
plete information. As we showed in Equations (2) and (3),
the objective functions of the decision-makers involve C(y),
K(y)and V(y) = R(y) — y. Now, the seller may be able to
estimate the buyer’s net revenue function V' (y) = R(y) — y
because the former may have a retail outlet and may be
aware of the revenue function R(y). Similarly, the buyer
would be aware of the shipping cost function C(y) be-
cause it would normally be posted on the seller’s web-
site. However, the buyer may not be aware of the exact
form of the seller’s production cost function K(y). In this
case we would no longer have a game of complete infor-
mation and the resulting problem with asymmetric infor-
mation would have to be solved using the techniques of
Bayesian games with incomplete information; see, Gibbons
(1992, ch. 3).

Throughout the paper we assumed that the buyer is a
rational player who tries to maximize her own objective
function; a reasonable assumption in the context of a B2B
game problem with a single seller and a single buyer. Now
consider the case of B2C shopping where there may be
a large number of potential buyers each making his/her
purchase decision independently. In this case the buyers’
purchase order can be represented by a random variable
Y with a probability distribution function g(y). It would
be interesting to formulate the problem under the B2C as-
sumption and determine the optimal FS cutoff level for the
seller.

Another interesting and related game-theoretic problem
arises when two or more B2C sellers (e.g., Amazon.com
and Barnesandnoble.com) compete to attract market share
by setting their FS cutoff levels. Assuming a B2C environ-
ment, this problem could be analyzed to determine the Nash
strategies for the players. We hope to examine these prob-
lems in the future.
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