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Abstract

This paper considers a multiple-supplier, single manufacturer assembly supply chain where the

suppliers produce components of a short life-cycle product which is assembled by the manufac-

turer. In this single-period problem the suppliers determine their production quantities and the

manufacturer chooses the retail price. We assume that the manufacturer faces a random price-

dependent demand in either additive or multiplicative form. For each case, we analyze both

simultaneous-move and leader-follower games to respectively determine the Nash and Stackel-

berg equilibria, and �nd the globally optimal solution that maximizes the system-wide expected

pro�t. Then, we introduce appropriate buy-back and lost sales cost-sharing contracts to coor-

dinate this assembly supply chain, so that when all the suppliers and the manufacturer adopt

their equilibrium solutions, the system-wide expected pro�t is maximized.

Key words: Assembly supply chain, game theory, buy-back, lost-sales cost-sharing.



1 Introduction

In many supply chains assembled products are composed of complementary components. It is

well-known that a large number of �rms in industry outsource the production of the components

to external suppliers in order to reduce costs and increase production �exibility. For example,

in the U.S., Toyota outsources the production of car components to many suppliers who then

deliver the components to Toyota�s assembly plant in Kentucky (Chopra and Meindl [7]). In

particular, more than 75% of the parts and 98% of the steel used in the production of vehicles

at this assembly plant come from U.S. suppliers. In 2005, the plant had 350 suppliers across the

continental United States. The Toyota production system (one of the �rst successful examples of

a Just-In-Time system) is �all about producing only what�s needed and transferring only what�s

needed.�By adopting such an e¢ cient system known as a �pull�-type supply chain, Toyota�s

assembly plant uses the components (delivered by its suppliers) to assemble �nal products when

the orders of its customers (e.g., dealers) arrive; see, for example, Chopra and Meindl [7] and

Simchi-Levi et al. [17]. As reported by Reinhardt in [15], Nokia also recently implemented the

pull strategy to make built-to-order phones each with a unique faceplate with the operator�s

logo on it and special keypad buttons that take users directly to certain wireless services, etc.

Another well-known example is Dell which adopts the pull-type strategy to assemble computers

only when its customers�orders arrive online.

As Cachon [4] and Granot and Yin [8] have discussed, in a pull-type assembly supply chain

all suppliers of the assembly plant need to determine their production quantities of components

while the assembly plant needs to choose its sale price of �nal product. Moreover, in order to

quickly respond to its customers, the plant also aims to strengthen partnering relationship with

its suppliers and establish coordination with the suppliers for system-wide improvement. As

another real example of a manufacturer�s e¤ort to induce supply chain coordination, in 2006,

Motorola decided to spend $60 million in Singapore to centralize and streamline global supply

chain operations with its suppliers and customers. As outsourcing is considered to be one of

the strategies achieving supply chain integration, there is an extensive literature focusing on

outsourcing strategies and vertical integration in supply chains; see, Cachon and Harker [5].

As the above examples illustrate, the coordination of a decentralized supply chain with

assembled products appears to be an interesting and important problem worth investigating.

Motivated by these examples, in this paper we consider the following natural question: What

mechanism can be developed to coordinate all members in such a supply chain? As Cachon

[3] indicated, supply chain coordination is achieved if and only if all �rms in a decentralized

supply chain can behave (that is, make decisions) as if they are operating in a centralized supply

chain. More speci�cally, in a decentralized supply chain, all �rms primarily aim at optimizing

their own individual objectives rather than the chainwide objective, thus their self-serving focus

may result in a deterioration of the chainwide performance. To improve the supply chain�s

performance, a proper mechanism must be developed to coordinate all channel members so

that both the individual supply chain members�objectives and the chainwide performance can

be optimized; see, e.g., Leng and Zhu [10]. A common (and useful) mechanism for supply chain

coordination is to develop a set of properly-designed contracts among all supply chain members

(Cachon [3]). With the successful use of this mechanism the last decade has witnessed a rapidly
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increasing interest in supply chain coordination with contracts.

In this paper, we restrict our attention to a multiple-supplier, one-manufacturer supply chain

with complementary products. (Hereafter, such a supply chain with complementary products is

called an assembly supply chain, as in Carr and Karmarkar [6].) In this assembly supply chain,

multiple suppliers produce their complementary components, and serve a common manufacturer

who assembles the �nal products with short life cycles and satis�es a random demand. Our

assumption of short product life cycles re�ects the following fact: The last two decades have

witnessed rapid technological innovation and a high level of competition in the marketplace.

In response to these developments, many �rms (e.g., manufacturers of personal computers, cell

phones, cars, etc.) have implemented the philosophy of �life-cycle management�to reduce life

cycles of their products. As in many publications (such as Linh and Hong [11] and Parlar

and Weng [12]) concerned with the assembly supply chains with short product life cycles, we

construct our model and perform our analysis using the single-period (newsboy) setting. Similar

to the pull -type system discussed in Cachon [4] and Granot and Yin [8], the n(� 2) suppliers
determine their production quantities independently of each other. Moreover, we assume that

all members of this supply chain are risk-neutral and the demand is only sensitive to the retail

price chosen by the manufacturer. Note that, in practice, consumers�demands may also depend

on some other factors (e.g., the quality of the product that the consumers buy). However, in this

paper, we only focus on the manufacturer�s pricing decision and the suppliers�quantity decisions,

as in most of previous publications regarding assembly supply chains. Accordingly, we assume

that the demand is only dependent of the manufacturer�s retail price, and thus use Petruzzi

and Dada�s additive and multiplicative demand forms [14]� which have been commonly used

to analyze assembly supply chains with price-dependent demand� to characterize the random

demand.

We use buy-back and lost-sales cost-sharing contracts between the n suppliers and the man-

ufacturer to coordinate the supply chain. With the buy-back contract, the manufacturer returns

the unused components to the suppliers at the buy-back price. Because all unused components

can be returned to the suppliers (albeit at some loss), the manufacturer does not concern him-

self with the optimal order quantities of the components. Instead, he attempts to choose the

optimal price to maximize his expected pro�t. Buy-back contracts have been widely used to

analyze supply chain coordination. As described in Cachon [3], a typical buy-back contract

(also called return policies) has two parameters; the ith supplier�s wholesale price, wi, and the

buy-back price, vi, i = 1; : : : ; n. Under such a contract, supplier i charges the manufacturer wi
per unit purchased at the beginning of the single period, and pays the manufacturer vi per unit

remaining at the end of the period. In our paper, we model the buy-back contract as a vector

(w;v), where w = (w1; : : : ; wn) and v = (v1; : : : ; vn). For an early application of buy-back

contracts, see Pasternack [13].

With the lost-sales cost-sharing contract, when shortages arise, suppliers and the manufac-

turer share the shortage cost. Assuming that one unit of the �nal product needs one unit of

each of the n components, the manufacturer needs equal number of components for assembly

from each supplier. If the number of components received from the suppliers happens to be

di¤erent, the number of the �nal product the manufacturer can assemble equals the minimum
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of these quantities. In our lost-sales cost-sharing contract, the shortage penalty cost incurred

by the manufacturer at the end of the single period is shared among all members of this supply

chain. Given a unit shortage (underage) cost u, we de�ne the percentage of this cost absorbed

by the ith supplier as �i 2 [0; 1] with � =
Pn
i=1 �i 2 [0; 1]. Thus, all suppliers pay the shortage

cost �u, and the manufacturer bears the cost of (1 � �)u. The lost-sales cost-sharing contract
is characterized by the vector � = (�1; : : : ; �n). See Table 1 for a complete list of the notation

used in this paper.

Symbol Description
ci Unit production cost of supplier i = 1; : : : ; n.

D(p; ") Price-dependent random demand in the single period. For the additive
case, D(p; ") = y(p) + "; for the multiplicative case D(p; ") = y(p)".

y(p) Deterministic component of the random demand. For the additive
case, y(p) = a� bp (a, b > 0); for the multiplicative case,
y(p) = ap�b (a > 0, b > 1).

" Error term with c.d.f. F (�) and p.d.f. f(�) taking values in the range [A;B]
with A > �a for the additive case and with A > 0 for the multiplicative
case. The mean value and variance of " are denoted by � and �2,
respectively, i.e., E(") = � and Var(") = �2.

�i Percentage of underage cost u absorbed by supplier i = 1; : : : ; n,
(contract parameter).

� =
Pn
i=1 �i Fraction of underage cost absorbed by all suppliers, � = (�1; : : : ; �n).
m Manufacturer�s assembly cost per unit.
p Retail price of the manufacturer.
� System-wide pro�t.

�M Manufacturer�s random pro�t.
�Si Supplier i�s random pro�t i = 1; : : : ; n.
qi Production quantity of supplier i = 1; : : : ; n.
q Production quantity of all suppliers when they produce the same amount.

Q = mini=1;:::;n(qi) Number of each component received by manufacturer.
si Salvage value for supplier i = 1; : : : ; n for unsold components.
Si Supplier i = 1; : : : ; n.
u Underage cost per unit for lost sales.
vi Supplier i�s buy-back price, i = 1; : : : ; n (contract parameter).

v =
Pn
i=1 vi Total unit buy-back price paid by n suppliers, v = (v1; : : : ; vn).
wi Supplier i�s wholesale price, i = 1; : : : ; n (contract parameter).

w =
Pn
i=1wi Manufacturer�s purchase cost for all the components that make up

one unit of the �nal product, w = (w1; : : : ; wn).

Table 1: List of notations.

Our paper uses game theory to analyze non-cooperative and coordinated assembly supply

chains. In practical applications the manufacturer and n suppliers may simultaneously or se-

quentially make optimal decisions to maximize their individual expected pro�ts. Accordingly,

we analyze both a simultaneous-move game (in which all members of the assembly supply chain

make their decisions concurrently) and a leader-follower game (in which the manufacturer an-

nounces its pricing decision before n suppliers make their production decisions). We use the

Nash and Stackelberg equilibria to characterize all supply chain members� optimal decisions

for the simultaneous-move and leader-follower games, respectively. Note that Wang [18] also
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considered the two games but only with the multiplicative demand form, and used di¤erent

contracts to induce supply chain coordination.

Since the supply chain members make optimal decisions to maximize their individual pro�ts,

the system-wide expected pro�t is usually lower than the case when they coordinate their deci-

sions. Thus, to improve the supply chain�s performance, we design buy-back and lost-sales cost-

sharing contracts which achieve supply chain coordination. Under properly designed contracts,

all supply chain members choose their equilibrium solutions and the maximum system-wide

pro�t is realized.

In a recent literature review [9], Leng and Parlar surveyed a large number of publications

that focus on supply chain-related game problems with substitutable products and indicate

that there are only a few papers concerned with game-theoretic models for complementary

products. We now brie�y review some of the important papers that used game-theoretic models

in assembly supply chains. Wang [18] considered joint pricing-production decision problems in

supply chains with complementary products for a single period. Wang adopted a multiplicative

demand model which is sensitive to sale price, and incorporated the consignment-sales and

revenue-sharing contracts into both simultaneous-move and leader-follower games. Since Wang

[18] analyzed assembly supply chains with the multiplicative demand form, in this paper we

focus our analysis on the additive demand case, and provide only the major results for the

multiplicative demand case without speci�c discussion.

Wang and Gerchak [19] examined a pricing-capacity decision problem for an assembly sup-

ply chain with an assembler and multiple suppliers. Assuming that the demand is random but

it is independent of price, the authors considered two game settings: The �rst is one where the

assembler sets the prices, and the second is for the suppliers to simultaneously select the prices

each wants to charge for its component. Bernstein and DeCroix [1] considered an assembly

supply chain where two components are used to assemble a single �nal product that is then

sold by an assembler to meet the random, price-independent demand. The authors investigated

the equilibrium base-stock levels for the assembler and two component suppliers, and described

a payment scheme to coordinate the assembly supply chain. Granot and Yin [8] investigated

competition and cooperation in a multiple-supplier, one-manufacturer supply chain with com-

plementary products. For the pull and push systems, these authors considered two levels of

problems: at the �rst level, they used the concepts of Nash equilibrium and farsighted stability

to identify stable coalitional structures among suppliers; and at the second level they developed

a Stackelberg game to examine the interactions between the manufacturer and suppliers.

The remainder of this paper is organized as follows: In Section 2, we assume that the random

price-dependent demand is given in additive form, and design a set of buyback and lost-sales

cost-sharing contracts to coordinate the assembly supply chain for both simultaneous-move

and leader-follower games. In Section 3, we assume that the price-dependent demand is also

random but it assumes the multiplicative form. For this case, we show that the supply chain

can always be coordinated by a set of properly-designed contracts for both simultaneous-move

and leader-follower games. The paper ends with conclusions in Section 4.
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2 Non-Cooperative Equilibria and Supply Chain Coordination

with Price-Dependent Random Demand: Additive Form

In this section, the manufacturer assembles the suppliers�components to satisfy random price-

dependent demand in an additive form. We consider the following two games: (i) a �simultaneous-

move�game where the manufacturer and the suppliers concurrently make their decisions without

any communication; (ii) a �leader-follower�game in which the manufacturer, as the leader, �rst

announces his pricing decision and the suppliers, as the followers, respond to the leader�s deci-

sion. For the former game, we compute the Nash equilibrium; and for the latter, we compute

the Stackelberg equilibrium for the supply chain. To coordinate this assembly supply chain, we

then �nd the globally-optimal solution and develop a properly-designed buyback and lost-sales

cost-sharing contract that can achieve supply chain coordinate.

2.1 Suppliers� Production and Manufacturer�s Pricing Decisions with No
Coordination: Nash vs. Stackelberg Equilibria

We now consider a non-cooperative case where n suppliers (denoted by Si, i = 1; : : : ; n) and

the manufacturer determine their respective production quantities qi and the retail price p

independently without supply chain coordination.

Using the pull-type strategy, the manufacturer receives Q = min(q1; q2; : : : ; qn) units from

each supplier (because the assembly of a �nal product only needs one unit of each component),

and assembles min(Q;D) units of �nal products (where D denotes the realized demand during

the single period ). If D is more than Q, then the manufacturer assembles Q units of �nal

products, and incurs a unit underage cost u for each unit of unsatis�ed demand. According

to the lost-sales cost-sharing contract that is in place, the percentage of this cost absorbed by

Si (i = 1; 2; : : : ; n) is �i 2 [0; 1], and the manufacturer�s percentage is 1 � � = 1 �
Pn
i=1 �i.

However, if Q is more than D, then, according to the buyback contract, supplier Si buys back

the unsold components at the unit price of vi, i = 1; : : : ; n. Since Si produces the component

i at the unit production cost ci and sells them to the manufacturer at the unit wholesale price

wi, Si receives the net pro�t of wi � ci > 0 for each unit component sold to the manufacturer.
Here, we assume that vi � wi � ci, and thus vi � (wi � ci) is the penalty cost incurred by Si
when his production quantity qi exceeds D by one unit. We make this assumption to assure

that a buy back agreement should not bene�t a supplier.

In this section we assume that the demand is random in an additive form and depends on

price p. As in Petruzzi and Dada [14], the price-sensitive random demand in a commonly-used

additive form in the newsvendor context is formulated as

D(p; ") = y(p) + ", (1)

where the deterministic term y(p) and the error term " are de�ned in Table 1. Note that, as

indicated in Table 1, we assume that the error term has a lower bound A and an upper bound

B. This assumption is reasonable because, in reality, the market size cannot be in�nite and

thus the upper bound B is taken as �nite. Moreover, in order to assure that D(p; ") is positive,
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the lower bound A must be greater than �a for the additive demand case. The assumption has
been widely used in the literature; see, for example, Petruzzi and Dada [14]. Since A > �a,
it follows that D(p; ") � (A + a) � bp and thus to ensure that demand always assumes non-
negative values (even though y(p) could be negative when p � a=b), the manufacturer�s retail
price p should be smaller than or equal to (a + A)=b, i.e., p � (a + A)=b. In fact, when the

manufacturer maximizes its pro�t, the optimal price should always satisfy the inequality because

the manufacturer�s pro�t with a non-positive demand cannot be maximum.

The demand function (1) is �common knowledge� for all suppliers and the manufacturer.

Thus, all suppliers know the demand range [y(p) +A; y(p) +B], and determine their quantities

subject to this range, i.e., y(p) +A � qi � y(p) +B, i = 1; : : : ; n.

2.1.1 Suppliers�Best Response Production Decisions

The supplier Si produces qi units of component i = 1; : : : ; n independently from others at a total

production cost of ciqi to maximize his/her expected pro�t. Since the manufacturer receives the

minimum quantity minj=1;. . . ;nfqjg at a wholesale price of wi from supplier Si, the sale revenue

of Si is wiQ = wiminj=1;. . . ;nfqjg.
When supplier Si�s production quantity is not the minimum, this supplier disposes the

remaining components at the unit salvage value si with si < ci. As discussed in Section 1, if the

demand for the �nal product falls short of the available units Q = minj=1;. . . ;nfqjg, then supplier
Si buys back his unsold components at the price vi 2 [wi � ci; wi]. Thus, Si�s buyback cost is
vi[Q �D(p; ")]+. On the other hand, if the realized demand is more than the manufacturer�s
available quantity Q, then Si pays the unit cost of �iu for lost sales. For this case, the lost sales

cost incurred by Si is �iu[D(p; ")�Q]+.
Thus, supplier Si�s net random pro�t �Si is obtained as sale revenue plus the salvage value,

minus the production cost, buyback costs and partial lost sales cost as

�Si = wiQ+ si(qi �Q�i)+ � ciqi � vi[Q�D(p; ")]+ � �iu[D(p; ")�Q]+, (2)

where Q�i � minfq1; : : : ; qi�1; qi+1; : : : ; qng.

Theorem 1 For given contract parameters (v;�), the manufacturer�s pricing decision p, all
suppliers�best production quantities that maximize their expected pro�ts are equal, i.e.,

qB1 = � � � = qBn = y(p) + F�1
�
wk � ck + �ku
vk + �ku

�
, (3)

where
wk � ck + �ku
vk + �ku

= min
i=1;:::;n

�
wi � ci + �iu
vi + �iu

�
, (4)

and the index k corresponds to that supplier with the minimum value for the right-hand-side

term in (4).

Proof. For a proof of this theorem and the proofs of all subsequent theorems, see online

Appendix A.
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2.1.2 Manufacturer�s Best Response Pricing Decision

The manufacturer receives Q = min(q1; q2; : : : ; qn) units from each supplier and determines the

unit retail price p. Using the pull-type strategy, the manufacturer incurs the assembly cost m

for each unit of satis�ed demand, and returns the unused components to suppliers at the end

of the single period. The manufacturer�s net pro�t is computed as the revenue from sales, plus

the buyback income, minus the procurement, assembly and the lost-sales cost incurred by the

manufacturer. Thus, the manufacturer�s random pro�t function, �M , is given as

�M = pmin[Q;D(p; ")] + v[Q�D(p; ")]+ � wQ

�mmin[Q;D(p; ")]� (1� �)u[D(p; ")�Q]+

= (p�m)min[Q;D(p; ")] + v[Q�D(p; ")]+ � wQ

�(1� �)u[D(p; ")�Q]+, (5)

where w =
Pn
i=1wi is the manufacturer�s purchase cost for all the components that make up one

unit of the �nal product, and v =
Pn
i=1 vi is the total unit buy-back price paid by n suppliers.

Expected pro�t of the manufacturer can now be found as follows:

E(�M ) = (p�m)Efmin[Q;D(p; ")]g+ vEf[Q�D(p; ")]+g � wQ

�(1� �)uEf[D(p; ")�Q]+g

= (p�m� v)[y(p) + �] + (v � w)Q+ [p�m+ (1� �)u� v]

�
Z B

Q�y(p)
[Q� y(p)� x]f(x)dx. (6)

Next, for both simultaneous-move and leader-follower games, we analyze the manufacturer�s

best response to the suppliers�equal production quantities. As we argued before, the manufac-

turer�s order quantity is the minimum of the suppliers�production quantities. To simplify the

analysis, we de�ne

zi �
wi � ci + �iu
vi + �iu

, i = 1; : : : ; n,

so that Q = y(p)+F�1(zk), where, as before, the index k corresponds to that supplier with the

minimum value for the right-hand-side term in (4), i.e., zk = mini=1;:::;n zi.

Theorem 2 For the given contract parameters (w;v;�) and suppliers�quantity decisions q =
(q1; : : : ; qn), we �nd the manufacturer�s best response price pB as follows:

1. For the simultaneous-move game, the manufacturer�s best response price pB is determined

as the unique solution of the nonlinear equationZ Q�y(p)

A
F (x)dx+ [p�m+ (1� �)u� v]bF (Q� y(p)) = Q+ (1� �)ub. (7)

2. For the leader-follower game, the manufacturer�s best response price pB is determined as
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the unique solution of the nonlinear equationZ Q�y(p)

A
F (x)dx+ (p�m� w)b = Q. J (8)

2.1.3 Nash and Stackelberg Equilibria

In the analysis above, we have derived each supplier�s and the manufacturer�s best responses

in Theorems 1 and 2, given the other players�decisions. Using the best response functions we

now �nd the Nash equilibrium for the simultaneous game and the Stackelberg equilibrium for

the leader-follower game.

Theorem 3 For the additive demand case, we �nd the Nash and Stackelberg equilibria as
follows:

1. For the simultaneous-move game, the Nash equilibrium (pN ; qN1 ; : : : ; q
N
n ) is found as

pN = m� (1� �)u+ v + 1

bzk

"
qN + (1� �)ub�

Z F�1(zk)

A
F (x)dx

#
, (9)

qNi =
[a+ b(1� �)u� bm� bv]zk � b(1� �)u

zk + 1

+

R F�1(zk)
A F (x)dx+ zkF

�1 (zk)

zk + 1
, (10)

for i = 1; : : : ; n and qN � qN1 = � � � = qNn .
2. For the leader-follower game, the Stackelberg equilibrium (pS ; qS1 ; : : : ; q

S
n ) is found as

pS =
1

2b

"
a+ b(m+ w) + F�1(zk)�

Z F�1(zk)

A
F (x)dx

#
, (11)

qSi =
1

2

"
a� b(m+ w) + F�1(zk) +

Z F�1(zk)

A
F (x)dx

#
, (12)

for i = 1; : : : ; n and qS � qS1 = � � � = qSn . J

2.2 Supply Chain Coordination with Buy-Back and Lost-Sales Cost-Sharing
Contracts

It is important to note that the Nash and Stackelberg equilibria (found in Theorem 3) may

not result in supply chain coordination under which the system-wide pro�t is maximized. To

coordinate this supply chain, we now design buy-back and lost-sales cost-sharing contracts so

that the resulting Nash and Stackelberg equilibria shall be both identical to the globally optimal

solution. In particular, in this section we �nd the properly designed values of w (suppliers�

wholesale prices), v (suppliers� buy-back prices), and � (lost-sales cost sharing parameters)

which will make the decentralized assembly supply chain behave like a centralized one.
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2.2.1 Total Pro�t for the Assembly Supply Chain

We �rst �nd the optimal solution that maximizes the total pro�t for the assembly supply chain

as if the supply chain members were acting in a centralized fashion. For such a system we

denote the globally optimal retail price by p� and the production quantity of each supplier by

q�i , i = 1; 2; : : : ; n. The system-wide pro�t function is then the sum of (5) and (2), i.e.,

� = �M +
nX
i=1

�Si

= (p�m)min[Q;D(p; ")]� u[D(p; ")�Q]+ �
nX
i=1

[ciqi � si(qi �Q�i)+]. (13)

The expected pro�t function is thus

E(�) = (p�m)Efmin[Q;D(p; ")]g � uE[D(p; ")�Q]+ �
nX
i=1

[ciqi � si(qi �Q�i)+].

To maximize the total expected pro�t, all suppliers�production quantities should be equal,

i.e., q1 = � � � = qn; otherwise, some suppliers would incur penalty costs for the leftovers. Letting
q = qi, i = 1; : : : ; n, denote the production quantity of each supplier, we reduce the expected

system-wide pro�t function to

E(�) = (p�m)Efmin[q;D(p; ")]g � uE[D(p; ")� q]+ � cq

= (p�m)[y(p) + �]� cq + (p�m+ u)
Z B

q�y(p)
[q � y(p)� x]f(x)dx

where c =
Pn
i=1 ci.

Theorem 4 In the assembly supply chain, the globally-optimal retail price p� is determined
by solving the following equation

2bp� +

Z F�1(�(p�))

A
F (x)dx� F�1(�(p�)) = a+ b(m+ c),

and the optimal production quantity q� is found as

q� = y(p�) + F�1(�(p�))

where

�(p�) =
p� �m+ u� c
p� �m+ u . J (14)

The following corollary gives an upper bound for the optimal price p� in terms of the contract

design parameters.

Corollary 1 The optimal retail price p� is bounded from above by [a+ b(m+ c) +B] =(2b).
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Proof. From Theorem 4, we have

p� =

"
a+ b(m+ c) + F�1(�(p))�

Z F�1(�(p))

A
F (x)dx

#
1

2b
.

< [a+ b(m+ c) +B]
1

2b
.

This follows since F�1(�(p)) � B and
R F�1(�(p))
A F (x)dx > 0.

2.2.2 Design of Buy-Back and Lost-Sales Cost-Sharing Contracts for the Simultaneous-
Move Game

We now consider the simultaneous-move game, and examine the impact of the buy-back and

lost-sales cost-sharing contracts on supply chain coordination. In particular, we investigate

whether or not this multiple-supplier, one-manufacturer assembly supply chain can be coordi-

nated under a pair of the properly-designed contracts. With the appropriate values of contract

parameters (w;v;�), each member of the supply chain chooses his/her equilibrium solution,

which is identical to the globally optimal solution that maximizes the system-wide expected

pro�t found in Theorem 4. If the proper contracts exist, we attempt to �nd them.

Prior to commencing the design of the contract, we present a discussion of the unit underage

cost u. As usual, the value of u is estimated as the sum of the opportunity cost of each unsatis�ed

demand and the goodwill cost per unit unsatis�ed demand. The total cost of assembling one

unit of the �nal product is m+ c and p is the unit retail price, thus u = p� (m+ c) + g, where
g is the goodwill cost. Since the goodwill cost is g � 0 (but di¢ cult to measure), we impose

the condition that the underage cost should have the property u � p� (m+ c).
However, Theorem 4 shows that the globally optimal price is determined in terms of a given

value of u. Since the optimal value of p is not known a priori, the requirement u � p� (m+ c)
may not be always satis�ed. But using the result of Corollary 1, we see that choosing an

underage cost with the property u � [a+ b(m+ c) +B] =2b � (m + c) will always satisfy the

requirement u � p� (m+ c).
Now, in order to coordinate the supply chain, the Nash equilibrium must be equal to the

globally optimal solution, i.e., pN = p� and qN = q�. From Theorem 3, we know that the Nash

equilibrium (pN ; qN ) is obtained by solving

Z qN�y(pN )

A
F (x)dx+ [pN �m+ (1� �)u� v]bF (qN � y(pN ))

= qN + (1� �)ub, (15)

qN = y(pN ) + F�1 (zk) , (16)

where, as before, zk = mini=1;:::;n zi. Similarly, from Theorem 4, the globally optimal solution

10



(p�; q�) is found by solving Z q��y(p�)

A
F (x)dx+ b(p� �m+ u)F (q� � y(p�))

= q� + bu, (17)

q� = y(p�) + F�1
�
p� �m+ u� c
p� �m+ u

�
. (18)

Hence, if and only if the two sets of equations above are the same, i.e., if (15) is identical

to (17) and if (16) is identical to (18), the Nash equilibrium will be identical to the globally

optimal solution. Equating the stated equations and simplifying, the conditions that will assure

pN = p�, and qN = q� are found as

vzk = (1� zk)�u and
p� �m+ u� c
p� �m+ u =

wk � ck + �ku
vk + �ku

.

De�ning z � (p��m+u� c)=(p��m+u), we �nd z = zk and we re-write the above conditions
as:

zv = (1� z)�u and z =
wk � ck + �ku
vk + �ku

. (19)

Furthermore, the chosen values of parameters which satisfy the above conditions should also

meet the following �ve requirements:8>>>>>>>><>>>>>>>>:

(1) : wi � ci � vi � wi, i = 1; : : : ; n.

(2) : 0 � �i � 1, i = 1; : : : ; n.

(3) :
Pn
i=1 �i � 1.

(4) :
wi � ci + �iu
vi + �iu

� z, i = 1; : : : ; k � 1; k + 1; : : : ; n,

(5) : wi � ci, i = 1; : : : ; n.

(20)

Theorem 5 For the simultaneous-move game with the additive demand form (1), supply chain
coordination can be achieved by a pair of the properly-designed buy-back and lost-sales cost-

sharing contract with the following parameter values:

� The values of Sk�s parameters are given as

wk = (1 + z)ck, vk = ck, and �k = 0, (21)

where Sk is chosen as the supplier with the smallest unit production cost, i.e., ck =

mini=1;:::;n ci.

� The values of Si�s parameters (i = 1; : : : ; k � 1; k + 1; : : : ; n) are given as8>>>>>><>>>>>>:

wi = vi + ci =

�
1� z
cz

u+ 1

�
ci +

�
1� z
cz

u� 1
�

ck
n� 1 ,

vi =
1� z
cz

uci +

�
1� z
cz

u� 1
�

ck
n� 1 ,

�i =
1

c

�
ci +

ck
n� 1

�
. J

(22)

11



Remark 1 Theorem 5 indicates that, for the simultaneous-move game, supply chain coordina-

tion can be achieved by the properly-designed buy-back and lost-sales cost-sharing contracts.

In contrast, if only the buy-back or lost-sales cost-sharing contract is involved, coordination of

the supply chain cannot be achieved. For instance, when lost-sales cost-sharing contract is not

considered, the value of the term �i (i = 1; : : : ; n) becomes zero. Then the conditions given

in (19) are reduced to zv = 0 and z = (wk � ck)=vk. From the former condition, we �nd that

v = 0. This makes the second condition unsatis�ed due to vk = 0. On the other hand, if we

just incorporate the lost sales cost-sharing contract, then the �rst condition in (19) cannot be

satis�ed since (1 � z)�u 6= 0. Additionally, we observe from Theorem 5 that there must ex-

ist multiple feasible buy-back and lost-sales cost-sharing contracts which achieve supply chain

coordination. For example, we can set the values of � as

�k =
k�1X
j=1

"j +
nX

j=k+1

"j and �i =
1

c

�
ci +

ck
n� 1

�
� "i, for i = 1; : : : ; k � 1; k + 1; : : : ; n,

where "i (i 6= k) is su¢ ciently small number so that all inequalities in (20) are satis�ed. �

For the simultaneous-move game, when the random demand is dependent of price in the

additive form, we use a buy-back and lost-sales cost-sharing contract design speci�ed by (21)

and (22) to achieve supply chain coordination, under which the equilibrium solution is identical

to the globally optimal solution. From (21), we �nd that the supplier Sk with the smallest unit

production cost is also the one with smallest zk = mini=1;:::;n zi. Thus, from Theorem 3, all

suppliers use the same production quantity which is determined in terms of zk. In this paper,

the supplier Sk with the smallest unit production cost is called the �critical�supplier, and the

others are called �non-critical.�

For the lost-sales cost-sharing contract, the critical supplier Sk has the lowest production

cost, i.e., the value of this supplier�s component has the least value in the �nal product. This

means that the critical supplier should have the least responsibility for sharing the cost of lost

sales, thus we set �k = 0.

For the simultaneous-move game, we list �ve steps to be used for our contract design that

achieves supply chain coordination:

Step 1: Find the globally optimal solution (p�; q�) from Theorem 4;

Step 2: Compute z = (p� �m+ u� c)=(p� �m+ u);
Step 3: Select the critical supplier Sk who has the minimum unit production cost;

Step 4: Determine supplier Sk�s wholesale price (wk), buyback price (vk) and percentage of
the underage cost absorbed by this supplier (�k) as follows: wk = (1 + z)ck, vk = ck, and

�k = 0;

Step 5: Determine the other suppliers�wholesale price, buyback price and percentage of the

12



underage cost absorbed by them as follows: for i = 1; : : : ; k � 1; k + 1; : : : ; n,8>>>>>><>>>>>>:

wi =

�
1� z
cz

u+ 1

�
ci +

�
1� z
cz

u� 1
�

ck
n� 1 ,

vi =
1� z
cz

uci +

�
1� z
cz

u� 1
�

ck
n� 1 ,

�i =
1

c

�
ci +

ck
n� 1

�
.

Under the properly-designed contracts speci�ed in Theorem 5, we can maximize the system-

wide pro�t but cannot assure that each supply chain member individually bene�ts from the

buy-back and lost-sales cost-sharing contracts. Next, we examine whether or not each member�s

individual pro�t under the proper contracts is higher than that without the buy-back and lost-

sales cost-sharing contracts. Note that, if the buy-back contract (w; v) is not involved, then

supplier Si (i = 1; 2; : : : ; n) does not need to buy unused components back from the manufacturer

and thus the parameter vi = 0, for i = 1; 2; : : : ; n. If the lost-sales cost-sharing contract is not

involved, then each supplier�s share of shortage cost is zero, i.e., �i = 0, for i = 1; 2; : : : ; n.

When vi = �i = 0, for i = 1; 2; : : : ; n, we can reduce supplier Si�s random pro�t in (2) and

the manufacturer�s random pro�t in (5), respectively, to

�Si = wiQ+ si(qi �Q�i)+ � ciqi, (23)

�M = (p�m)min[Q;D(p; ")]� wQ� u[D(p; ")�Q]+. (24)

Without the buy-back and lost-sales cost-sharing contracts, the manufacturer must �nd optimal

retail price to maximize its expected pro�t E(�M ) and supplier Si must make an optimal

quantity decision to maximize its expected pro�t E(�Si).

Theorem 6 If the buy-back and lost-sales cost-sharing contracts are not involved for the addi-
tive demand case, then the Nash equilibrium for the simultaneous-move game can be uniquely

determined as:

pN =
a+mb+B �

R B
A F (x)dx

2b
and qNi =

a�mb+B +
R B
A F (x)dx

2
,

for i = 1; : : : ; n and qN = qN1 = � � � = qNn . J

We learn from Remark 1 that, without the buy-back and lost-sales cost-sharing contracts,

the supply chain cannot be coordinated because, for any value of wi (i = 1; 2; : : : ; n), the Nash

equilibrium is always not identical to the globally-optimal solution.

Theorem 7 If the buy-back and lost-sales cost-sharing contracts are not involved for the ad-
ditive demand case, then, for any value of wi (i = 1; 2; : : : ; n), the total pro�t in terms of the

Nash equilibrium given in Theorem 6 is always smaller than that in terms of the globally-optimal

solutions given in Theorem 4. J

We learn from Theorem 7 that the supply chain-wide performance is worse o¤ if the buy-

back and lost-sales cost-sharing contracts are not involved. We denote the supplier Si�s and
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the manufacturer�s expected pro�ts without the contractual mechanism by E(~�Si) and E(~�M ),

respectively. Note that, under the properly-designed contracts given in Theorem 5, Si�s and

the manufacturer�s expected pro�ts in terms of (pN ; qN )� denoted by E(�NSi) and E(�
N
M )�

are respectively equal to E(��Si) and E(�
�
M ), which represent Si�s and the manufacturer�s

expected pro�ts in terms of the globally-optimal solution (p�; q�). That is, E(�NSi) = E(�
�
Si
),

i = 1; 2; : : : ; n, and E(�NM ) = E(�
�
M ). According to Theorem 7, we haveXn

i=1
E(~�Si) + E(

~�M ) <
Xn

i=1
E(��Si) + E(�

�
M ) =

Xn

i=1
E(�NSi) + E(�

N
M ),

which cannot assure that E(��Si) > E(
~�Si) [or, E(�

N
Si
) > E(~�Si)] and E(�

�
M ) > E(

~�M ) [or,

E(�NM ) > E(
~�M )]. This means that, even though the system-wide pro�t can be increased under

the properly-designed contracts, n suppliers and the manufacturer may not all individually

bene�t from the contractual mechanism. If E(��Si) < E(~�Si) or E(�
�
M ) < E(~�M ), then

supplier Si or the manufacturer would lose an incentive to cooperate with the others for the

buy-back and lost-sales cost-sharing contracts. Thus, we need to allow all supply chain members

to fairly share the system-wide pro�t surplus


 �
hXn

i=1
E(��Si) + E(�

�
M )
i
�
hXn

i=1
E(~�Si) + E(

~�M )
i
. (25)

We assume that supplier Si receives 
Si > 0, for i = 1; 2; : : : ; n, and the manufacturer receives


M > 0, such that
Pn
i=1 
Si + 
M = 
. After receiving their shares, supplier Si�s and the

manufacturer�s eventual pro�ts are E(~�Si) + 
Si (i = 1; 2; : : : ; n) and E(~�M ) + 
M , respec-

tively. This means that, after sharing 
, all members�pro�ts are higher than those without the

contractual mechanism.

In order to fairly determine the allocation of the pro�t surplus 
 for the n suppliers, one-

manufacturer supply chain, we use the �Shapley value�concept to calculate 
Si (i = 1; 2; : : : ; n)

and 
M . Shapley value, developed by Shapley [16], is an important solution concept for cooper-

ative games, which, for our paper, provides a unique scheme for allocating the pro�t surplus 


among (n+ 1) players including n suppliers and the manufacturer. The unique Shapley values


 = (
S1 ; : : : ; 
Sn ; 
M ) are determined by 
j = f
P
j2T (jT j � 1)![n + 1 � jT j]![v(T ) � v(T �

j)]g=(n + 1)!, for j = S1; : : : ; Sn;M , where T denotes a coalition in which some supply chain

members cooperate to jointly make their decisions, v(�) denotes the pro�t surplus joint achieved
by all cooperative members in a coalition, and jT j is the size of T . Note that, in the assembly
supply chain, all suppliers sell complementary components to the manufacturer who assembles

and sells �nal products. This implies that the system-wide pro�t would be zero if any member in

such a supply chain leaves. Using this fact, we can compute the Shapley value-based allocation

of the pro�t surplus 
 as shown in the following theorem.

Theorem 8 Shapley value suggests that the system-wide pro�t surplus 
 should be equally
allocated among n suppliers and the manufacturer, i.e., 
S1 = 
S2 = � � � = 
Sn = 
M =


=(n + 1). As a result, n suppliers� and the manufacturer�s pro�ts after the allocation are,

respectively, computed as E(~�Si) + 
=(n+ 1) (i = 1; 2; : : : ; n) and E(~�M ) + 
=(n+ 1). J

In conclusion, we �nd that, in order to coordinate the supply chain for the simultaneous-
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move game with the additive demand form, it is important to consider the following two issues:

(i) We should design the buy-back and lost-sale cost-sharing contracts as in Theorem 5 to assure

that the Nash equilibrium and the global solution are identical; (ii) we should fairly allocate

the system-wide pro�t surplus 
 as in Theorem 8 to assure that all supply chain members are

better o¤ than without the contractual mechanism.

2.2.3 Design of Buy-Back and Lost-Sales Cost-Sharing Contracts for the Leader-
Follower Game

We now consider the leader-follower game, and design a pair of proper buyback and lost-

sales cost-sharing contracts to achieve supply chain coordination. That is, under the properly-

designed contracts, the Stackelberg equilibrium (pS ; qS1 ; q
S
2 ; : : : ; q

S
n ) given in Theorem 3 is iden-

tical to the globally-optimal solution (p�; q�1; q
�
2; : : : ; q

�
n) given in Theorem 4.

Similar to Section 2.2.2, we use Theorems 3 and 4 to re-write the Stackelberg equilibrium

(pS ; qS) and the global solution (p�; q�) as

Z qS�y(pS)

A
F (x)dx+ (pS �m� w)b = qS , (26)

qS = y(pS) + F�1 (zk) , (27)

and Z q��y(p�)

A
F (x)dx+ (p� �m� c)b = q�, (28)

q� = y(p�) + F�1(z), (29)

where z = (p� �m+ u� c)=(p� �m+ u), as de�ned in Section 2.2.2.
It is important to note that the Stackelberg equilibrium will be identical to the globally

optimal solution if and only if (26) is identical to (28) and (27) is identical to (29). Equating

the stated equations and simplifying, the conditions that will assure pS = p� and qS = q� are

found as

w = c, and z =
wk � ck + �ku
vk + �ku

, (30)

where the chosen values of parameters which satisfy the above conditions also meet the �ve

requirements (20).

Theorem 9 For the leader-follower game with the additive demand form (1), supply chain

coordination can be achieved by a pair of the properly-designed buy-back and lost-sales cost-

sharing contract with the following parameter values:

1. If u � c, then the proper contracts can be designed as

vi = (1� z)u
ci
c
, �i = z

ci
c
, wi = ci,

for i = 1; 2; : : : ; n.

15



2. If u > c, then the proper contracts can be designed as

vi = (1� z)ci, �i = z
ci
u
, wi = ci,

for i = 1; 2; : : : ; n. J

We learn from Theorem 9 that, if all suppliers make their production decisions after the

manufacturer makes its pricing decision, then all suppliers�wholesale prices must be equal to

their production costs in order to induce supply chain coordination. Hence, for the leader-

follower game, each supplier�s unit pro�t is zero; see, Bernstein and Federgruen [2] for a similar

result. As we discussed in Section 2.2.2, all supply chain members should be better o¤ than

without the contractual mechanism; otherwise, they may lose the incentive to cooperate for

supply chain coordination.

Next, we compute the Stackelberg equilibrium when the buy-back and lost-sales cost-sharing

contracts are not involved, and examine whether or not the supply chain can be coordinated

without such contracts.

Theorem 10 If the buy-back and lost-sales cost-sharing contracts are not involved for the
additive demand case, then the Stackelberg equilibrium for the leader-follower game can be

uniquely determined as:

pS =
a+ b(m+ w) + �

2b
and qSi =

a� b(m+ w)� �+ 2B
2

,

for i = 1; : : : ; n and qS1 = � � � = qSn .
Moreover, we �nd that the supply chain cannot be coordinated if the buy-back and lost-sales

cost-sharing contracts are not involved. This means that, for any value of wi (i = 1; 2; : : : ; n),

the total pro�t in terms of the Stackelberg equilibrium is always smaller than that in terms of

the globally-optimal solutions given in Theorem 4. J

We can use Theorem 9 to achieve supply chain coordination under proper contracts but

cannot assure that all supply chain members are better o¤ than without the contracts. As

Theorem 10 indicates, without the buyback and shortage contracts, the total pro�t in terms of

the Stackelberg equilibrium is always smaller than that in terms of the globally-optimal solutions

given in Theorem 4. Similar to Section 2.2.2, in order to entice all members to cooperate for

supply chain coordination, we should use (25) to compute the expected pro�t surplus generated

under the proper contracts given in Theorem 9, and use Theorem 8 to calculate the allocations

to n suppliers and the manufacturer.

In online Appendix B, we provide two numerical examples to illustrate our analysis for the

additive demand case.
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3 Non-Cooperative Equilibria and Supply Chain Coordination

with Price-Dependent RandomDemand: Multiplicative Form

In this section, the manufacturer faces the random price-dependent demand in a multiplicative

form. Note that the di¤erence between our analyses in this section and Section 2 is the form of

the demand function. Thus, in order not to be repetitive, we only present Nash and Stackelberg

equilibria, globally-optimal solution, and contract design in what follows.

As Petruzzi and Dada [14] discussed, the multiplicative demand function in the newsvendor

context is commonly formulated as

D(p; ") = y(p)", (31)

where the deterministic term y(p) and the error term " taking values in the range [A;B] as

de�ned in Table 1. Similar to Section 2.1.2, it is reasonable to assume that the error term has

a lower bound A > 0 and an upper bound B < 1. The assumption was also commonly made
in previous publications; see, for example, Petruzzi and Dada [14]. As in Section 2, the demand

function (31) is �common knowledge�for all suppliers and the manufacturer; thus, all suppliers

know the demand range [Ay(p); By(p)], and determine their quantities subject to this range,

i.e., Ay(p) � qi � By(p), i = 1; : : : ; n.
The next theorem gives the Nash equilibrium for the simultaneous-move game and the

Stackelberg equilibrium for the leader-follower game.

Theorem 11 The Nash equilibrium for the multiplicative case should be obtained by solving

the following equation set:

F�1 (zk) (1� zk) +
�
1� (pN �m� v) b

pN

�
�

=

�
1� [pN �m+ (1� �)u� v] b

pN

�Z B

F�1(zk)
xf(x)dx, (32)

qN � qN1 = � � � = qNn = y(pN )F�1 (zk) , (33)

where zk = (wk � ck + �ku)=(vk + �ku) with the index k de�ned by (4).
The Stackelberg equilibrium for the leader-follower game should be obtained by solving the

following equation set:

F�1 (zk) [1� zk] +
�
1� (pS �m� v) b

pS

�
�

= f[pS �m+ (1� �)u� v](1� zk) + (v � w)g
b

pS
F�1 (zk)

+

�
1� [pS �m+ (1� �)u� v] b

pS

�Z B

F�1(zk)
xf(x)dx, (34)

qS1 = qS2 = : : : = q
S
n = y(p

S)F�1 (zk) . J (35)

Next, we compute the globally-optimal pricing and production decisions that maximize the
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chainwide pro�t.

Theorem 12 For the multiplicative case, the globally optimal price p� and production quantity
q� satisfy the conditions

F�1(�(p�))[1� �(p�)] +
�
1� (p� �m) b

p�

�
�

=

�
1� (p� �m+ u) b

p�

� Z B

F�1(�(p�))
xf(x)dx, (36)

q� = y(p�)F�1(�(p�)), (37)

where �(p�) = (p� �m+ u� c)=(p� �m+ u), as de�ned in (14). J

Next theorem indicates the impacts of the parameter b in the multiplicative demand function

(31) on the Nash and Stackelberg equilibria and the globally-optimal solution.

Theorem 13 As the value of b in (31) increases, both Nash and Stackelberg equilibrium prices
(pN and pS) decrease, and the globally-optimal solution p� also decreases. J

Our properly-designed contracts for both simultaneous-move and leader-follower games are

given in the next theorem.

Theorem 14 For both simultaneous-move and leader-follower games with the multiplicative
demand form, supply chain coordination can be achieved by a pair of the properly-designed

buy-back and lost-sales cost-sharing contracts. The proper contract designs for the two games,

which are given in Table 2, depend on the value of � � �u=[c(�� �)] with

� �

8>>><>>>:
Z B

q�=y(p�)
xf(x)dx, for the simultaneous-move game,Z B

q�=y(p�)
[x� q�=y(p�)]f(x)dx, for the leader-follower game. J

Theorem 14 demonstrates that, for both simultaneous-move and leader-follower games, this

assembly supply chain can be coordinated by a pair of proper buyback and lost-sales cost-sharing

contracts. Di¤erent from the additive case in Section 2, for the multiplicative case we have to

consider a speci�c condition [i.e., � � 1] and present di¤erent properly-designed contracts when
the condition is satis�ed and not satis�ed.

Next, similar to Section 2, we compute the Nash and Stackelberg equilibria when the buy-

back and lost-sales cost-sharing contracts are not involved.

Theorem 15 Without the buy-back and lost-sales cost-sharing contracts, the Nash and Stack-
elberg equilibria are obtained as follows:

pN = bm=(b� 1), qNi = By(p
N ), i = 1; : : : ; n;

pS = b(m�+ wB)=[(b� 1)�], qSi = By(p
S), i = 1; : : : ; n.
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(i) � � 1

Supplier Supplier Sk
Supplier Si

i = 1; : : : ; k � 1; k + 1; : : : ; n
Contract wk = (1 + z�) ck, wi = vi + ci = (�+ 1) ci,
Design vk = �ck, vi = �ci,

�k = 0. �i =
1

c

�
ci +

ck
n� 1

�
.

(ii) � � 1

Supplier Supplier Sk
Supplier Si

i = 1; : : : ; k � 1; k + 1; : : : ; n
Contract wk = (1 + z)ck, wi = vi + ci = (�+ 1) ci + (�� 1)

ck
n� 1 ,

Design vk = ck, vi = �ci + (�� 1)
ck
n� 1 ,

�k = 0. �i =
1

c

�
ci +

ck
n� 1

�
.

Note that Sk is chosen as the supplier with the smallest unit
production cost, i.e., ck = mini=1;:::;n ci.

Table 2: The set of contract parameters for the multiplicative case.

We �nd that the total pro�t in terms of the Nash or Stackelberg equilibrium is always smaller

than that in terms of the globally-optimal solutions given in Theorem 12. J

In order to entice all members to cooperate for supply chain coordination, we use (25) to

compute the expected pro�t surplus 
, and use Theorem 8 to calculate the allocations to n

suppliers and the manufacturer.

In online Appendix C, we provide two numerical examples to illustrate our analysis for the

multiplicative demand case.

4 Conclusions and Recommendations for Further Research

In this paper we considered an assembly supply chain where multiple suppliers produce com-

plementary components that are used by a manufacturer who assembles the �nal product and

sells them directly to a market. The single period demand for the �nal product is random and

depends on the retail price chosen by the manufacturer.

The suppliers and the manufacturer have an agreement whereby each supplier buys back

the unsold components and absorbs a portion of the lost-sales cost. Accordingly, we incorporate

the buy-back and lost sales cost-sharing contracts into our inventory-related game model where

we assume a price-sensitive random demand in (i) additive, and (ii) multiplicative form. For

each case, we develop a pair of properly-designed lost-sales cost-sharing contracts to induce

supply chain coordination. To determine the contracts, we �rst consider the situation where

the suppliers and the manufacturer do not cooperate and where the suppliers and the manufac-

turer determine their production quantities and retail price, respectively. We derive the Nash

equilibrium for the simultaneous-move game, and compute the Stackelberg equilibrium for the

leader-follower game.

Next, we examine whether or not the assembly supply chain can be coordinated. We show
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that, for both simultaneous-move and leader-follower games, the supply chain coordination can

always be achieved by a pair of properly-designed buy-back and lost-sales cost-sharing contracts.

Under the properly-designed contracts, each supplier adopts the equilibrium production quantity

and the manufacturer chooses the equilibrium price, and the system-wide pro�t is maximized

as well.

Since in this paper the demand is assumed to depend on the retail price only, we may relax

this assumption in future and analyze assembly supply chains where demand depends on price,

quality and some other factors. In another future research direction, we may consider the case

where the manufacturer sets the buy-back and shortage parameters to increase its own pro�ts

while allowing the suppliers to gain pro�ts so that they are willing to keep the business with

the manufacturer. This would be modeled as a two-stage problem in which the manufacturer

�rst sets the contract parameters and all players (i.e., the manufacturer and its suppliers) then

�nd the Nash equilibrium.

References

[1] F. Bernstein and G. A. DeCroix. Inventory policies in a decentralized assembly system.

Operations Research, 54(2):324�336, March-April 2006.

[2] F. Bernstein and A. Federgruen. Decentralized supply chains with competing retailers

under demand uncertainty. Management Science, 51(1):18�29, January 2005.

[3] G. P. Cachon. Supply chain coordination with contracts. In A. G. de Kok and S. C. Graves,

editors, Supply Chain Management: Design, Coordination and Operation, pages 229�340.

Elsevier, Amsterdam, 2003.

[4] G. P. Cachon. The allocation of inventory risk in a supply chain: Push, pull, and advance-

purchase discount contracts. Management Science, 50(2):222�238, February 2004.

[5] G. P. Cachon and P. T. Harker. Competition and outsourcing with scale economies. Man-

agement Science, 48(10):1314�1333, October 2002.

[6] S. M. Carr and U. S. Karmarkar. Competition in multiechelon assembly supply chains.

Management Science, 51:45�59, 2005.

[7] S. Chopra and P. Meindl. Supply Chain Management: Strategy, Planning and Operation.

Prentice-Hall, Upper Saddle River, 2001.

[8] D. Granot and S. Yin. Competition and cooperation in decentralized push and pull assem-

bly systems. Management Science, 54(4):733�747, April 2008.

[9] M. Leng and M. Parlar. Game theoretic applications in supply chain management: a

review. INFOR, 43(3):187�220, August 2005.

[10] M. Leng and A. Zhu. Side-payment contracts in two-person nonzero-sum supply chain

games: Review, discussion and applications. European Journal of Operational Research,

196(2):600�618, July 2009.

20



[11] C. T. Linh and Y. Hong. Channel coordination through a revenue sharing contract in

a two-period newsboy problem. European Journal of Operational Research, 198:822�829,

2008.

[12] M. Parlar and Z. K. Weng. Designing a �rm�s coordinated manufacturing and supply

decisions with short product life-cycles. Management Science, 43(10):1329�1344, 1997.

[13] B. A. Pasternack. Optimal pricing and return policies for perishable commodities. Mar-

keting Science, 4(2):166�176, Spring 1985.

[14] N. C. Petruzzi and M. Dada. Pricing and the newsvendor problem: A review with exten-

sions. Operations Research, 47(2):183�194, 1999.

[15] A. Reinhardt. Nokia�s magni�cent mobile-phone manufacturing machine. BusinessWeek

Online, August 4, 2006.

[16] L. S. Shapley. A value for n-person games. In H. W. Kuhn and A. W. Tucker, editors, Con-

tributions to the Theory of Games II, pages 307�317. Princeton University Press, Princeton,

1953.

[17] D. Simchi-Levi, P. Kaminsky, and E. Simchi-Levi. Designing and Managing the Supply

Chain: Concepts, Strategies, and Case Studies. McGraw-Hill, New York, third edition,

2008.

[18] Y. Wang. Joint pricing-production decisions in supply chains of complementary products

with uncertain demand. Operations Research, 54(6):1110�1127, November-December 2006.

[19] Y. Wang and Y. Gerchak. Capacity games in assembly systems with uncertain demand.

Manufacturing & Service Operations Management, 5(3):252�267, Summer 2003.

21



Online Appendices
�Game-Theoretic Analyses of Decentralized Assembly Supply Chains:
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Appendix A Proofs

Proof of Theorem 1. Supplier Si�s pro�t function in (2) is evaluated by comparing this

supplier�s production quantity qi with the minimum production quantity Q�i of the other

suppliers: If Q�i � qi, then Q = Q�i; otherwise, if qi � Q�i, then Q = qi in which case

Si receives no salvage value. As discussed in Section 2.1.2, the production quantity qi will

fall in the range [y(p) + A; y(p) + B], hence, Q�i 2 [y(p) + A; y(p) + B]. In order to �nd the
optimal production quantity for Si, we examine the pro�t function for two di¤erent cases: (i)

Q�i � qi � y(p) +B, and (ii) y(p) +A � qi � Q�i.
(i) Q�i � qi � y(p) +B: In this case, Q = Q�i and Si�s pro�t function (2) is reduced to

�Si = (wi � si)Q�i + qi(si � ci)� vi[Q�i �D(p; ")]+ � �iu[D(p; ")�Q�i]+.

Hence, the expected pro�t is

E(�Si) = (wi � si)Q�i + qi(si � ci)� viE[Q�i �D(p; ")]+ � �iuE[D(p; ")�Q�i]+,

which shows that E(�Si) is decreasing in qi due to si < ci. As a result,

q�i = Q�i, for Q�i � qi � y(p) +B.

(ii) y(p) +A � qi � Q�i: In this case Si�s pro�t function (2) becomes

�Si = (wi � ci)qi � vi[qi �D(p; ")]+ � �iu[D(p; ")� qi]+,

and the expected pro�t is

E(�Si) = (wi�ci)qi�vi
Z qi�y(p)

A
[qi�y(p)�x]f(x) dx��iu

Z B

qi�y(p)
[y(p)+x�qi]f(x) dx.

Taking the �rst- and second-order derivatives w.r.t. qi, we have

dE(�Si)

dqi
= wi � ci + �iu� (vi + �iu)F (qi � y(p)),

d2E(�Si)

dq2i
= �(vi + �iu)f(qi � y(p)) < 0,

which shows that Si�s expected pro�t E(�Si) is a strictly concave function of qi. Thus, we

can solve dE(�Si)=dqi = 0 and obtain the unconstrained solution that maximizes E(�Si)

as

q0i = y(p) + F
�1
�
wi � ci + �iu
vi + �iu

�
.
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Furthermore, since 0 < wi � ci � vi as discussed in Section 2.1, we have

A = F�1 (0) < F�1
�
wi � ci + �iu
vi + �iu

�
� F�1 (1) = B.

Now, for this case, taking into account the constraint qi � Q�i, we �nd the optimal

solution (i.e., the supplier Si�s best response production decision) as

qBi = min

�
y(p) + F�1

�
wi � ci + �iu
vi + �iu

�
; Q�i

�
.

Combining our analysis for Cases (i) and (ii), we �nd that, for given contract parameters

(v;�), the manufacturer�s pricing decision p, and other suppliers�production quantities Q�i,

the ith supplier�s optimal best response production quantity qBi is determined as

qBi = min

�
y(p) + F�1

�
wi � ci + �iu
vi + �iu

�
; Q�i

�
, (38)

which implies that supplier Si�s best response production quantity is no more than the minimum

production quantity of other suppliers, i.e., qBi � Q�i.
Our above discussion shows that each supplier�s best response production decision can be

calculated as a function of the other suppliers�decisions and the manufacturer�s retail price.

Next we provide an expression for the exact value of the suppliers�production quantities.

We �rst demonstrate that all suppliers�equilibrium production quantities are equal. Suppose

that, for a �xed manufacturer�s price p, suppliers Si and Sj have di¤erent best responses, that

is, qBi 6= qBj . We then have

qBi � QB�i = minfqB1 ; : : : ; qBi�1; qBi+1; : : : ; qBn g � qBj ,

qBj � QB�j = minfqB1 ; : : : ; qBj�1; qBj+1; : : : ; qBn g � qBi ,

implying that qBi = qBj , which contradicts our assumption, hence, we must have q
B
1 = qB2 =

� � � = qBn .
We assume that the supplier with the smallest ratio of the right-hand-side term in (4) is Sk

which results in

F�1
�
wk � ck + �ku
vk + �ku

�
= min
i=1;:::;n

�
F�1

�
wi � ci + �iu
vi + �iu

��
. (39)

We have proved that supplier Sk�s best response production quantity is

qBk = min

�
y(p) + F�1

�
wk � ck + �ku
vk + �ku

�
; QB�k

�
.

From (39), we �nd that

y(p) + F�1
�
wk � ck + �ku
vk + �ku

�
� QB�k.
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Hence, each supplier�s best response is

qB1 = � � � = qBn = y(p) + F�1
�
wk � ck + �ku
vk + �ku

�
,

and this theorem proves.

Proof of Theorem 2. We �rst consider the manufacturer�s best response price for the

simultaneous-move game. We begin by showing that the expected pro�t E(�M ) is a unimodal

function of the price p. Taking the �rst- and second-order derivatives of E(�M ) in (6) w.r.t. p,

we have

dE(�M )

dp
= Q+ (1� �)ub�

Z Q�y(p)

A
F (x)dx� [p�m+ (1� �)u� v]bF (Q� y(p)),

and
d2E(�M )

dp2
= �2bF (Q� y(p))� [p�m+ (1� �)u� v]b2f(Q� y(p)). (40)

As �2bF (Q � y(p)) < 0, we will investigate the sign of the second term in (40). Since

b2f(Q � y(p)) > 0, it is su¢ cient to show that [p � m + (1 � �)u � v] > 0 to prove the

nonnegativity of the second term. Consider the point(s) at which dE(�M )=dp = 0. We have,

[p�m+ (1� �)u� v]bF (Q� y(p)) = Q+ (1� �)ub�
Z Q�y(p)

A
F (x) dx

� Q+ (1� �)ub� [Q� y(p)�A]

� (1� �)ub+ y(p) +A > 0.

Since bF (Q� y(p)) > 0, we have [p�m+(1��)u� v] > 0 and d2E(�M )=dp2 < 0 for any price
satisfying dE(�M )=dp = 0. This implies that the manufacturer�s expected pro�t is a unimodal

function of the unit retail price p with a unique maximizing value pB.

We now consider the manufacturer�s best-response price pB for the leader-follower game.

From Theorem 1, we have found all suppliers�best production quantities as

qB1 = � � � = qBn = y(p) + F�1
�
wk � ck + �ku
vk + �ku

�
,

which means that the manufacturer receives

Q = min(qB1 ; q
B
2 ; : : : ; q

B
n ) = y(p) + F

�1
�
wk � ck + �ku
vk + �ku

�
. (41)

In order to obtain the manufacturer�s best response price pB, we substitute (41) into (6),

and �nd

E(�M ) = (p�m� v)[y(p) + �] + (v � w)
�
y(p) + F�1

�
wk � ck + �ku
vk + �ku

��
+[p�m+ (1� �)u� v]

�
Z B

F�1
�
wk�ck+�ku
vk+�ku

�
�
F�1

�
wk � ck + �ku
vk + �ku

�
� x

�
f(x)dx. (42)
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The �rst- and second-order derivatives of E(�M ) in (42) w.r.t. p are calculated as follows:

@E(�M )

@p
= a� 2bp+ b(m+ w) + F�1

�
wk � ck + �ku
vk + �ku

�
�
Z F�1

�
wk�ck+�ku
vk+�ku

�
A

F (x)dx,

@2E(�M )

@p2
= �2b < 0,

which implies that E(�M ) in (42) is strictly concave in p. Equating @E(�M )=@p to zero and

solving the resulting equation for p, we can �nd the manufacturer�s best response pB as

p =
1

2b

"
a+ b(m+ w) + F�1

�
wk � ck + �ku
vk + �ku

�
�
Z F�1

�
wk�ck+�ku
vk+�ku

�
A

F (x)dx

#
,

which, using (41), can be re-written asZ Q�y(p)

A
F (x)dx+ (p�m� w)b = Q,

as shown in (8).

Proof of Theorem 3. We �rst consider the simultaneous-move game. In order to �nd the

Nash equilibrium (pN ; qN1 ; : : : ; q
N
n ), we recall from Theorem 1 that q � qB1 = � � � = qBn . As

Theorem 2 indicates, the manufacturer�s best response price pB is found as the solution of the

following nonlinear equationZ q�y(p)

A
F (x)dx+ [p�m+ (1� �)u� v]bF (q � y(p)) = q + (1� �)ub, (43)

q = y(p) + F�1 (zk) . (44)

From the best response function of each supplier, we have F (q � y(p)) = zk. Hence, we

reduce the equation in (43) to

Z F�1(zk)

A
F (x)dx+ [p�m+ (1� �)u� v]bzk = q + (1� �)ub,

and solve it for p to �nd

p = m� (1� �)u+ v + 1

bzk

"
q + (1� �)ub�

Z F�1(zk)

A
F (x) dx

#

= m+ v +

�
1

zk
� 1
�
(1� �)u+ 1

bzk

"
q �

Z F�1(zk)

A
F (x)dx

#
. (45)

Substituting the expression for p into (44), we obtain the equilibrium production quantity

qN of each supplier as (10). Finally, substituting qN of (10) into (45), we obtain the expression

for pN in (9).

Next, we �nd the Stackelberg equilibrium when the manufacturer and the suppliers act the
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leader and the followers, respectively. We learn from the proof of Theorem 2 that the Stackelberg

price pS of the manufacturer can be computed as in (11). Using Theorem 1 we �nd that, for

the leader-follower game,

qSi = y(p
S) + F�1(zk) = a� bpS + F�1(zk), i = 1; 2; : : : ; n.

Substituting (11) into the above equation gives each supplier�s Stackelberg equilibrium qSi in

(12).

Proof of Theorem 4. Partially di¤erentiating E(�) w.r.t. p and q, we have

@E(�)

@p
= [y(p) + �] + bu+

Z B

q�y(p)
[q � y(p)� x]f(x) dx� b(p�m+ u)F (q � y(p)),

@E(�)

@q
= �c+ (p�m+ u)[1� F (q � y(p))].

The second-order partial derivatives are computed as

@2E(�)

@p2
= �2bF (q � y(p))� b2(p�m+ u)f(q � y(p)) < 0,

@2E(�)

@q2
= �(p�m+ u)f(q � y(p)) < 0.

Thus, for �xed q, E(�) is strictly concave in p; and for �xed p, it is strictly concave in q.

Even though we have computed the Hessian, the complicated nature of the problem made it

di¢ cult to analyze the Hessian�s negative de�niteness. Thus, we cannot determine the concavity

or the unimodality of the function E(�). However, as Petruzzi and Dada [14, Theorem 1] have

shown, the �nite optimal solution (p�; q�) for a single-period pro�t model with random price-

dependent demand (where the expected pro�t is not necessarily concave or unimodal) can be

found by solving

q + bu�
Z q�y(p)

A
F (x)dx� b(p�m+ u)F (q � y(p)) = 0, (46)

�c+ (p�m+ u)[1� F (q � y(p))] = 0. (47)

From (47), we �nd

F (q � y(p)) = p�m+ u� c
p�m+ u ,

or,

q(p) = y(p) + F�1
�
p�m+ u� c
p�m+ u

�
. (48)

Substituting (48) into (46) gives

2bp+

Z F�1(�(p))

A
F (x)dx� F�1(�(p)) = a+ b(m+ c), (49)

where �(p) is as given in the statement of the theorem. Since @2E(�)=@p2 < 0, the solution of

(49) should be unique, thus giving the globally-optimal retail price p� which can then be used
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to compute the globally optimal q� from (48).

Proof of Theorem 5. We need to show that the values of parameters speci�ed in (21) and

(22) satisfy (19) and (20). It is easy to see that conditions in (19) are satis�ed. Now we examine

whether the values of the parameters can satisfy (20).

1. wi � ci � vi � wi, i = 1; : : : n: Since zck � ck � (1 + z)ck, we have wk � ck � vk � wk.
Furthermore, due to wi = vi+ ci, we have wi� ci � vi � wi, i = 1; : : : ; k� 1; k+1; : : : ; n.

2. 0 � �i � 1, i = 1; : : : ; n: From (21), we have �k = 0. Since c =
Pn
j=1 cj > ci + ck >

ci + ck=(n� 1), we �nd that 0 � �i � 1, i = 1; : : : ; k � 1; k + 1; : : : ; n.
3.
Pn
i=1 �i � 1: In such a contract design, we have,

nX
i=1

�i = �1 + � � �+ �k�1 + �k + �k+1 + � � �+ �n

=
(c1 + � � �+ ck�1 + ck+1 + � � �+ cn) + ck

c
+ �k

= 1:

4.
wi � ci + �iu
vi + �iu

� z, i = 1; : : : ; k� 1; k+1; : : : ; n: Since vi = wi� ci, i = 1; : : : ; k� 1; k+
1; : : : ; n, we have

zvi � vi = wi � ci � wi � ci + (1� z)�iu,

from which the inequality follows.

5. wi � ci, i = 1; : : : ; n: From our contract design in (21), we �nd that wk � ck. For

i = 1; : : : ; k � 1; k + 1; : : : ; n, we should show that vi � 0. Since ck = mini=1;:::;n ci, we

have

vi =
1� z
cz

uci +

�
1� z
cz

u� 1
�

ck
n� 1

� 1� z
cz

uck +

�
1� z
cz

u� 1
�

ck
n� 1

=

�
1� z
cz

u� 1

n

�
nck
n� 1

=

�
u

p� �m+ u� c �
1

n

�
nck
n� 1

�
�
1

2
� 1

n

�
nck
n� 1

� 0.

These arguments show that the properly-designed contracts with the parameters given in

(21) and (22) can realize supply chain coordination.

Proof of Theorem 6. We �rst consider the best response decisions of supplier Si, i =

1; 2; : : : ; n. We calculate the optimal quantity for supplier Si for two di¤erent cases: (i) Q�i �
qi � y(p) +B, and (ii) y(p) +A � qi � Q�i.
(i) Q�i � qi � y(p) +B: In this case, Q = Q�i and Si�s pro�t function (23) is reduced to

�Si = (wi � si)Q�i + qi(si � ci).
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Hence, the expected pro�t is

E(�Si) = (wi � si)Q�i + qi(si � ci),

which shows that E(�Si) is decreasing in qi due to si < ci. As a result,

q�i = Q�i, for Q�i � qi � y(p) +B.

(ii) y(p) +A � qi � Q�i: In this case Si�s pro�t function (23) becomes �Si = (wi� ci)qi, and
the expected pro�t is

E(�Si) = (wi � ci)qi,

which implies that Si�s expected pro�t E(�Si) is increasing in qi because wi � ci. Thus,

q�i = Q�i, for y(p) +A � qi � Q�i.

From our above analysis we conclude that all suppliers�optimal quantities must be equal.

As a result, we can write supplier Si�s expected pro�t as

E(�Si) = (wi � ci)qi,

which is increasing in qi. Because qi � y(p) +B, the supplier�s best-response quantity is

qBi = y(p) +B.

Next, we compute the manufacturer�s best-response retail price pB. Using Theorem 2 we

can uniquely determine the manufacturer�s best response price pB by solving the functionZ Q�y(p)

A
F (x)dx+ (p�m+ u)bF (Q� y(p)) = Q+ ub.

Since Q = y(p) +B, we can re-write the above equation toZ B

A
F (x)dx+ (p�m)b = y(p) +B,

and we can solve the equation to �nd

pB =
a+mb+B

2b
� 1

2b

Z B

A
F (x)dx.

Using the above analysis we can �nd the Nash equilibrium

pN =
a+mb+B

2b
� 1

2b

Z B

A
F (x)dx,

qNi =
a�mb+B

2
+
1

2

Z B

A
F (x)dx,

for i = 1; : : : ; n and qN � qN1 = � � � = qNn .
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Note that pN > 0 and qN > 0 because
R B
A F (x)dx < B�A < B and a+B > a+A > pb > mb.

This theorem thus proves.

Proof of Theorem 7. This theorem follows from Remark 1, which indicates that the supply

chain cannot be coordinated if the buy-back and the lost-sales cost-sharing contracts are not

included.

Proof of Theorem 8. Shapley value, developed by Shapley [16], is a solution concept for

cooperative games, which provides a unique scheme for allocating the pro�t surplus 
 among

(n + 1) players including n suppliers and the manufacturer. The unique Shapley values 
 =

(
S1 ; : : : ; 
Sn ; 
M ) are determined by


j =

P
j2T (jT j � 1)![n+ 1� jT j]![v(T )� v(T � j)]

(n+ 1)!
, for j = S1; : : : ; Sn;M .

where T denotes a coalition in which some supply chain members cooperate, v(�) denote the
pro�t surplus joint achieved by all cooperative members in a coalition, and jT j is the size of T .

Because, in the assembly supply chain, all suppliers sell complementary components to the

manufacturer who assembles and sells �nal products, the system-wide pro�t surplus would be

zero if not all members in such a supply chain cooperate. This means that, if and only if

n suppliers and the manufacturer cooperate, then the system-wide pro�t surplus will be 
.

Therefore, we �nd that, for j = S1; : : : ; Sn;M ,


j =

P
j2T (jT j � 1)![(n+ 1)� jT j]![v(T )� v(T � j)]

(n+ 1)!

=
[(n+ 1)� 1]!� 1!� (
 � 0)

(n+ 1)!

=



n+ 1
.

As a result, all supply chain members�pro�ts after receiving 
j (j = j = S1; : : : ; Sn;M) can

be computed as shown in this theorem.

Proof of Theorem 9. We need to show that the values of parameters speci�ed in this

theorem satisfy (30) and (20). It is easy to see that conditions in (30) are satis�ed when u � c
or u > c. Now we examine whether the values of the parameters can satisfy (20).

1. If u � c, then we �nd
(a) wi � ci � vi � wi, i = 1; : : : n: Since wi = ci, 0 < z < 1 and u � c, we can easily

�nd that 0 � vi � wi, for i = 1; 2; : : : ; n.
(b) 0 � �i � 1, i = 1; : : : ; n: It is easy to show that 0 � �i � 1 (i = 1; 2; : : : ; n)

because z < 1 and ci � c.
(c)

Pn
i=1 �i � 1: In such a contract design, we have

nX
i=1

�i = z < 1.

(d)
wi � ci + �iu
vi + �iu

� z, i = 1; : : : ; k � 1; k + 1; : : : ; n: Since wi = ci, we �nd that

8



(wi � ci + �iu)=(vi + �iu) = z.
(e) wi � ci, i = 1; : : : ; n: In the contract design, we set wi = ci, for i = 1; 2; : : : ; n.

2. If u > c, then we �nd

(a) wi � ci � vi � wi, i = 1; : : : n: Since wi = ci and 0 < z < 1, we can easily �nd that

0 � vi = (1� z)ci � ci = wi, for i = 1; 2; : : : ; n.
(b) 0 � �i � 1, i = 1; : : : ; n: It is easy to show that 0 � �i � 1 (i = 1; 2; : : : ; n)

because z < 1 and ci � c < u.
(c)

Pn
i=1 �i � 1: In such a contract design, we have

nX
i=1

�i = z
c

u
< 1,

because 0 < z < 1 and u > c.

(d)
wi � ci + �iu
vi + �iu

� z, i = 1; : : : ; k � 1; k + 1; : : : ; n: Since wi = ci, we �nd that

(wi � ci + �iu)=(vi + �iu) = z.
(e) wi � ci, i = 1; : : : ; n: In the contract design, we set wi = ci, for i = 1; 2; : : : ; n.

These arguments show that the properly-designed contracts with the parameters given in

this theorem can realize supply chain coordination.

Proof of Theorem 10. From the proof of Theorem 6 we �nd the best-response decision of

supplier Si (i = 1; 2; : : : ; n) as

qBi = y(p) +B.

To �nd the Stackelberg equilibrium, we should substitute qBi into the manufacturer�s pro�t

function and then maximize the resulting expected pro�t for the optimal price. Using (6) we

write the manufacturer�s expected pro�t without the contractual mechanism as

E(�M ) = (p�m)[y(p) + �]� wQ+ (p�m+ u)�
Z B

Q�y(p)
[Q� y(p)� x]f(x)dx.

Since Q = qB = y(p) +B, we re-write the manufacturer�s expected pro�t as

E(�M ) = (p�m)[y(p) + �]� w[y(p) +B]

= (p�m� w)y(p) + (p�m)�� wB.

Di¤erentiating E(�M ) w.r.t. p once and twice gives

@E(�M )

@p
= �2bp+ a+ b(m+ w) + �,

@2E(�M )

@p2
= �2b < 0.

Therefore, we can solve @E(�M )=@p = 0 for p and �nd

pS = [a+ b(m+ w) + �]=2b, (50)

9



and thus,

qSi = y(p
S) +B = [a� b(m+ w)� �]=2 +B, (51)

for i = 1; : : : ; n and qS1 = � � � = qSn .
Next, we show that we �nd that the supply chain cannot be coordinated if the buy-back

and lost-sales cost-sharing contracts are not involved. By comparing (28) and (29) with (50)

and (51), we �nd that, for any value of wi (i = 1; 2; : : : ; n), the Stackelberg equilibrium cannot

be identical the globally-optimal solutions given in Theorem 4. This theorem thus proves.

Proof of Theorem 11. Similar to Section 2, the production quantities chosen by all suppliers

are equal, i.e., q1 = q2 = : : : = qn. Using (31) we develop the manufacturer�s and n suppliers�

expected pro�t function as follows:

E(�M ) = (p�m� v)y(p)�+ (v � w)Q

+[p�m+ (1� �)u� v]
Z B

Q=y(p)
[Q� y(p)x]f(x)dx, (52)

E(�Si) = (wi � ci)qi � vi
Z qi=y(p)

A
[qi � y(p)x]f(x)dx� �iu

Z B

qi=y(p)
[y(p)x� qi]f(x)dx.(53)

We �rst �nd the Nash equilibrium for the simultaneous-move game. The �rst- and second-

order derivatives of E(�M ) in (52) w.r.t. p are

dE(�M )

dp
= Q�QF

�
Q

y(p)

�
+

�
1� (p�m� v) b

p

�
y(p)�

�
�
1� [p�m+ (1� �)u� v] b

p

�Z B

Q=y(p)
y(p)xf(x) dx. (54)

d2E(�M )

dp2
= �Qf

�
Q

y(p)

�
b

p

Q

y(p)
� 2 b

p
y(p)�+ (p�m� v)b(1 + b)

p2
y(p)�

+
b

p

Z B

Q=y(p)
y(p)xf(x) dx� [p�m+ (1� �)u� v] b

p2

Z B

Q=y(p)
y(p)xf(x) dx

+

�
1� [p�m+ (1� �)u� v] b

p

�
Qf

�
Q

y(p)

�
+

�
1� [p�m+ (1� �)u� v] b

p

�
b

p

Z B

Q=y(p)
y(p)xf(x) dx (55)

Since the function (55) is very complicated, we cannot determine the sign of d2E(�M )=dp2

and the concavity of the manufacturer�s pro�t function E(�M ). However, as Petruzzi and

Dada [14, Theorem 2] have argued, a single-period pro�t function with the price-dependent

demand either in the multiplicative or additive form need not be concave or unimodal, but a

�nite optimal price always exists. Thus, we conclude that a �nite optimal price that maximizes

E(�M ) exists and it must satisfy the condition that dE(�M )=dp = 0.

Thus, for the multiplicative case, the manufacturer�s best-response retail price pB, for the

given contract parameters (w;v;�) and suppliers�quantity decisions q = (q1; : : : ; qn), satis�es

10



the following condition:

Q+

�
1� (p�m� v) b

p

�
y(p)�

= QF

�
Q

y(p)

�
+

�
1� [p�m+ (1� �)u� v] b

p

�Z B

Q=y(p)
y(p)xf(x)dx. (56)

Similar to Section 2, all suppliers choose their production quantities equal to the production

quantity of the supplier Sk, who has the minimum value for the right-hand-side term in (4).

Thus, we should only analyze supplier Sk�s production decision. Replacing the subscript �i�in

(53) with �k�, we can determine the supplier Sk�s expected pro�t function E(�Sk). The �rst-

and second-order derivatives of Sk�s expected pro�t function w.r.t. qi are

dE(�Sk)

dqk
= wk � ck + �ku� (vk + �ku)F

�
qk
y(p)

�
,

d2E(�Sk)

dq2k
= (vk + �ku)f

�
qk
y(p)

�
qk

[y(p)]2
y0(p) < 0,

which implies that Sk�s expected pro�t E(�Sk) is a strictly concave function of qk. Thus, we

can solve dE(�Sk)=dqk = 0 and obtain the supplier�s best-response production quantity that

maximizes E(�Sk) as

qBk = y(p)F
�1
�
wk � ck + �ku
vk + �ku

�
= y(p)F�1 (zk) .

Recalling that all suppliers�production quantities are equal to qBk , we �nd that, for a �xed

manufacturer�s price p, all suppliers�best-response production quantities are

qB1 = q
B
2 = : : : = q

B
n = y(p)F

�1 (zk) , (57)

where zk = (wk � ck + �ku)=(vk + �ku) with the index k de�ned by (4).
By using the best-response functions in (56) and (57), we can now �nd the Nash equilibrium

for the simultaneous-move game, as shown in this theorem.

Next, we �nd the Stackelberg equilibrium for the leader-follower game. Substituting n

suppliers�best-response quantity in (57) into the manufacturer�s expected pro�t function (52),

we have

E(�M ) = (p�m� v)y(p)�+ (v � w)y(p)F�1 (zk)

+[p�m+ (1� �)u� v]y(p)
Z B

F�1(zk)
[F�1 (zk)� x]f(x)dx.

11



The �rst-order derivative of E(�M ) w.r.t. p is

@E(�M )

@p
= y(p)�� b(p�m� v)y(p)�=p� b(v � w)y(p)F�1 (zk) =p

+y(p)

Z B

F�1(zk)
[F�1 (zk)� x]f(x)dx

�b[p�m+ (1� �)u� v]y(p)
Z B

F�1(zk)
[F�1 (zk)� x]f(x)dx=p

Similar to our analysis for the simultaneous-move game, a �nite optimal price that maximizes

E(�M ) for the leader-follower game exists and it must satisfy the condition that dE(�M )=dp =

0, which can be re-written as

F�1 (zk) [1� zk] +
�
1� (pS �m� v) b

pS

�
�

= f[pS �m+ (1� �)u� v](1� zk) + (v � w)g
b

pS
F�1 (zk)

+

�
1� [pS �m+ (1� �)u� v] b

pS

�Z B

F�1(zk)
xf(x)dx

Thus, we use (57) to �nd that qS1 = q
S
2 = : : : = q

S
n = y(p

S)F�1 (zk). This theorem proves.

Proof of Theorem 12. The �rst-order partial derivatives of E(�) w.r.t. p and q are

@E(�)

@p
= q

�
1� F

�
q

y(p)

��
+

�
1� (p�m) b

p

�
y(p)

Z q=y(p)

A
xf(x)dx+ u

b

p
y(p)

Z B

q=y(p)
xf(x)dx,

and
@E(�)

@q
= �c+ (p�m+ u)

�
1� F

�
q

y(p)

��
.

The second-order partial derivatives are computed as

@2E(�)

@p2
= �f

�
q

y(p)

�
q2b

py(p)
� mb
p2

Z q=y(p)

A
y(p)xf(x)dx

+(b� 1)u b
p2

Z B

q=y(p)
y(p)xf(x)dx+

�
1� (p�m+ u) b

p

�
qf

�
q

y(p)

�
,

@2E(�)

@q2
= �p�m+ u

y(p)
f

�
q

y(p)

�
< 0.

Thus, for a �xed p, the chainwide pro�t E(�) is strictly concave in q. However, since

@2E(�)=@p2 is too complicated to analyze explicitly, it is di¢ cult to reach a conclusion about

the concavity or unimodality of E(�). But, as Petruzzi and Dada [14, Theorem 2] have shown,

a unique, �nite optimal price p� always exists for the multiplicative case, and thus, the optimal

solution (p�; q�) must satisfy the conditions that @E(�)=@p = 0 and @E(�)=@q = 0.

To �nd the globally optimal solution p�, we solve @E(�)=@q = 0 for q� and �nd (37).

Substituting (37) into the condition @E(�)=@p = 0 and simplifying it, we reach the result given

by (36).
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Proof of Theorem 13. We �rst show that, as b increases, the Nash equilibrium price

decreases. We assume that our current Nash equilibrium price is pN1 . According to the proof of

Theorem 11, we re-write the �rst-order condition for the Nash equilibrium price pN1 as

@E(�)

@p

����
p=pN1

=
1

b

"
F�1 (zk) (1� zk) +

Z F�1(zk)

A
xf(x)dx

#
�(pN1 �m� v)

�

pN1

+[pN1 �m+ (1� �)u� v]
1

pN1

Z B

F�1(zk)
xf(x)dx

= 0.

If the value of b increases, then the term 1
b [F

�1 (zk) (1�zk)+
R F�1(zk)
A xf(x)dx], which is positive,

decreases and thus,
@E(�)

@p

����
p=pN1

< 0,

which means that we should reduce the price so as to increase the manufacturer�s pro�t E(�).

Thus, the new Nash equilibrium price, denoted by pN2 , should be less than p
N
1 , i.e., p

N
2 < p

N
1 .

We then show that, as b increases, the Stackelberg equilibrium price decreases. We assume

that our current Stackelberg equilibrium price is pS1 . According to the proof of Theorem 11, we

re-write the �rst-order condition for the Stackelberg equilibrium price pS1 as

@E(�)

@p

����
p=pS1

=
1

b

"
F�1 (zk) (1� zk) +

Z F�1(zk)

A
xf(x)dx

#
+(pS1 �m� v)

�

pS1

�f[pS1 �m+ (1� �)u� v](1� zk) + (v � w)g
F�1 (zk)

pS1

+[pS1 �m+ (1� �)u� v]
1

pS1

Z B

F�1(zk)
xf(x)dx.

If the value of b increases, then
@E(�)

@p

����
p=pS1

< 0,

which means that we should reduce the price so as to increase the manufacturer�s pro�t E(�).

Thus, the new Stackelberg equilibrium price, denoted by pS2 , should be less than p
S
1 , i.e., p

S
2 < p

S
1 .

Similarly, we can also prove that, as b increases, the globally-optimal solution p� decreases.

Proof of Theorem 14. We �rst consider supply chain coordination for the simultaneous-

move game. In order to coordinate the supply chain, we should equate (32) to (36) and equate

(33) to (37), and simplifying them, the conditions that will assure pN = p�, and qN = q� are

13



found as

v

Z q�=y(p�)

A
xf(x)dx = �u

Z B

q�=y(p�)
xf(x)dx, (58)

p� �m+ u� c
p� �m+ u =

wk � ck + �ku
vk + �ku

. (59)

In order to facilitate our discussion, we �rst de�ne

� �
Z B

q�=y(p�)
xf(x)dx,

and since we have denoted the LHS of (59) by z in Section 2.2.2, we can re-write the conditions

(58) and (59) as 8<: v(�� �) = �u�,

z =
wk � ck + �ku
vk + �ku

.
(60)

We now show that, for both simultaneous-move and leader-follower games, there always

exists a feasible solution satisfying the conditions (20) and (60), thus giving rise to existence of

the pair of contracts. However, di¤erent from our analysis in Section 2.2.2, we should consider

the following two cases: (i) � � �u=[c(� � �)] � 1 and (ii) � > 1. For each case, we �nd

proper-designed buy-back and lost-sales cost-sharing contracts, as given in Table 2.

Next, for the simultaneous-move game, we prove that, for each case, the values of parameters

speci�ed in Table 2 satisfy (60) and (20). It is easy to see that conditions in (60) are satis�ed

for both Cases (i) and (ii). Now we investigate whether the values of the parameters in each

case can meet the �ve requirements in (20).

(i) If � � 1, we use the corresponding values of contract parameters in Table 2 to examine

the satisfaction of �ve requirements (20).

(a) wi� ci � vi � wi, i = 1; : : : n: Since wk = ck+ zvk and z = � � 1, we have vk � ck
and wk� ck � vk � wk. Furthermore, due to wi = vi+ ci, we have wi� ci � vi � wi,
i = 1; : : : ; k � 1; k + 1; : : : ; n.

(b) 0 � �i � 1, i = 1; : : : ; n: From Table 2, we have �k = 0. Since c =
Pn
j=1 cj >

ci + ck > ci + ck=(n� 1), we �nd that 0 � �i � 1, i = 1; : : : ; k � 1; k + 1; : : : ; n.
(c)

Pn
i=1 �i � 1: In such a contract design, we have

nX
i=1

�i = �1 + � � �+ �k�1 + �k + �k+1 + � � �+ �n

=
(c1 + � � �+ ck�1 + ck+1 + � � �+ cn) + ck

c
+ �k

= 1:

(d)
wi � ci + �iu
vi + �iu

� z, i = 1; : : : ; k � 1; k + 1; : : : ; n: Since vi = wi � ci, i = 1; : : : ; k �
1; k + 1; : : : ; n, we have

zvi � vi = wi � ci � wi � ci + (1� z)�iu,
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from which the inequality follows.

(e) wi � ci, i = 1; : : : ; n: From Table 2, we can easily �nd that wi � ci, for i = 1; : : : n.
(ii) If � � 1, we use the contract design in Table 2 to show that all requirements in (20) can

be satis�ed.

(a) wi � ci � vi � wi, i = 1; : : : n: Since zck � ck � (1 + z)ck, we have wk �
ck � vk � wk. Furthermore, due to wi = vi + ci, we have wi � ci � vi � wi,

i = 1; : : : ; k � 1; k + 1; : : : ; n.
(b) 0 � �i � 1, i = 1; : : : ; n: The proof for this requirement is the same as that in

Case (1).

(c)
Pn
i=1 �i � 1: The proof for this requirement is the same as that in Case (1).

(d)
wi � ci + �iu
vi + �iu

� z, i = 1; : : : ; k � 1; k + 1; : : : ; n: The proof for this requirement is

the same as that in Case (1).

(e) wi � ci, i = 1; : : : ; n: From our contract design Table 2, we �nd that wk � ck. For
i = 1; : : : ; k � 1; k + 1; : : : ; n, we should show that vi � 0. As Table 2 indicates,

vi = �ci + (�� 1)
ck
n� 1

Since � � 1, we have vi � 0, which implies that wi � ci, i = 1; : : : ; k�1; k+1; : : : ; n.
These arguments show that there exists the properly-designed contracts that can realize

supply chain coordination for the simultaneous-move game.

Next, we show that, for the leader-follower game, the properly-designed contracts as given

in Table 2 can also coordinate the supply chain. According to Theorem 11 we �nd that the

conditions that will assure pS = p�, and qS = q� are found as,8<: v(�� �) = �u�,

z =
wk � ck + �ku
vk + �ku

,

where

� �
Z B

q�=y(p�)
[x� q�=y(p�)]f(x)dx.

Using our arguments for the simultaneous-move game, we can arrive to the theorem.

Proof of Theorem 15. We �rst solve the simultaneous-move game to �nd the Nash equi-

librium. From the proof of Theorem 11, we �nd the manufacturer�s and supplier Si�s expected

pro�t functions as

E(�M ) = (p�m� v)y(p)�+ (v � w)Q+ [p�m+ (1� �)u� v]
Z B

Q=y(p)
[Q� y(p)x]f(x)dx,

E(�Si) = (wi � ci)qi � vi
Z qi=y(p)

A
[qi � y(p)x]f(x)dx� �iu

Z B

qi=y(p)
[y(p)x� qi]f(x)dx.

When the buy-back and lost-sales cost-sharing contracts are not involved, vi = �i = 0 and
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thus, we can reduce the above functions to

E(�M ) = (p�m)y(p)�� wQ+ (p�m+ u)
Z B

Q=y(p)
[Q� y(p)x]f(x)dx,

E(�Si) = (wi � ci)qi.

Since Ay(p) � qi � By(p), i = 1; : : : ; n, we �nd that supplier Si�s best-response quantity is

qBi = By(p).

Next, we �rst �nd the Nash equilibrium for the simultaneous-move game. We di¤erentiate

E(�M ) w.r.t. p once, and �nd

@E(�M )

@p
= y(p)�� b(p�m)y(p)�=p

+

Z B

Q=y(p)
[Q� y(p)x]f(x)dx

+by(p)(p�m+ u)
Z B

Q=y(p)
xf(x)dx=p.

Since Q = min(qB1 ; : : : ; q
B
1 ) = By(p), we re-write @E(�M )=@p as

@E(�M )

@p
= y(p)�[1� b(p�m)=p],

and compute @2E(�M )=@p2 as

@2E(�M )

@p2
= �by(p)

p
�[1� b(p�m)=p]� y(p)�bm

p2
.

It easily follows that, for any price satisfying dE(�M )=dp = 0, d2E(�M )=dp2 = �y(p)�bm=p2 <
0. This implies that the manufacturer�s expected pro�t is a unimodal function of the unit retail

price p. Equating @E(�M )=@p to zero and solving the resulting equation for p, we �nd that

pN = bm=(b� 1). Thus, qNi = By(pN ), i = 1; : : : ; n.
Next, we compute the leader-follower game to �nd the Stackelberg equilibrium. Using the

suppliers�best responses, we write the manufacturer�s expected pro�t E(�M ) as

E(�M ) = [(p�m)�� wB]y(p).

The �rst-order derivative of E(�M ) w.r.t. p is

@E(�M )

@p
= �y(p)� b[(p�m)�� wB]y(p)=p.

Similar to the above, we can easily prove that E(�M ) is a unimodal function of p. Equating

@E(�M )=@p to zero and solving the resulting equation for p, we �nd that

pS =
b(m�+ wB)

(b� 1)� .
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Thus, qSi = By(p
S), i = 1; : : : ; n.

Comparing the above Nash and Stackelberg equilibria with the globally-optimal solution

in Theorem 12, we �nd that, for any value of wi, the supply chain cannot be coordinated.

Therefore, if the buy-back and lost-sales cost-sharing contracts are not involved, then, for any

value of wi (i = 1; 2; : : : ; n), the total pro�t in terms of the Nash or Stackelberg equilibrium is

always smaller than that in terms of the globally-optimal solutions given in Theorem 12.

Appendix B Numerical Examples for the Additive Demand Case

In this appendix, we consider a three-supplier (n = 3), one-manufacturer assembly supply

chain for both simultaneous-move and leader-follower games, and, for each game, construct the

buyback and lost-sales cost-sharing contracts to achieve supply chain coordination. With the

proposed contract, all suppliers and the manufacturer choose the equilibrium solution which

results in the maximum expected system-wide pro�t. Then, in order to assure that all supply

chain members are better o¤ under the properly-designed contracts, we use (25) to compute

the system-wide expected pro�t surplus 
, and use Theorem 8 to determine the allocation of 


among n suppliers and the manufacturer.

In our examples for both the simultaneous-move and leader-following games, we use the

following parameter values:

c1 c2 c3 s1 s2 s3 m a b A B

2 3 5 1 2 2 2 20 0:8 4 12

We assume that the error term " in demand function (1) is uniformly distributed with probability

density function f(x) = 1=(B�A) and cumulative distribution function F (x) = (x�A)=(B�A)
for A � x � B. Next, we �rst consider an example to illustrate our analysis for the simultaneous-
move game.

Example 1 We use the �ve steps given in Section 2.2.2 to develop the proper contracts for
supply chain coordination.

Step 1: To �nd the globally optimal solution, we use u = 12 and �nd (p�; q�) = (23:27; 11) for
which the requirement u > p� �m� c is satis�ed since m = 2 and c = 2 + 3 + 5 = 10.

Step 2: We compute z = (p� �m+ u� c)=(p� �m+ u) = 0:699.
Step 3: The critical supplier is S1 since this supplier�s unit production cost c1 is the smallest;

so k = 1.

Step 4: We set supplier S1�s wholesale price as w1 = (1 + z)c1 = $3:40/unit, buyback price as
v1 = c1 = $2/unit, and �1 = 0;

Step 5: The other suppliers�wholesale prices, buyback prices and percentage of the underage
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cost absorbed by them are8>>>>>><>>>>>>:

w2 =

�
1� z
cz

u+ 1

�
c2 +

�
1� z
cz

u� 1
�

c1
n� 1 = $4:06/unit,

v2 =
1� z
cz

uc2 +

�
1� z
cz

u� 1
�

c1
n� 1 = $1:06/unit,

�2 =
1

c

�
c2 +

c1
n� 1

�
= 0:4,

and 8>>>>>><>>>>>>:

w3 =

�
1� z
cz

u+ 1

�
c3 +

�
1� z
cz

u� 1
�

c1
n� 1 = $7:09/unit,

v3 =
1� z
cz

uc3 +

�
1� z
cz

u� 1
�

c1
n� 1 = $2:09/unit,

�3 =
1

c

�
c3 +

c1
n� 1

�
= 0:6.

To summarize, under the buyback and lost-sales cost-sharing contracts, we have

w = (3:40; 4:06; 7:09), v = (2:00; 1:06; 2:09), and � = (0; 0:4; 0:6),

where each supplier produces q� = 11 units of each component, and the manufacturer assembles

the �nal products and sells them to the ultimate customer at the retail price p� = $23:27/unit.

Furthermore, since u = 12, the suppliers S2 and S3 respectively absorb the underage cost of

u�2 = $4:8 and u�3 = $7:2 for each unit of lost-sale at the manufacturer�s level. Finally, the

expected pro�ts of the manufacturer and all suppliers are computed as

E(��M ) = $42:21; E(��S1) = $11:44, E(��S2) = $7:85, E(��S3) = $16:28,

and maximum system-wide expected pro�t is E(��) = $77:78.

Next, we use Theorem 6 to �nd the Nash equilibrium without the buyback and lost-sales

cost-sharing contracts as pN = 18:5 and qNi = 17:2, for i = 1; 2; 3. In order to calculate all

supply chain members�expected pro�ts, we must determine supplier Si�s wholesale price wi.

Note that, for n suppliers, w � c =
P3
i=1 ci = 10 in order to assure that these suppliers�total

pro�t is non-negative. Moreover, w � (pN �m)[y(pN ) + �]=[y(pN ) + B] = 12:66, in order to

assure that the manufacturer�s pro�t is non-negative. Hence, when the buy-back and lost-sales

cost-sharing contracts are not involved, the manufacturer and n suppliers should choose a proper

value of w between 10 and 12:66, i.e., 10 � w � 12:66.
We note that, if the value of w increases, then n suppliers� aggregate pro�t (i.e., w � c)

increases but the manufacturer�s pro�t (i.e., p � w) decreases. On the other hand, if the

value of w decreases, then n suppliers�aggregate pro�t decreases but the manufacturer�s pro�t

increases. We assume that, for the supply chain without the buyback and lost-sales cost-

sharing contracts, the manufacturer and n suppliers have equal bargaining powers to determine

the value of w, and thus we set w = (10 + 12:66)=2 = 11:33 because 10 � w � 12:66. We also
note that

P3
i=1wi = w, ci � wi � w (i = 1; 2; 3), and supplier Si�s wholesale price wi should be

dependent of its production cost ci. That is, if Si�s production cost ci is higher than supplier

Sj�s production cost cj (j = 1; 2; 3, j 6= i), then Si�s wholesale price wi should be also higher
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than Sj�s wholesale price wj ; otherwise, if ci < cj , then wi < wj . To re�ect this, we assume

that, for this example, Si�s wholesale price wi is proportional to its production cost ci. SincePn
i=1wi = w and

P3
i=1 ci = c, we set wi = w � ci=c, for i = 1; 2; : : : ; n. We use the above

method to calculate n suppliers�wholesale prices for all subsequent examples.

Using the above, we calculate the expected pro�ts as

E(~�M ) = $22:9; E(~�S1) = $4:58, E(~�S2) = $6:87, E(~�S3) = $11:45,

and total system-wide expected pro�t is E(~�) = $45:8, which is smaller than E(��), as shown

in Theorem 7. Even though the manufacturer and three suppliers all bene�t from the proper

contracts for supply chain coordination, we notice that their individual pro�t surpluses are

di¤erent; for example, the manufacturer�s and supplier S1�s individual surpluses are $42:21 �
$22:9 = $19:31 and $11:44 � $4:58 = $6:86, respectively. This may discourage the member

with smaller individual surplus from cooperating for supply chain coordination. To address the

problem, we use (25) to compute the system-wide pro�t surplus as 
 = E(��)�E(~�) = $31:98,
and use Theorem 8 to determine the allocation as 
M = 
S1 = 
S2 = 
S3 = 
=4 = $7:995. As

a result, after allocating 
, the manufacturer�s and three suppliers�pro�ts are E(~�M ) + 
M =

$30:895; E(~�S1) + 
S1 = $12:575, E(
~�S2) + 
S2 = $14:865, and E(

~�S3) + 
S3 = $19:445. �

In Example 1 we have obtained the properly-designed buy-back and lost sales cost-sharing

contracts to induce supply chain coordination, under which Nash equilibrium (pN , qN ) is identi-

cal to the globally optimal solution (p�, q�). In order to demonstrate that our contract design in

Example 1 maximizes system-wide expected pro�t and coordinates the supply chain, we deviate

from the optimal design, and compute (i) the resulting Nash equilibrium, (ii) expected pro�ts of

the manufacturer and three suppliers and (iii) expected system-wide pro�t. We then compare

the expected system-wide pro�t resulting from the Nash equilibrium with the results obtained

under our properly designed contract.

We consider a total of 21 cases where one or more contract parameters are increased or

decreased and other parameters are �xed as shown in Table 3. In particular, we �rst set w1 = 4

(which is above the contract design value of 3.40) while keeping the other parameter values �xed

and compute the Nash equilibrium values (pN ; qN ), and the resulting expected pro�ts for the

suppliers, the manufacturer and the system-wide expected pro�t. Since the new system-wide

expected pro�t will be lower than that obtained under the contract design, we also note the

percentage reduction in the expected pro�t when each parameter assumes a value di¤erent from

the one used in the contract design. For this case we note that the system-wide expected pro�t

is approximately 16% lower than that obtained under the contract design. We repeat the same

calculations with w1 = 3 (which is below the contract design value of 3.40) and calculate the

resulting expected pro�ts. Next, we set v1 = 2:5 (above the contract value of 2.0) and v1 = 1:5

(below the contract value of 2.0) and repeat the calculations. Similar calculations are performed

by assigning di¤erent values to pairs of design parameters (w2; v2), (w3; v3), (�1; �2), (�1; �3),

and (�2; �3) while keeping the values of the other parameters �xed at their contract design

levels. We complete the calculations by assigning �ve di¤erent values to the triple (�1; �2; �3).

When we increase and decrease the value of wi or vi, we consider the following constraints:
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wi � ci � vi � wi and wi � ci, i = 1; 2; 3. Similarly, when we choose new values of the

parameters (�1; �2; �3), we make sure that �1 + �2 + �3 � 1.
The results in Table 3 clearly demonstrate that if the parameters deviate substantially from

those found in our contract design, the expected system-wide pro�t may be reduced by large

amounts. For example, when w1 = 4 (rather than 3.40 as suggested by our contract design),

we see a 16% reduction in the expected system-wide pro�t. Similarly, when w = (0:7; 0:2; 0:1)

[as opposed to (0; 0:4; 0:6)], the reduction is 10%, still a large amount. On the other hand,

small deviations from the design parameters result in equally small reductions in system-wide

expected pro�t as in, e.g., (w3; v3) = (7:05; 2:05) [as opposed to (7.09,2.09)], and � = (0; 0:6; 0:4)

[as opposed to (0; 0:4; 0:6)], both resulting in a 1% reduction.

Next, we consider another example to illustrate our analysis for the leader-follower game.

Example 2 For the leader-follower game we still consider the parameter values in Example 1.
To �nd properly-designed contracts, we again follow the �ve steps given in Section 2.2.2 but

use Theorem 9 for our contract design, which is given as follows:

w = (2; 3; 5), v = (0:602; 0:903; 1:505), and � = (0:1165; 0:17475; 0:29125).

Under the contracts, the Stackelberg solution is identical to the globally-optimal solution (i.e.,

pS = p� = $23:27 and qS = q� = 11), and all supply chain members�pro�ts are found as

E(��M ) = $86:18; E(��S1) = �$1:68, E(��S2) = �$2:52, E(��S3) = �$4:2,

and maximum system-wide expected pro�t is E(��) = $77:78. Note that three suppliers obtain

negative pro�ts because, as discussed previously, we must set their wholesale prices wi equal

to their product cost ci in order to achieve supply chain coordination. Under the contracts,

all suppliers�sale pro�ts are zero and they have to buy unused components and share shortage

costs; thus, three suppliers�expected pro�ts are all negative. However, the system-wide pro�ts

are maximized.

Next, we use Theorem 10 to compute the Stackelberg equilibrium without the buyback and

lost-sales cost-sharing contracts as pS = 24:83 and qSi = 12:14, for i = 1; 2; : : : ; n, and the

resulting expected pro�ts as

E(~�M ) = $32:16; E(~�S1) = 6:44, E(~�S2) = 9:66, E(~�S3) = $16:1,

and total system-wide expected pro�t is E(~�) = $64:36, which is smaller than E(��), as shown

in Theorem 10. However, we notice that the manufacturer bene�ts from the proper contracts

but three suppliers are worse o¤ than without the contracts. In order to entice three suppliers

to cooperate for supply chain coordination, we use (25) to compute the system-wide pro�t

surplus as 
 = E(��) � E(~�) = $13:42, and use Theorem 8 to determine the allocation as


M = 
S1 = 
S2 = 
S3 = 
=4 = $3:355. As a result, the manufacturer�s and three suppliers�

pro�ts are E(~�M ) + 
M = $35:515; E(~�S1) + 
S1 = $9:795, E(~�S2) + 
S2 = $13:015 and

E(~�S3) + 
S3 = $19:455. �
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Appendix C Numerical Examples for the Multiplicative De-

mand Case

Similar to Section 2 we present two examples� one for the simultaneous-move game and the

other for the leader-follower game.

Example 3 For the simultaneous-move game, we now consider a numerical example with the
same values of the parameters (c1; c2; c3; s1; s2; s3) and n = 3 suppliers used for the additive case

in online Appendix B. We assume that m = 10, (a; b) = (1000; 1:5) in (31), where y(p) = ap�b;

and the term " in (31) is a uniformly-distributed random variable with p.d.f. f(x) = 1=(B�A)
and c.d.f. F (x) = (x� A)=(B � A), for A � x � B. For this numerical example, we set A = 4
and B = 8. Using Theorem 14, the proper contracts for supply chain coordination are found as

w = (2:47; 3:82; 6:36), v = (0:54; 0:82; 1:36), and � = (0; 0:4; 0:6),

We then �nd the globally optimal solution (p�; q�) = (67:63; 13:35) and compute the expected

pro�ts of the manufacturer and three suppliers as

E(�M ) = $455:83; E(�S1) = $4:79, E(�S2) = $8:39, E(�S3) = $14:04,

and maximum chainwide expected pro�t is E(�) = $483:05.

Next, we use Theorem 15 to �nd the Nash equilibrium without the buyback and lost-sales

cost-sharing contracts as pN = 30 and qNi = 48:69, for i = 1; 2; : : : ; n, and calculate the resulting

expected pro�ts as

E(~�M ) = $121:72; E(~�S1) = $24:34, E(~�S2) = $36:51, E(~�S3) = $60:86,

and total system-wide expected pro�t is E(~�) = $243:43, which is smaller than E(��), as

shown in Theorem 15. In addition, we �nd that, under the contracts, the manufacturer are

better o¤ but three suppliers are worse o¤. We then use (25) to compute 
 = 239:62, and

use Theorem 8 to calculate the allocations 
M = 
S1 = 
S2 = 
S3 = $59:905. As a result, the

manufacturer�s and three suppliers�pro�ts are E(~�M )+
M = $181:625; E(~�S1)+
S1 = $84:245,

E(~�S2) + 
S2 = $96:415 and E(
~�S3) + 
S3 = $120:765. �

Next, we provide an example to analyze the leader-follower game.

Example 4 We still use the values of parameters in Example 3, and �nd the proper contracts
as,

w = (2:01; 3:02; 5:04), v = (0:02; 0:03; 0:05), and � = (0; 0:4; 0:6),

compute the expected pro�ts of the manufacturer and three suppliers in the leader-follower

game as

E(�M ) = $483:07; E(�S1) = $0:15, E(�S2) = �$0:09, E(�S3) = �$0:1,

and maximum chainwide expected pro�t is E(�) = $483:03. We then calculate the Stackelberg
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equilibrium when the contracts are not involved as pS = 90 and qSi = 9:37, for i = 1; 2; : : : ; n,

and calculate the resulting expected pro�ts as

E(~�M ) = $421:63; E(~�S1) = $9:37, E(~�S2) = $14:05, E(~�S3) = $23:42,

and total system-wide expected pro�t is E(~�) = $468:47, which is smaller than E(��), as shown

in Theorem 15. To assure supply chain coordination, we use (25) to compute 
 = 14:56, and

use Theorem 8 to calculate the allocations 
M = 
S1 = 
S2 = 
S3 = $3:64. As a result, the

manufacturer�s and three suppliers�pro�ts are E(~�M )+
M = $425:27; E(~�S1)+
S1 = $13:01,

E(~�S2) + 
S2 = $17:69 and E(
~�S3) + 
S3 = $27:06. �
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