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Abstract

This paper analyzes a legendary Chinese horse race problem involving the King of Qi and General Tianji which
took place more than 2000 years ago. In this problem each player owns three horses of different speed classes
and must choose the sequence of horses to compete against each other. Depending on the payoffs received by the
players as a result of the horse races, we analyze two groups of constant-sum games. In each group, we consider three
separate cases where the outcomes of the races are (i) deterministic, (ii) probabilistic within the same class, and (iii)
probabilistic across classes. In the first group, the player who wins the majority of races receives a one-unit payoff.
For this group we show analytically that the three different games with non-singular payoff matrices have the same
solution where each player has a unique optimal mixed strategy with equal probabilities. For the second group of
games where the payoff to a player is the total number of races his horses have won, we use linear programming with
non-numeric data to show that the solution of the three games are mixed strategies given as a convex combination of
two extreme points. We invoke results from information theory to prove that to maximize the opponent’s “entropy”
the players should use the equal probability mixed strategy that was found for the one-unit games.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In Chinese history there is a period known as “Spring-Autumn” (770–403 BC) during which China
was not a unified empire but consisted of a group of small independent states with conflicting inter-
ests. Historical records reveal that during this period more than 200 battles were fought between different
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Chinese states. One of the best-known Chinese philosophers, Sun Tzu (544–496 BC) who wrote The Art
of War (also known as The Thirteen Chapters) was born during this period in the state of Qi. Sun Tzu’s
work which is recognized as the oldest military treatise and one of the finest of all military classics played
an important role in shaping ancient China and helped develop military (and more recently, business)
strategies. For further details of Sun Tzu’s Art of War and his life, see Sun Tzu [1] and Tang [2].

One of the descendents of Sun Tzu, Sun Bin, was also a respected philosopher and a military strategist
who witnessed and reported several interesting events in the state of Qi. Sun Bin relates a story known
as “Tianji’s Horse Race” which is well-known and popular in China. Sun Bin was a friend of General
Tianji of the Kingdom of Qi who liked to race horses. One day, the King of Qi wanted to race his horses
with those of Tianji’s. The King and Tianji each selected three horses with different speed classes. The
King’s first horse (say, K1) was faster than all three of Tianji’s horses but his second horse (K2) was only
faster than Tianji’s second fastest (T2) and the slowest (T3) horses. The King’s slowest horse (K3) was
only faster than Tianji’s slowest horse (T3). Sun Bin reports that the King and Tianji chose the same class
of horses for each race. That is, in the first race the first class horses (K1 vs. T1) competed and in the
second and third races the second and third class horses (K2 vs. T2 and K3 vs. T3) competed. Naturally,
because Tianji’s horse in each class was slower than the King’s in the same class, Tianji’s horses lost all
three races.

Sun Bin offered his friend Tianji some strategic advise to help him win the race. Having learned that
the King would continue using the initial winning strategy of racing his horses in the original sequence
(K1,K2,K3), Sun Bin suggested Tianji the following strategy: In the first round use the third-class horse
(T3) to compete against the King’s first-class horse (K1); in the second round use the first-class horse (T1)
to compete against the King’s second (K2) and in the third round use the second horse (T2) to compete
against the King’s third horse (K3). The story ends when Tianji uses the strategy suggested by Sun Bin
and wins the horse race with one loss and two wins.

In the parlance of modern game theory we would call Sun Bin’s advice to Tianji to use the sequence
(T3,T1,T2) against the King’s fixed strategy of (K1,K2,K3) the “best response” strategy for Tianji. In this
case, as the King would race his horses in the same order (K1,K2,K3), Tianji can win 2-to-1 by racing
his horses in the order (T3,T1,T2) and receiving the payoff of one unit.

If the King always chooses (K1,K2,K3) and Tianji plays with the optimal best response strategy
(T3,T1,T2),Tianji would win every race. Naturally, the King would soon realize that his strategy (K1,K2,K3)
is resulting in recurrent losses and would consider alternative strategies to turn the game around. When
the King becomes an active player and considers strategies to win the race we encounter a competitive
situation which can be analyzed by the tools of game theory. Since each player competes with three
horses, in such a game one finds a total of 3! = 6 strategies (i.e., horse sequences) available to the King
and Tianji. Thus, one can formulate a two-person, constant-sum payoff game with a 6 × 6 payoff matrix
whose entries correspond to a pair of payoffs received by the King and Tianji. For example, the payoffs
corresponding to the first game with (K1, K2, K3) vs. (T1, T2, T3) would be (1, 0) and the payoffs cor-
responding to the second game with (K1, K2, K3) vs. (T3, T1, T2) would be (0, 1). Thus, in the simple
version of the constant-sum game described above the sum of the King’s and Tianji’s payoffs is always
c = 1.

In order to facilitate the analysis of the problem, we can reduce any constant-sum game to a zero-sum
game by simply subtracting the constant-sum c from Tianji’s payoffs and solve the problem as a zero-sum
game in terms of the King’s payoffs. This technique of converting a constant-sum game to a zero-sum
game by subtracting c from one player’s payoffs is a theoretically sound procedure as the players’ payoffs
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are cardinal utilities which are invariant under positive linear transformations; see, e.g., Shubik [3, p. 92]
and Straffin [4, pp. 52–53].

Depending on the payoffs received by the players as a result of the three horse races, we analyze two
groups of zero-sum games. In the first group the player whose horses win the majority of races receives
a payoff of one unit. In this group, we consider three separate cases. In the first case, the outcome of
the race is deterministic in the sense that the King’s faster horses can beat Tianji’s horses in the same
or lower classes with certainty; that is, Ki beats Tj with probability 1 for i, j = 1, 2, 3 and i�j . In the
second case, the outcomes are probabilistic within the same class in the sense that the King’s horses beat
Tianji’s horses in the same class with some probability pi ∈ (0, 1), for i = j , but the King’s horses in
faster classes can beat Tianji’s horses in the slower classes with certainty. In the third class the outcomes
are probabilistic across classes; that is, even the King’s horses in faster classes beat Tianji’s horses in the
same or slower classes with some probability pij ∈ (0, 1) for i, j = 1, 2, 3 and i�j . For this group of
games we compute the optimal mixed strategies analytically when the payoff matrices are non-singular
and show that the three different games have the same solution such that each player has a unique optimal
mixed strategy with equal probabilities.

We then consider a second group of constant-sum games of horse races where the payoff to a player is
the total number of races his horses have won. For example, the payoffs corresponding to the first game
described above with (K1, K2, K3) vs. (T1, T2, T3) would be (3, 0) and the payoffs corresponding to the
second game with (K1, K2, K3) vs. (T3, T1, T2) would be (1, 2). For this group we again consider the
three cases involving deterministic and probabilistic outcomes within and across classes. We use results
from the theory of linear programming to show that the solutions of three games in the second group
involve infinitely many optimal mixed strategies as a convex combination of two distinct strategies. To
analyze the games with general payoff matrices with non-numeric entries, we manipulate the final simplex
tableau symbolically to check for optimality. We then answer the question of which one of the infinitely
many alternative solutions to employ by using results from information theory. The approach we use to
solve a linear programming problem with non-numeric data and our use of information theoretic concepts
to choose from among infinitely many alternative optimal solutions appear to be original contributions.

Our models were motivated by the tournament of three races between the King’s and Tianji’s horses.
However, we should note that any tournament where a coach/manager must choose the sequence of players
to compete against the opposing team’s players can also be modelled using the methodology presented in
this paper. For example, tournaments for the game known as “Go” that is especially popular in Asia are
played with teams consisting of 5 players. Similar to the first group of horse races with one-unit payoff
we analyze in this paper, the team that wins the majority of games wins the tournament. Thus, one can
use the game-theoretical approach of this paper to determine the sequence of players to choose in any
team in a Go tournament. (For additional details on Go, see http://gobase.org/games/nn/.)
We should also mention that in addition to game theory, other operations research techniques such as
dynamic programming, Markov processes and simulation have also found applications in sports. For a
review of these applications see Gerchak [5], Ladany and Machol [6], and Machol et al. [7].

The structure of the paper is organized as follows. Section 2 focuses on our analyses of the first group
of one-unit payoff games. For each game, we find that each player has a unique optimal mixed strategy
with equal probabilities when the payoff matrix is non-singular. For singular payoff matrices we use
linear programming and find two alternative optima. In Section 3 we examine the group of three-unit
payoff games. In this section we use linear programming and find the optimal mixed strategies for both
players as a convex combination of two alternative strategies. This section also includes a discussion of

http://gobase.org/games/nn/
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information-theoretic concept of entropy maximization that leads to a unique strategy among infinitely
many strategies for the players. In Section 4, we present our concluding remarks and suggestions for
future research topics.

2. Horse races with one-unit payoff

In this section, we formulate and analyze a group of three games with one-unit payoff for the winner.
We denote the two players by K (King Qi) and T (Tianji). Three horses owned, respectively, by K and T
are represented by (K1, K2, K3) and (T1, T2, T3) where the subscripts refer to the horse class, that is, Ki

(or, Ti) i = 1, 2, 3 is defined as player K’s (or T’s) horse in the ith class. Furthermore, we assume that the
horse in the first class is the fastest and the horse in the third class is the slowest. Denoting the relation
“faster than” by the symbol “�”, we have, for each player, K1 � K2 � K3 and T1 � T2 � T3.

As described in Section 1, player K (or T) makes a decision on the sequence of his horses for the three
races. Thus, for each player there are 3! = 6 horse sequences (strategies): SP

1 = (1, 2, 3), SP
2 = (1, 3, 2),

SP
3 = (2, 1, 3), SP

4 = (2, 3, 1), SP
5 = (3, 1, 2), and SP

6 = (3, 2, 1) for the player P ={K, T }. For example,
the sequence SP

5 = (3, 1, 2) represents using the slowest horse in the first race, fastest horse in the second
race and the second fastest horse in the last race (as did Tianji after following Sun Bin’s advice). Thus,
the strategy sets for players K and T, denoted, respectively, by SK and ST , consist of the six strategies and
are given by the ordered lists SK = (SK

1 , . . . , SK
6 ) and ST = (ST

1 , . . . , ST
6 ). For all games we define pij as

the probability that the King wins when his horse Ki competes with Tianji’s horse Tj , for i, j = 1, 2, 3.

2.1. One-unit payoff game with deterministic outcomes

We now restrict our attention to the one-unit payoff game with deterministic outcomes where Ki beats
Tj , i, j = 1, 2, 3 for i�j with certainty. In this case, the win probability pij (i, j = 1, . . . , 6) is either
zero or one, i.e., the probability matrix is given by

P1 =
[

p11 p12 p13
p21 p22 p23
p31 p32 p33

]
=
[1 1 1

0 1 1
0 0 1

]
. (1)

As the outcome of a race is deterministic for this case, we compute player K’s and T’s payoffs corre-
sponding to each pair of strategies by simply counting the number of times each player’s horses win and
awarding a unit payoff to the player with a majority of wins. For example, suppose that K’s strategy is
SK

1 = (1, 2, 3) and T’s strategy is ST
2 = (1, 3, 2). Since player K certainly wins in the first and second

rounds and loses in the third round, he beats T with two wins and one loss and thus receives a payoff
of one unit while T gets nothing. Computing the payoffs for the other pairs of strategies, we obtain the
payoff matrix (in terms of K’s payoffs) for this game as

A1 =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 0 1
1 1 1 1 1 0
1 0 1 1 1 1
0 1 1 1 1 1
1 1 1 0 1 1
1 1 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎦ , (2)
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where the rows correspond to the King’s strategies (SK
1 , . . . , SK

6 ) and the columns to Tianji’s strategies
(ST

1 , . . . , ST
6 ). This matrix is non-singular as its determinant is det(A1) = −5 �= 0.

We now present a Lemma which is used to compute the optimal mixed strategies for each player.

Lemma 1 (Dresher [8, p. 43]). Suppose all pure strategies for each player in a two-person zero-sum
matrix game are active (i.e., no dominance or saddle point exists in the game) and the matrix of the game
is square and non-singular. Then a unique optimal mixed strategy for each player can be computed using

x∗ = (A′)−11
1′A−11

and y∗ = A−11
1′A−11

, (3)

where A is an n × n non-singular matrix of the game; 1 = (1, 1, . . . , 1)′ is an n × 1 column vector of 1’s,
and the column vectors x∗ and y∗ are the optimal mixed strategies for the players with row and column
strategies in the matrix game. Additionally, value of the game to the row player using x∗ is given by
u = (1′A−11)−1.

In our problem with the square and non-singular payoff matrix A1 given by (2) there are no dominated
strategies nor any saddle points implying that the optimal mixed strategies can be calculated using (3).

Proposition 1. In the one-unit payoff game with deterministic outcomes and payoff matrix A1, the two
players have the same unique optimal mixed strategies with equal probabilities of 1

6 . In addition, value
of the game to the King is

u1 = 5

6

and to Tianji is v1 = 1
6 .

Proof. Since no saddle point or dominance exists in this game, all pure strategies of each player are
active. To compute the mixed strategy probabilities we use the formulas in Lemma 1 with the square 6×6
matrix A1 given by (2) and 1 = (1, 1, 1, 1, 1, 1)′. Inverting A1 gives

A−1
1 = 1

5

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 −4 1 1
1 1 −4 1 1 1
1 1 1 1 1 −4
1 1 1 1 −4 1

−4 1 1 1 1 1
1 −4 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦ .

Substituting A1, A−1
1 and 1 into (3), we find K’s and T’s unique optimal mixed strategies x∗ and y∗,

respectively, as follows:

x∗ =
(
A′

1

)−11

1′A−1
1 1

= (6
5

)−1(1
5 , 1

5 , 1
5 , 1

5 , 1
5 , 1

5

)′ = (1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6

)′
,

y∗ = A−1
1 1

1′A−1
1 1

= (6
5

)−1(1
5 , 1

5 , 1
5 , 1

5 , 1
5 , 1

5

)′ = (1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6

)′
,
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which imply that both players choose each of six pure strategies with equal probability. Additionally,
value of the game for the King is obtained as u1 = (1′A−1

1 1)−1 = 5
6 with the value of the game for Tianji

being v1 = c − u1 = 1 − 5
6 = 1

6 . �

Remark 1. The result in Proposition 1 shows that both the King and Tianji should play their mixed
strategies completely randomly with equal probabilities which could be done by rolling a fair die. At
this point it may be interesting to examine this result in the context of information theory. Consider,
for example, Tianji and the uncertainty he faces when he wants to “guess” what the King will do. Let
x = (x1, . . . , x6)

′ be the mixed strategy that will be played by the King with
∑6

k=1xk = 1 and define
HT (x) = −∑6

k=1xk log(xk) as a measure of uncertainty (i.e., “entropy”) faced by Tianji when the King
chooses his mixed strategy (x1, . . . , x6). This definition of measure of uncertainty for discrete random
variables was first given by Shannon [9]; see also Ash [10, p. 24].

Maximizing HT (x) subject to
∑6

k=1xk = 1 we find x∗ = (1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6

)′
which was the optimal

mixed strategy for the King. (For this x∗, we find the maximum uncertainty as HT (x∗) ≈ 1.79.) Thus, in
this game Tianji faces the maximum amount of uncertainty (entropy) if he attempts to guess the King’s
strategy. Naturally, since Tianji’s mixed strategy is the same as that of the King’s, the latter also faces the
maximum uncertainty when he tries to guess Tianji’s strategy.

2.2. One-unit payoff game with probabilistic outcomes for the same classes

We now consider the second case where the outcomes are probabilistic within the same class and again
find the optimal mixed strategies and the value of the game using Lemma 1. We now assume that

P2 =
[

p11 p12 p13
p21 p22 p23
p31 p32 p33

]
=
[

p1 1 1
0 p2 1
0 0 p3

]
, (4)

where pi ∈ (0, 1), i = 1, 2, 3 denotes the probability that horse Ki beats horse Ti .
This definition provides more generality by allowing the win probability pi to take any value in the

interval (0, 1). However, for this problem the payoffs are computed as expectations since the result of a
race is not known in advance.

To calculate the King’s expected payoffEK
kt for a given pair of strategies (SK

k , ST
t ), withSK

k =(k1, k2, k3)

and ST
t = (t1, t2, t3) for strategies k, t = 1, . . . , 6, we use the formula

EK
kt = 1 · Pr(K wins) + 0 · Pr(K loses)

= 1 · [Pr(K wins all three rounds) + Pr(K wins any two rounds)]
= pk1t1pk2t2pk3t3 + pk1t1pk2t2(1 − pk3t3) + pk1t1pk3t3(1 − pk2t2) + pk2t2pk3t3(1 − pk1t1). (5)

To illustrate the expectation formula (5), we compute the expected payoff to K for two different pairs of
strategies. Consider first the case where K and T choose the pure strategies SK

1 =(1, 2, 3) and ST
2 =(1, 3, 2),

respectively. For this pair the expected payoff to K, using (4), is

EK
12 = p11p23p32 + [p11p23(1 − p32) + p11p32(1 − p23) + p23p32(1 − p11)]

= p1 · 1 · 0 + [p1 · 1 · 1 + p1 · 0 · 0 + 1 · 0 · (1 − p1)]
= p1.
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When K and T choose the pure strategies SK
3 = (2, 1, 3) and ST

3 = (2, 1, 3), the expected payoff is found
as

EK
33 = p11p22p33 + [p11p22(1 − p33) + p11p33(1 − p22) + p22p33(1 − p11)]

= p1p2 + p1p3 + p2p3 − 2p1p2p3.

Applying formula (5) to compute EK
kt for each pair of pure strategies SK

k and ST
t (k, t = 1, . . . , 6)

results in the following symbolic matrix A2 in terms of K’s expected payoffs

A2 =

⎡
⎢⎢⎢⎢⎢⎣

d(p) p1 p3 1 0 p2
p1 d(p) 1 p3 p2 0
p3 0 d(p) p2 p1 1
0 p3 p2 d(p) 1 p1
1 p2 p1 0 d(p) p3
p2 1 0 p1 p3 d(p)

⎤
⎥⎥⎥⎥⎥⎦ , (6)

where p = (p1, p2, p3)
′ and the diagonal elements are d(p) = p1p2 + p1p3 + p2p3 − 2p1p2p3. The

inverse A−1
2 of the symbolic matrix A2 can be computed symbolically and it is given in Appendix A.

Lemma 2. The diagonal element d(p) takes values in the interval (0, 1) for any pi ∈ (0, 1), i = 1, 2, 3.

Proof. First note that

d(p) = p1p2 + p1p3 + p2p3 − 2p1p2p3

= p1p2(1 − p3) + p1p3(1 − p2) + p2p3 > 0

since the probabilities take values in the interval (0, 1). By inspection, or by using a nonlinear programming
software such as LINGO [11], we maximize d(p) subject to 0+�pi �1−, i = 1, 2, 3 and find dmax(p∗)=
1−. Similarly, minimizing d(p) subject to the same bounds we find that dmin(p∗) = 0+. Thus, d(p) ∈
(0, 1). �

Lemma 3. The determinant of the A2 matrix is zero when

1 + d(p) =
3∑

i=1

pi. (7)

Proof. Computing the determinant we find

det(A2) =
[

1 + d(p)2 + 2p1p2p3 −
3∑

i=1

p2
i

]2
⎧⎨
⎩[1 + d(p)]2 −

(
3∑

i=1

pi

)2
⎫⎬
⎭ . (8)

Here, the first term assumes values in the open interval (0, 1), thus it is positive. The second term assumes
values in the interval (−5, 1) and hence it may be zero for some combination of (p1, p2, p3) values when

[1 + d(p)]2 =
(∑3

i=1pi

)2
. This proves the Lemma. �
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Remark 2. The singularity condition (7) for A2 has an interesting probabilistic interpretation: First define
Ei as the event that Ki beats Ti for i = 1, 2, 3. Now, rearranging condition (7) we obtain 1 − p1p2p3 =
p1 + p2 + p3 − p1p2 − p1p3 − p2p3 + p1p2p3, which is

1 − Pr(E1 ∩ E2 ∩ E3) = Pr(E1 ∪ E2 ∪ E3),

Pr(K loses at least one round) = Pr(K wins at least one round).

The last condition can also be written as 1 − Pr(K wins all rounds) = 1 − Pr(K loses all rounds), or,

Pr(K wins all rounds) = Pr(K loses all rounds).

This condition is satisfied when, e.g., p1 = p2 = p3 = 1
2 .

With the payoff matrix A2 in (6) and the column vector 1= (1, 1, 1, 1, 1, 1)′, we find the optimal mixed
strategies for both players, as shown in the next Proposition.

Proposition 2. Consider the one-unit payoff game of probabilistic outcomes for the same class. When
the payoff matrix (6) is non-singular, the two players have the same unique optimal mixed strategies with
equal probabilities, i.e., x∗ = y∗ = (1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6)′. Moreover, the value of the game to the King is

u2 = 1

6

[
1 + d(p) +

3∑
i=1

pi

]
(9)

with 1
6 < u2 < 5

6 and the value of the game to Tianji is v2 = 5
6 − 1

6 [d(p) +∑3
i=1pi].

Proof. We note that this game has neither a saddle point nor any of the pure strategies are dominated.
Assuming that A2 is non-singular, i.e., that 1 + d(p) �= ∑3

i=1pi , we compute the symbolic inverses of
A2 and A′

2, using the computer algebra system Maple [12,13]. (See Appendix A for the inverse of A2).
Again using Lemma 1, we find the mixed strategy probabilities to obtain x∗ = y∗ = (1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6)′.

The value of the game to the King is computed from u2 = (1′A−1
2 1)−1 which gives u2 = 1

6 [1 + d(p) +∑3
i=1pi]. We now examine the upper and lower bounds on the value of the game to King: Maximizing u2

subject to 0+�pi �1−, i=1, 2, 3, we find the optimal solution as p∗=(1−, 1−, 1−)′ with max u2=(5
6)−.

This was the value of the game when outcomes were deterministic as was shown in Proposition 1. Next,
minimizing u2 subject to the same constraints gives the optimal solution as p∗ = (0+, 0+, 0+)′ and
min u2 = (1

6)+. Note that when p∗ = (1−, 1−, 1−)′, the game reduces to the one with deterministic
outcomes as discussed in Section 2.1. �

When the A2 matrix is singular, the method proposed in Lemma 1 cannot be used in which case we
solve the problem using linear programming. It would be unlikely to have a singular A2 matrix (which
would require 1+d(p)=∑3

i=1pi as indicated in Lemma 3). However, for the sake of completeness—and
for use in subsequent sections—we now present a procedure for solving the game when A2 is singular.

It is well-known that any two-person zero-sum game can be solved using linear programming (LP);
see, e.g., Dantzig [14, Chapter 13], Wang [15] and Zionts [16, Chapter 10]. Consider now the problem
faced by the King who must determine his mixed strategy probabilities x. The idea is to assure that for
any strategy chosen by Tianji the King maximizing u2 while receiving at least u2. As an example, we
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choose p1 = p2 = p3 = 1
2 so that d(p) = 1

2 in which case the A2 matrix becomes singular and the LP
formulation of the game is obtained as

max z = u2
s.t. A′

2x�1u2
1′x = 1

(10)

with x�0 and u2 �0.
Solving this LP (and using the procedure that will be presented later in Section 3.2 and Appendix A) we

find infinitely many alternative solutions given by x∗=�xa+(1−�)xb, � ∈ [0, 1], and y∗=�ya+(1−�)yb,
� ∈ [0, 1] where xa =ya =(1

3 , 0, 0, 1
3 , 1

3 , 0
)′

and xb =yb =(0, 1
3 , 1

3 , 0, 0, 1
3

)′
. Note that when �=�= 1

2 , we

obtain x∗ = y∗ = (1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6

)′
—the same result found in Proposition 2 when A2 was non-singular.

2.3. One-unit payoff game with probabilistic outcomes across classes

We now consider the most general problem with a unit payoff by assuming that the outcomes of the
game are probabilistic across classes. In other words, we assume that the probability that the King’s ith
class horse Ki will beat Tianji’s jth class horse Tj is pij for i, j = 1, 2, 3. Thus, the probability matrix is
now defined as

P3 =
[

p11 p12 p13
p21 p22 p23
p31 p32 p33

]
. (11)

Here, although our analysis is valid for any value of pij ∈ (0, 1), we make the plausible assumption that

pij < pi,j+1 for i = 1, 2, 3 and j = 1, 2,

pij > pi+1,j for j = 1, 2, 3 and i = 1, 2.

That is, the probabilities in each row are monotone increasing in j and the probabilities in each column
are monotone decreasing in i. For example, the King’s fastest horse K1 has a better chance of beating
Tianji’s second fastest horse T2 than Tianji’s fastest horse T1, and an even better chance of beating Tianji’s
slowest horse T3.

With the probabilities pij ∈ (0, 1) we obtain the most general King–Tianji horse race game with three
horses for which the expectations EK

kt for k, t = 1, . . . , 6 can still be calculated using formula (5). For
example, EK

12 is found as

EK
12 = p11p23p32 + [p11p23(1 − p32) + p11p32(1 − p23) + p23p32(1 − p11)]

= p11p23 + p23p32 + p11p32 − 2p11p23p32.

Computing the remaining EK
kt , for k, t = 1, 2, . . . , 6 we find the payoff matrix A3 for this game as

A3 =

⎡
⎢⎢⎢⎢⎢⎣

e1(p̂) e2(p̂) e3(p̂) e4(p̂) e5(p̂) e6(p̂)

e2(p̂) e1(p̂) e4(p̂) e3(p̂) e6(p̂) e5(p̂)

e3(p̂) e5(p̂) e1(p̂) e6(p̂) e2(p̂) e4(p̂)

e5(p̂) e3(p̂) e6(p̂) e1(p̂) e4(p̂) e2(p̂)

e4(p̂) e6(p̂) e2(p̂) e5(p̂) e1(p̂) e3(p̂)

e6(p̂) e4(p̂) e5(p̂) e2(p̂) e3(p̂) e1(p̂)

⎤
⎥⎥⎥⎥⎥⎦ , (12)
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where p̂ = (p11, p12, p13, p21, p22, p23, p31, p32, p33)
′ and

e1(p̂) = p11p22 + p22p33 + p11p33 − 2p11p22p33 > 0, (13)

e2(p̂) = p11p23 + p23p32 + p11p32 − 2p11p23p32 > 0, (14)

e3(p̂) = p12p21 + p21p33 + p12p33 − 2p12p21p33 > 0, (15)

e4(p̂) = p12p23 + p23p31 + p12p31 − 2p12p23p31 > 0, (16)

e5(p̂) = p13p21 + p21p32 + p13p32 − 2p13p21p32 > 0, (17)

e6(p̂) = p13p22 + p22p31 + p13p31 − 2p13p22p31 > 0. (18)

Fortunately, even in this general case it is still possible to use the results in Lemma 1 to compute the
mixed strategies and the value of the game when A3 is non-singular. Before we present the solution for
mixed strategies we give conditions under which A3 is singular.

Lemma 4. The determinant of the A3 matrix is zero either when

e1(p̂) + e4(p̂) + e5(p̂) = e2(p̂) + e3(p̂) + e6(p̂), (19)

or, when

[e1(p̂) − e4(p̂)]2 + [e1(p̂) − e5(p̂)]2 + [e4(p̂) − e5(p̂)]2

= [e2(p̂) − e3(p̂)]2 + [e2(p̂) − e6(p̂)]2 + [e3(p̂) − e6(p̂)]2. (20)

Proof. The determinant of the A3 matrix is computed as

det(A3) =
[

6∑
m=1

em(p̂)

]
× ẽ(p̂) × [Ẽ(p̂) − e1(p̂)e4(p̂) − e1(p̂)e5(p̂) − e4(p̂)e5(p̂)

+ e2(p̂)e3(p̂) + e2(p̂)e6(p̂) + e3(p̂)e6(p̂)]2, (21)

where

ẽ(p̂) ≡ e1(p̂) − e2(p̂) − e3(p̂) + e4(p̂) + e5(p̂) − e6(p̂),

Ẽ(p̂) ≡ e1(p̂)2 − e2(p̂)2 − e3(p̂)2 + e4(p̂)2 + e5(p̂)2 − e6(p̂)2.

Completing the square inside the third (squared) term in (21), the determinant reduces to

det(A3) =
[

6∑
m=1

em(p̂)

]
× ẽ(p̂) × 1

4

({[e1(p̂) − e4(p̂)]2 + [e1(p̂) − e5(p̂)]2 + [e4(p̂) − e5(p̂)]2}

−{[e2(p̂) − e3(p̂)]2 + [e2(p̂) − e6(p̂)]2 + [e3(p̂) − e6(p̂)]2})2,
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where the first term inside the brackets is positive. Examining the second and the third terms, we obtain
the conditions in (19) and (20). �

Proposition 3. Consider the one-unit payoff game of probabilistic outcomes across classes. When the
payoff matrix (12) is non-singular, the two players have the same optimal mixed strategies with equal
probabilities, i.e., x∗ = y∗ = (1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6

)′
. In addition, the value of the game to the King is

u3 = 1
6

6∑
m=1

em(p̂)

with 0 < u3 < 1 and the value of the game to Tianji is v3 = 1 − 1
6

∑6
m=1em(p̂) where em(p̂), m = 1, . . . , 6

are given in (13)–(18).

Proof. The proof follows similar lines of arguments as in Proposition 2, thus it will not be repeated here.
However, see Appendix B for the inverse of A3 which is required in the proof of the Proposition. �

Before moving on to the examination of races with three-unit payoffs, we note that when the A3
matrix is singular, we can use the same LP formulation given by (10). The solution of the LP with
singular A2 replaced by singular A3 in (10) still gives the same result found in Section 2.2, i.e., where
xa = ya = (1

3 , 0, 0, 1
3 , 1

3 , 0
)′

and xb = yb = (0, 1
3 , 1

3 , 0, 0, 1
3

)′
.

As a final remark, consider the “degenerate” case where pij = 1 for all i, j = 1, 2, 3, i.e., that King’s
horses win all three races regardless of which strategy chosen by the players. (This case corresponds
to the situation where even the slowest horse owned by the King is faster than the fastest horse owned
by Tianji.) Since the A3 matrix is singular—it consists of all 1’s—we solve the problem using LP and
find that there are 6 distinct alternative optimal solutions for the King given by the unit vectors x1 =
(1, 0, 0, 0, 0, 0) , x2 =(0, 1, 0, 0, 0, 0), . . . , x6 =(0, 0, 0, 0, 0, 1). With this solution the value of the game
to King is u3 = 1. Naturally, in this case the convex combination x =∑6

i=1�ixi is also optimal, and when

we set �i = 1
6 , i = 1, . . . , 6, we find x∗ = (1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6

)′
which is the solution obtained in all previous

problems.

3. Horse races with three-unit payoff

We now assume that the winner in each of the three races receives an award of one-unit. Thus, in this
case the maximum possible payoff for the winner in the horse races is three units rather than one unit. For
this problem we develop the payoff matrix of the game in terms of K’s expected award and analyze the
three games with deterministic outcomes, probabilistic outcomes for the same classes and probabilistic
outcomes across classes.

3.1. Three-unit payoff game with deterministic outcomes

We now assume, as in Section 2.1, that horse Ki beats horse Tj , i, j = 1, 2, 3 for i�j with certainty,
i.e., the probability matrix given by (1) applies. In this setting we calculate K’s total payoff corresponding
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to each pair of strategies adopted by the players as

A4 =

⎡
⎢⎢⎢⎢⎢⎣

3 2 2 2 1 2
2 3 2 2 2 1
2 1 3 2 2 2
1 2 2 3 2 2
2 2 2 1 3 2
2 2 1 2 2 3

⎤
⎥⎥⎥⎥⎥⎦ . (22)

For example, when K and T, respectively, choose strategies SK
2 = (1, 3, 2) and ST

3 = (2, 1, 3), K wins in
the first and third rounds since K1 � T2 and K2 � T3 and loses the second round since K3 ≺ T1. As a
result, K wins 2 (as indicated in the second row and third column of A4) while T receives 3 − 2 = 1.

For this case we observe that the payoff matrix A4 has no saddle points, nor any of the strategies are
dominated. Moreover, it can be shown that det(A4) = 0, i.e., A4 is singular. Thus Lemma 1 cannot be
applied to find the optimal strategies. Hence, we utilize linear programming to analyze this problem as
we had done for a special case of the one-unit payoff game in Section 2.2.

As before, we denote K’s and T’s mixed strategies by x=(x1, . . . , x6)
′ and y=(y1, . . . , y6)

′, respectively.
Using the A4 matrix, the LP formulation of K’s problem is obtained similarly to (10) as

max z = u4
s.t. A′

4x�1u4,

1′x = 1
(23)

with the usual non-negativity constraints of x�0 and u4 �0 where 0=(0, . . . , 0)′ is a 6×1 column vector
of 0’s. After introducing the surplus variables s = (s1, . . . , s6)

′ for the first six inequality constraints, we
write this problem in the “canonical” form2 as

max z = ĉ′x̂
s.t. Â4x̂ = b̂,

(24)

where

Â4 =
[

A′
4 −1 −I

1′ 0 0′
]

[7×13]
, x̂ =

[ x
u4
s

]
[13×1]

, b̂ =
[

0
1

]
[7×1]

, ĉ =
[0

1
0

]
[13×1]

,

and I[7×7] is the identity matrix.
The next Proposition presents the complete solution for this game.

Proposition 4. In the three-unit payoff game with deterministic outcomes, the optimal mixed strategies
for K and T are, x∗ = �xa + (1 − �)xb, � ∈ [0, 1] and y∗ = �ya + (1 − �)yb, � ∈ [0, 1], respectively,
where xa = ya = (1

3 , 0, 0, 1
3 , 1

3 , 0
)′

and xb = yb = (0, 1
3 , 1

3 , 0, 0, 1
3

)′
. Moreover, value of the game for K is

u4 = 2

and for T the value is v4 = 1.

2 In this problem the proper canonical form would involve introducing seven artificial variables for each of the equality
constraints in order to generate the initial basic feasible solution. But since we are not interested in the initial solution and the
optimal solution always exists for the LP formulation of the game problems, we ignore the artificial variables in our version of
the “canonical” form.
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Proof. To prove the Proposition, we first solve problem (24) using a linear programming solver such as
LINDO [17] which gives

(25)

and

(26)

with the basic vector x̂B = (x1, x4, x5, u4, s2, s3, s6)
′ = (1

3 , 1
3 , 1

3 , 2, 0, 0, 0
)′

and the non-basic vector
x̂N = (x2, x3, x6, s1, s4, s5)

′ = (0, . . . , 0)′. We write this optimal extreme point solution in terms of the
decision variables as xa = (1

3 , 0, 0, 1
3 , 1

3 , 0
)′

.
For the optimal solution that we have found the basis matrix B of the basic vector x̂B and the matrix

N of non-basic vector x̂N are

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 1 2 −1 0 0 0
2 2 2 −1 −1 0 0
2 2 2 −1 0 −1 0
2 3 1 −1 0 0 0
1 2 3 −1 0 0 0
2 2 2 −1 0 0 −1
1 1 1 −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[7×7]

, N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 2 2 −1 0 0
3 1 2 0 0 0
2 3 1 0 0 0
2 2 2 0 −1 0
2 2 2 0 0 −1
1 2 3 0 0 0
1 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[7×6]

,

respectively. Let us denote ĉB and ĉN as the vector of the objective function coefficients for x̂B and x̂N ,
respectively. Then, in a maximization problem the components of the “evaluator” vector

ĉ′
N − ĉ′

BB−1N = (0, 0, 0, −1
3 , −1

3 , −1
3)

corresponding to the non-basic variables (x2, x3, x6, s1, s4, s5) indicate the amount by which the objective
would improve if a particular non-basic variable were to become basic; see, Zionts [16, Chapter 3]. (The
negatives of these values are known as the “reduced costs.”) Thus, the above results indicate the presence
of multiple and degenerate optimal solutions since some non-basic variables (i.e., x2, x3, and x6) can be
made basic without affecting the objective function value as the reduced cost for these variables is zero.
Also note that the non-basic variables (s1, s4, s5) would never be candidates for entering into the basis as
their ĉ′

N − ĉ′
BB−1N components are all negative (and, their reduced costs are all positive).

In general, the constraints can be written in terms of the basic and non-basic vector (x̂B, x̂N) as
Bx̂B + Nx̂N = b̂. Left-multiplying this equation by B−1, the “canonical” form corresponding to the basis
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matrix B is obtained as x̂B + B−1Nx̂N = B−1b̂ which reduces to

x̂B = B−1b̂ = (1
3 , 1

3 , 1
3 , 2, 0, 0, 0

)′
when x̂N = 0. To determine the other basic extreme point optimal solution we now allow the (x2, x3, x6)

variables in the x̂N vector to assume nonzero values and solve for x̂B to obtain x̂B = B−1b̂ − B−1Nx̂N .
This gives the basic variables as a function of the non-basic decision variables as follows:

x1 = 1
3 − 1

3(x2 + x3 + x6),

x4 = 1
3 − 1

3(x2 + x3 + x6),

x5 = 1
3 − 1

3(x2 + x3 + x6),

u4 = 2,

s2 = x2 − x3,

s3 = x3 − x6,

s6 = −x2 + x6.

Clearly, the (x2, x3, x6) variables in the non-basic vector x̂N = (x2, x3, x6, s1, s4, s5)
′ can be varied in

any amount provided that the basic variables in x̂B = (x1, x4, x5, u4, s2, s3, s6)
′ do not assume negative

values. Hence, to keep s2, s3, and s6 non-negative, we must have x2 �x3, x3 �x6 and x6 �x2, which
implies x2 = x3 = x6 and s2 = s3 = s6 = 0.

Since x2 = x3 = x6,we can write x1 = 1
3 − x2 and note that the entering variable x2 should be increased

as much as possible without driving x1 negative. This implies x2 = 1
3 so that x1 =0. Thus,x2 =x3 =x6 = 1

3

and x4 = x5 = 0,i.e.,the new basic vector is x̂B = (x2, x3, x6, u4, s1, s4, s5)
′ = (1

3 , 1
3 , 1

3 , 2, 0, 0, 0
)′

so that

the other extreme solution in terms of the decision variables is now obtained as xb = (0, 1
3 , 1

3 , 0, 0, 1
3

)′
.

Because a convex combination of two extreme point solutions of an LP is also optimal (see [18, p. 52]),the
result follows. Similar arguments show that the optimal strategy for Tianji is also obtained as the convex
combination of the two extreme solutions ya = (1

3 , 0, 0, 1
3 , 1

3 , 0
)′

and yb = (0, 1
3 , 1

3 , 0, 0, 1
3

)′
. Finally,

since u4 + v4 = 3, we obtain Tianji’s value as v4 = 1. �

Remark 3. For this problem with multiple optima, one may wonder about the proper choice of � (and �)
that determines the convex combination of xa and xb for the King (and ya and yb for Tianji). To answer
this question, consider again the measure of uncertainty HT (x∗) that Tianji would face for a given mixed
strategy x∗=�xa +(1−�)xb, � ∈ [0, 1] chosen by the King. Substituting x∗= 1

3(�, 1−�, 1−�, �, �, 1−�)

in HT (x∗) = −∑6
k=1x

∗
k log(x∗

k ) we find

HT (x∗, �) = −� log
(1

3�
)− (1 − �) log

(1
3(1 − �)

)
,

which is maximized at � = 1
2 with HT

(
x∗, 1

2

) ≈ 1.79. Thus, in order to maximize his opponent’s

uncertainty, the King should use the strategy x∗ = (1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6

)′
.

3.2. Three-unit payoff game with probabilistic outcomes for the same classes

With a three unit payoff, when the outcomes are probabilistic within the same class the probability
matrix in (4) applies. For this game, to calculate the King’s expected payoff EK

kt for a given pair of
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strategies
(
SK

k , ST
t

)
for k, t = 1, . . . , 6, we use the expected value

EK
kt = 1 · Pr(K wins in the 1st round) + 1 · Pr(K wins in the 2nd round)

+ 1 · Pr(K wins in the 3rd round) + 0 · Pr(K loses all rounds). (27)

For example, for SK
2 = (1, 3, 2) and ST

4 = (2, 3, 1) we have EK
24 =1 ·1+1 ·p3 +1 ·0 =1+p3. Similarly,

for SK
1 = (1, 2, 3) and ST

4 = (2, 3, 1) we find EK
14 = 1 · 1 + 1 · 1 + 1 · 0 = 2. After computing the expected

payoffs for other strategy pairs we obtain the payoff matrix for this game as

A5 =

⎡
⎢⎢⎢⎢⎢⎣

g(p) g1(p1) g3(p3) 2 1 g2(p2)

g1(p1) g(p) 2 g3(p3) g2(p2) 1
g3(p3) 1 g(p) g2(p2) g1(p1) 2

1 g3(p3) g2(p2) g(p) 2 g1(p1)

2 g2(p2) g1(p1) 1 g(p) g3(p3)

g2(p2) 2 1 g1(p1) g3(p3) g(p)

⎤
⎥⎥⎥⎥⎥⎦ ,

where g(p)=∑3
i=1pi , gi(pi)=1+pi , i =1, 2, 3 and p= (p1, p2, p3)

′. It can be shown that det(A5)=0
for any value of p, i.e., A5 is singular as was A4; so Lemma 1 cannot be applied to find the optimal
strategies. Thus, as in Section 3.1 we utilize linear programming to analyze this problem.

For this problem, similar to (23), the linear programming formulation is given as

max z = u5
s.t. A′

5x�1u5,

1′x = 1,

where u5 is the value of the game to the King. This can again be written in the “canonical” form as
max z = ĉ′x̂ s.t. Â5x̂ = b̂ where Â5 is defined similarly to Â4 in Section 3.1.

Proposition 5. In the three-unit payoff game with probabilistic outcomes for the same classes, the optimal
mixed strategies for K and T are, x∗ = �xa + (1 − �)xb, � ∈ [0, 1] and y∗ = �ya + (1 − �)yb, � ∈ [0, 1],
respectively, where xa = ya = (1

3 , 0, 0, 1
3 , 1

3 , 0
)′

and xb = yb = (0, 1
3 , 1

3 , 0, 0, 1
3

)′
. Moreover, value of the

game for K is

u5 = 1 + 1

3

3∑
i=1

pi

with 1 < u5 < 2 and the value of game to T is v5 = 2 − 1
3

∑3
i=1pi .

Proof. The proof of this Proposition requires the solution of a linear programming problem with non-
numeric data and it is presented in Appendix C. �

3.3. Three-unit payoff game with probabilistic outcomes across classes

In our last and most general model with a three unit payoff where outcomes are probabilistic across
classes, we assume, as in Section 2.3 that the probability that Ki will beat Tj is pij for i, j = 1, 2, 3. For
this game the probability matrix is given by (11).
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To calculate the King’s expected payoff EK
kt for a given pair of strategies (SK

k , ST
t ) for k, t = 1, . . . , 6,

we again use expression (27). For example, for SK
2 = (1, 3, 2) and ST

4 = (2, 3, 1) we have EK
24 = 1 ·p12 +

1 ·p33 +1 ·p21. After computing the expected payoffs for other strategy pairs we obtain the payoff matrix
for this game as

A6 =

⎡
⎢⎢⎢⎢⎢⎣

h1(p̂) h2(p̂) h3(p̂) h4(p̂) h5(p̂) h6(p̂)

h2(p̂) h1(p̂) h4(p̂) h3(p̂) h6(p̂) h5(p̂)

h3(p̂) h5(p̂) h1(p̂) h6(p̂) h2(p̂) h4(p̂)

h5(p̂) h3(p̂) h6(p̂) h1(p̂) h4(p̂) h2(p̂)

h4(p̂) h6(p̂) h2(p̂) h5(p̂) h1(p̂) h3(p̂)

h6(p̂) h4(p̂) h5(p̂) h2(p̂) h3(p̂) h1(p̂)

⎤
⎥⎥⎥⎥⎥⎦ ,

where h1(p̂)=p11+p22+p33, h2(p̂)=p11+p23+p32, h3(p̂)=p12+p21+p33, h4(p̂)=p12+p23+p31,
h5(p̂) = p13 + p21 + p32, and h6(p̂) = p13 + p22 + p31. It can be shown that A6 is singular, thus Lemma
1 cannot be used. We again resort to linear programming to determine the optimal strategies.

For this problem, similar to (23), the linear programming formulation is given as max z = u6 s.t.
A′

6x�1u6 and 1′x=1 where u6 is the value of the game to the King. This can be written in the “canonical”
form as max z = ĉ′x̂ s.t. Â6x̂ = b̂ where Â6 is defined similarly to Â4 in Section 3.1.

Proposition 6. In the three-unit payoff game with probabilistic outcomes across classes, the optimal
mixed strategies for K and T are, x∗ = �xa + (1 − �)xb, � ∈ [0, 1] and y∗ = �ya + (1 − �)yb, � ∈ [0, 1],
respectively, where xa = ya = (1

3 , 0, 0, 1
3 , 1

3 , 0
)′

and xb = yb = (0, 1
3 , 1

3 , 0, 0, 1
3

)′
. Moreover, value of the

game for K is

u6 = 1

3

3∑
i=1

3∑
j=1

pij

with 0 < u6 < 3 and the value to T is v6 = 3 − 1
3

∑3
i=1
∑3

j=1pij .

Proof. The proof of this Proposition requires the solution of a linear programming problem with non-
numeric data and it is presented in Appendix D. �

4. Conclusions

In this paper, we presented a game-theoretical analysis of a legendary Chinese horse race between
the King of Qi and General Tianji who raced three horses of differing speeds with the property that the
King’s horses in a given speed class are better than Tianji’s horses in the same class. We analyzed two
groups of games with different payoffs to the winner. In the first group, the player who wins the majority
of three-round races receives a payoff of one unit and the player who loses the races receives nothing. In
the second group, the maximum payoff (the “purse”) is three units and each player receives as many units
as the number of races won by his horses. For each group, we considered three different games identified
according to the outcomes of a specific race: (i) deterministic outcome, (ii) probabilistic outcome for the
same speed classes, and (iii) probabilistic outcome across speed classes.
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Table 1
One-unit payoff games with different number of horses

N Number of positive x∗
i

x∗
i

u

in the N ! × 1 vector x∗
3 3! = 6 1/3! 5/6 ≈ 0.833
4 4! = 24 1/4! 35/48 ≈ 0.729
5 5! = 120 1/5! 31/40 ≈ 0.775

Table 2
Multiple-unit payoff games with different number of horses

N Number of positive x∗
i

x∗
i

u

in the N ! × 1 vector x∗
3 3 1/3 2
4 4 1/4 2.5
5 5 1/5 3

We showed that both groups of games can be classified as constant-sum with six pure strategies which
can be solved using the solution techniques for zero-sum games. For all three games in the first group,
we proved that there are no optimal pure strategies and that the optimal mixed strategy calls for choosing
a probability of 1

6 for each pure strategy. We also showed that, for the probabilistic outcome games, there
are multiple optimal strategies if the payoff matrix is singular. For all three of the second group of games
we proved that the payoff matrices are always singular and there are multiple optimal strategies for both
players. We solved the games involving general (non-numeric) payoffs by manipulating the final simplex
tableau symbolically to check for optimality. We also answered the question of which one of the infinitely
many alternative solutions to employ by using results from information theory.

Naturally, the present models can be easily extended to cases where each player races N > 3 horses
where ties in even number of games result in a 50–50 split of the total payoff. In such a case, each player
would have a total of N ! possible pure strategies with a payoff matrix of N ! rows and N ! columns. For the
first group of games we have solved several games with deterministic outcomes and obtained the results
in Table 1.

Based on the results in Table 1 we would thus conjecture that the optimal mixed strategy for each
player would be of the same form as we found in Section 2, i.e.,

x∗ = y∗ =
(

1

N ! ,
1

N ! , . . . ,
1

N !
)′

.

For the second group of games with payoffs equal to the number of horses, we believe that optimal
mixed strategies will still be of the same form as the one we found in Section 3, i.e., there will be multiple
optimal solutions to the resulting linear programming problem with 2N ! + 1 variables (including the
N ! surplus variables) and N ! + 1 constraints. We have solved the problem for different values of N and
obtained the results in Table 2.

Based on the results in Table 2, we conjecture that for the case with payoffs equal to the number of
horses N, the optimal strategy for each player would involve a solution with N positive probabilities each
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equal to 1
N

, i.e.,

x∗ = y∗ =
(

N components with value
1

N
, and N ! − N components with value 0

)′
.
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Appendix A. Inverse of the payoff matrix A2

The inverse of the symbolic matrix A2 of the one-unit payoff game with probabilistic outcomes is
given as

A−1
2 =

⎡
⎢⎢⎢⎢⎢⎣

�2(p) �4(p) �3(p) �6(p) �5(p) �7(p)

�4(p) �2(p) �6(p) �3(p) �7(p) �5(p)

�3(p) �5(p) �2(p) �7(p) �4(p) �6(p)

�5(p) �3(p) �7(p) �2(p) �6(p) �4(p)

�6(p) �7(p) �4(p) �5(p) �2(p) �3(p)

�7(p) �6(p) �5(p) �4(p) �3(p) �2(p)

⎤
⎥⎥⎥⎥⎥⎦ ,

where

�2(p) = 1

�1(p)

⎧⎨
⎩d(p)3 + d(p)2 − 1

2 [1 + d(p)]
∑

i=1,2;j=2,3

(pi − pj )
2 +

3∑
i=1

p2
i

⎫⎬
⎭ ,

�3(p) = 1

�1(p)

{
−[1 + d(p)2]p3 + d(p)(p1 + p2 − p3) − (p1p2 − p2

3)

3∑
i=1

pi

}
,

�4(p) = 1

�1(p)

{
−[1 + d(p)2]p1 + d(p)(p2 + p3 − p1) − (p2p3 − p2

1)

3∑
i=1

pi

}
,

�5(p) = 1

�1(p)

⎧⎪⎨
⎪⎩[1 + p1p2 + p1p3 + p2p3]d(p) + 1 − 1

2

∑
i=1,2;j=2,3

i �=j

(pi + pj )
2

⎫⎪⎬
⎪⎭ ,

�6(p) = 1

�1(p)
{−[1 + d(p)][d(p) − (p1p2 + p1p3 + p2p3)]},

�7(p) = 1

�1(p)

{
−[1 + d(p)2]p2 + d(p)(p1 + p3 − p2) − (p1p3 − p2

2)

3∑
i=1

pi

}
,

and �1(p) = det(A2) given in (8) and d(p) = p1p2 + p1p3 + p2p3 − 2p1p2p3.
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Appendix B. Inverse of the payoff matrix A3

The inverse of the symbolic matrix A3 of the one-unit payoff game with probabilistic outcomes across
classes is given as

A−1
3 =

⎡
⎢⎢⎢⎢⎢⎣

�2(p) �4(p) �3(p) �6(p) �5(p) �7(p)

�4(p) �2(p) �6(p) �3(p) �7(p) �5(p)

�3(p) �5(p) �2(p) �7(p) �4(p) �6(p)

�5(p) �3(p) �7(p) �2(p) �6(p) �4(p)

�6(p) �7(p) �4(p) �5(p) �2(p) �3(p)

�7(p) �6(p) �5(p) �4(p) �3(p) �2(p)

⎤
⎥⎥⎥⎥⎥⎦ ,

where

�2(p) = 1

�1(p)
{−1

2e1[(e2 + e3)
2 + (e2 + e6)

2 + (e3 + e6)
2]

+ (e2e3 + e2e6 + e3e6)(e4 + e5) + (e1 + e4 + e5)(e
2
1 − e4e5)},

�3(p) = 1

�1(p)
{−1

2e3[(e1 + e4)
2 + (e1 + e5)

2 + (e4 + e5)
2]

+ (e1e4 + e1e5 + e4e5)(e2 + e6) + (e2 + e3 + e6)(e
2
3 − e2e6)},

�4(p) = 1

�1(p)
{−1

2e2[(e1 + e4)
2 + (e1 + e5)

2 + (e4 + e5)
2]

+ (e1e4 + e1e5 + e4e5)(e3 + e6) + (e2 + e3 + e6)(e
2
2 − e3e6)},

�5(p) = 1

�1(p)
{−1

2e4[(e2 + e3)
2 + (e2 + e6)

2 + (e3 + e6)
2]

+ (e2e3 + e2e6 + e3e6)(e1 + e5) + (e1 + e4 + e5)(e
2
4 − e1e5)},

�6(p) = 1

�1(p)
{−1

2e5[(e2 + e3)
2 + (e2 + e6)

2 + (e3 + e6)
2]

+ (e2e3 + e2e6 + e3e6)(e1 + e4) + (e1 + e4 + e5)(e
2
5 − e1e4)},

�7(p) = 1

�1(p)
{−1

2e6[(e1 + e4)
2 + (e1 + e5)

2 + (e4 + e5)
2]

+ (e1e4 + e1e5 + e4e5)(e2 + e3) + (e2 + e3 + e6)(e
2
6 − e2e3)},

and �1(p) = det(A3) given in (21) with em ≡ em(p), for m = 1, . . . , 6.

Appendix C. Proof of Proposition 5

Motivated by the optimal solution found for the three-unit payoff game with deterministic outcomes,
we choose the basic vector x̂B = (x1, x4, x5, u4, s2, s3, s6)

′ corresponding to xa and test it for optimality.
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The basis matrix B with non-numeric entries corresponding to x̂B and the matrix N with non-numeric
entries corresponding to the non-basic vector x̂N = (x2, x3, x6, s1, s4, s5)

′ are given by

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g(p) 1 2 −1 0 0 0
g1(p1) g3(p3) g2(p2) −1 −1 0 0
g3(p3) g2(p2) g1(p1) −1 0 −1 0

2 g(p) 1 −1 0 0 0
1 2 g(p) −1 0 0 0

g2(p2) g1(p1) g3(p3) −1 0 0 −1
1 1 1 −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g1(p1) g3(p3) g2(p2) −1 0 0
g(p) 1 2 0 0 0

2 g(p) 1 0 0 0
g3(p3) g2(p2) g1(p1) 0 −1 0
g2(p2) g1(p1) g3(p3) 0 0 −1

1 2 g(p) 0 0 0
1 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

respectively. Using these matrices the basic vector is computed as

x̂B = B−1b̂ =
(

1
3 , 1

3 , 1
3 , 1 + 1

3

3∑
i=1

pi, 0, 0, 0

)′
.

Moreover, the evaluator vector corresponding to the non-basic variables (x2, x3, x6, s1, s4, s5) is

ĉ′
N − ĉ′

BB−1N = (0, 0, 0, −1
3 , −1

3 , −1
3)

indicating that the solution x̂B is optimal. Proceeding as in the proof of Proposition 4, we calculate
x̂B = B−1b̂ − B−1Nx̂N to express the basic variables as a function of the non-basic decision variables as
follows:

x1 = 1

3
− 1

3
(x2 + x3 + x6) − 1

3

{ [2g(p) − 3]a1(x) − [g(p) − 3]a2(x) − g(p)a3(x)

3 − 3g(p) + [g(p)]2

}
,

x4 = 1

3
− 1

3
(x2 + x3 + x6) − 1

3

{ [2g(p) − 3]a2(x) − [g(p) − 3]a3(x) − g(p)a1(x)

3 − 3g(p) + [g(p)]2

}
,

x5 = 1

3
− 1

3
(x2 + x3 + x6) − 1

3

{ [2g(p) − 3]a3(x) − [g(p) − 3]a1(x) − g(p)a2(x)

3 − 3g(p) + [g(p)]2

}
,

u5 = 1 + 1
3g(p),
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s2 = a4(x)[−x3g(p) − x6g(p) + 2x2g(p) + 3(x6 − x2)]
3 − 3g(p) + [g(p)]2 ,

s3 = a4(x)[−x6g(p) − x2g(p) + 2x3g(p) + 3(x2 − x3)]
3 − 3g(p) + [g(p)]2 ,

s6 = a4(x)[−x2g(p) − x3g(p) + 2x6g(p) + 3(x3 − x6)]
3 − 3g(p) + [g(p)]2 ,

where

a1(x) ≡ g1(p1)x2 + g3(p3)x3 + g2(p2)x6,

a2(x) ≡ g3(p3)x2 + g2(p2)x3 + g1(p1)x6,

a3(x) ≡ g2(p2)x2 + g1(p1)x3 + g3(p3)x6,

a4(x) ≡ 1 − g(p) + p1p3 + p1p2 + p2p3.

First, note that a4(x) > 0 since it can be written as a4(x) = (1 − p1)(1 − p2)(1 − p3) + p1p2p3 > 0.
Next, the denominator of s2, s3, and s6 is also positive since it can be simplified as 3

4 +(3
2 −∑3

i=1pi)
2 > 0.

Thus,

s2 �0 ⇔ n2(x)�0,

s3 �0 ⇔ n3(x)�0,

s6 �0 ⇔ n6(x)�0,

where

n2(x) = −x3g(p) − x6g(p) + 2x2g(p) + 3(x6 − x2), (28)

n3(x) = −x6g(p) − x2g(p) + 2x3g(p) + 3(x2 − x3), (29)

n6(x) = −x2g(p) − x3g(p) + 2x6g(p) + 3(x3 − x6). (30)

However, adding the ni(x)’s in (28)–(30) we find n2(x) + n3(x) + n6(x) = 0. Since each ni(x) is non-
negative but their sum is zero, this implies that n2(x)=n3(x)=n6(x)= 0. To determine the values of x2,
x3, and x6 we solve the system of three {n2(x) = 0, n3(x) = 0, n6(x) = 0} in three unknowns {x2, x3, x6}
which gives x2 = x3 = x6 and

x1 = 1
3 − 1

3(x2 + x3 + x6),

x4 = 1
3 − 1

3(x2 + x3 + x6),

x5 = 1
3 − 1

3(x2 + x3 + x6).

with s2 = s3 = s6 = 0. As in the proof of Proposition 4, we find that x2 = x3 = x6 = 1
3 and thus

xb = (0, 1
3 , 1

3 , 0, 0, 1
3

)′
with the value of game u5 = 1 + 1

3

∑3
i=1pi . Maximizing and minimizing u5, we

find max u5 = 2− and min u5 = 1+, respectively; thus 1 < u5 < 2. Finally, since u5 + v5 = 3, we obtain
v5 = 2 − 1

3

∑3
i=1pi as the value to Tianji. �
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Appendix D. Proof of Proposition 6

To prove this proposition we use exactly the same lines of argument as those employed in proving
Proposition 5 involving a linear program with non-numeric entries. That is, we start with the basis
x̂B = (x1, x4, x5, u5, s2, s3, s6)

′ corresponding to xa and calculate its components as

x̂B = B−1b̂ =
⎛
⎝1

3 , 1
3 , 1

3 , 1
3

3∑
i=1

3∑
j=1

pij , 0, 0, 0

⎞
⎠

′
.

Next, we show that x̂B is one of many optimal solutions since the evaluator vector corresponding to the
non-basic variables x̂N = (x2, x3, x6, s1, s4, s5)

′ is ĉ′
N − ĉ′

BB−1N= (0, 0, 0, −1
3 , −1

3 , −1
3). We then write

x̂B in terms of the non-basic variables x̂N and show that xb is the other optimal corner point.
Calculating x̂B = B−1b̂ − B−1Nx̂N , we find

s2 = r(p̂)�2(x)

m(p̂)
, s3 = r(p̂)�3(x)

m(p̂)
, s6 = r(p̂)�6(x)

m(p̂)
, (31)

where

�2(x) = w3(p̂)x2 + w2(p̂)x3 + w1(p̂)x6,

�3(x) = w1(p̂)x2 + w3(p̂)x3 + w2(p̂)x6,

�6(x) = w2(p̂)x2 + w1(p̂)x3 + w3(p̂)x6,

and

w1(p̂) = 2(p12 + p23 + p31) − (p11 + p22 + p33 + p13 + p21 + p32),

w2(p̂) = 2(p13 + p21 + p32) − (p11 + p22 + p33 + p31 + p12 + p23),

w3(p̂) = 2(p11 + p22 + p33) − (p12 + p13 + p21 + p23 + p31 + p32).

with the property that �2(x)+ �3(x)+ �6(x)= (x2 +x3 +x6)
∑3

i=1wi(p̂) and w1(p̂)+w2(p̂)+w3(p̂)=0
implying �2(x) + �3(x) + �6(x) = 0. In these expressions the term r(p̂) in the numerators of si’s in (31)
is a quadratic form given as r(p̂) = p̂′Qp̂, where

Q = 1

2

[ 0 Q1 Q2
Q2 0 Q1
Q1 Q2 0

]
9×9

,

with

Q1 ≡
[ 0 1 −1

−1 0 1
1 −1 0

]
3×3

, Q2 = −Q1,

and 0 is a 3 × 3 matrix of 0’s. The term m(p̂) appearing in the denominators in (31) is also a quadratic
form m(p̂) = p̂′Q̂p̂ where Q̂ ≡ (Q̂1, Q̂2, Q̂3, Q̂3, Q̂1, Q̂2, Q̂2, Q̂3, Q̂1) is a 9 × 9 matrix with

Q̂1 ≡ (1, −1
2 , −1

2 , −1
2 , 1, −1

2 , −1
2 , −1

2 , 1)′,
Q̂2 ≡ (−1

2 , 1, −1
2 , −1

2 , −1
2 , 1, 1, −1

2 , −1
2 )′,

Q̂3 ≡ (−1
2 , −1

2 , 1, 1, −1
2 , −1

2 , −1
2 , 1, −1

2 )′.
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To assure that s2 �0, s3 �0, and s6 �0, the terms �2(x), �3(x) and �6(x) must have the same sign. But
since their sum equals zero, this implies that �2(x) = �3(x) = �6(x) = 0. To determine the values of x2, x3
and x6 we solve the system of three {�2(x)=0, �3(x)=0, �6(x)=0} in three unknowns {x2, x3, x6} which
gives x2 = x3 = x6 = x̄ and x1 = 1

3 − x̄, x4 = 1
3 − x̄, and x5 = 1

3 − x̄. As in the proof of Proposition 4, we

find that x2 = x3 = x6 = 1
3 and thus xb = (0, 1

3 , 1
3 , 0, 0, 1

3)′with the value of game u6 = 1
3

∑3
i=1
∑3

j=1pij .
Maximizing and minimizing u6, we find max u6 = 3− and min u6 = 0+, respectively; thus 0 < u6 < 3.
Finally, since u6 + v6 = 3, we obtain v6 = 3 − 1

3

∑3
i=1
∑3

j=1pij as the value to Tianji. �
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