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Abstract

The nucleolus solution for cooperative games in characteristic function form is usually computed

numerically by solving a sequence of linear programming (LP) problems, or by solving a single, but

very large-scale, LP problem. This paper proposes an algebraic method to compute the nucleolus

solution analytically (i.e., in closed-form) for a three-player cooperative game in characteristic

function form. We first consider cooperative games with empty core and derive a formula to

compute the nucleolus solution. Next, we examine cooperative games with non-empty core and

calculate the nucleolus solution analytically for five possible cases arising from the relationship

among the value functions of different coalitions.

Key words: Three-player cooperative game in characteristic function form, nucleolus, linear pro-
gramming.



1 Introduction

Cooperative game theory studies situations involving multiple players who can cooperate and take

joint actions in a coalition to increase their “wealth.” The important problem of allocating the

newly accrued wealth among the cooperating players in a fair manner has occupied game theorists

since the 1940s. More than a dozen alternate solution concepts have been proposed to determine

the allocation but only a few of these concepts have received the most attention. Von Neumann

and Morgenstern [21] who were the originators of multiperson cooperative games proposed the

first solution concept for such games known as the stable set. However, due to the theoretical and

practical diffi culties associated with it, the stable set concept fell out of favour. In 1953, Gillies

[6] introduced the concept of core as the set of all undominated payoffs (i.e., imputations) to the

players satisfying rationality properties. Even though the core has been found useful in studying

economic markets, it does not provide a unique solution to the allocation problem. Also in 1953,

Shapley [18] wrote three axioms which would capture the idea of a fair allocation of payoffs and

developed a simple, analytic, expression to calculate the payoffs. Shapley value can be computed

easily by using a formula regardless of whether or not the core is empty. However, when the core is

non-empty, Shapley value may not be in the core and under some conditions the allocation scheme

in terms of Shapley value may result in an unstable grand coalition.

An alternative solution concept known as the nucleolus was introduced by Schmeidler [17] in

1969 who proposed an allocation scheme that minimizes the “unhappiness”of the most unhappy

player. Schmeidler [17] defines “unhappiness”(or, “excess”) of a coalition as the difference between

what the members of the coalition could get by themselves and what they are actually getting if

they accept the allocations suggested by a solution. It was shown by Schmeidler [17] that if the core

for a cooperative game is non-empty, then the nucleolus is always located inside the core and thus

assures stability of the grand coalition. Unfortunately, unlike the Shapley value, there exists no

closed-form formula for the nucleolus solution which has to be computed numerically in an iterative

manner by solving a series of linear programming (LP) problems, or by solving a very large-scale LP

problem (see, for example, Owen [14] and Wang [22] for textbook descriptions of these methods).

The objective of this paper is to present analytic expressions to calculate the nucleolus solution

directly without the need for iterative calculations that involve the solution of linear programs.

The nucleolus solution is an important concept in cooperative game theory even though it is

not easy to calculate. As Maschler et al. [11, p. 336] pointed out, the nucleolus satisfies some

desirable properties– e.g., it always exists uniquely in the core if the core is non-empty, and is

therefore considered an important fair division scheme. As a consequence, some researchers have

used this concept to analyze business and management problems; but, due to the complexity of

the calculations, the nucleolus has not been extensively used to solve allocation-related problems.

As an early application of the nucleolus concept, Barton [1] suggested the nucleolus solution as the

mechanism to allocate joint costs among entities who share a common resource. Barton showed

that using the nucleolus for this allocation problem can reduce the possibility that one or more

entities may wish to withdraw from the resource-sharing arrangement.
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To fairly divide the cost or payoff among multiple players, one should choose an allocation

scheme that satisfies a natural monotonicity property. In the context of cost allocation, the

monotonicity of a scheme means that, if the cost (payoff) incurred by each possible coalition rises,

then the cost (payoff) allocation to each entity under the scheme should be increased. As Megiddo

[12] proved, the nucleolus is not always monotonic which is considered as a drawback of this con-

cept. We note that in Barton’s cost allocation problem, if the cost for using the common resource

increases, then the nucleolus solution may suggest a lower cost allocated to some entities, which

means that the nucleolus is not monotonic in the problem analyzed by Barton [1].

It has been shown that there are other solution concepts that satisfy the monotonicity property

and may be used instead of the nucleolus. For example, Young [23] proved that the Shapley value

is a unique, monotonic solution, even though, as pointed out above, it may not be in the core if the

core is non-empty. In [8], Grotte normalized the nucleolus (by dividing the “excess”of each coalition

by the number of players in the coalition) and correspondingly, introduced the new concept “per

capita (normalized) nucleolus”as an alternative to the original nucleolus solution. Grotte showed

that the per capita nucleolus is monotonic and also always exists in the core if the core is non-empty.

Thus, for some cost-sharing problems such as that in Barton [1], the per capita nucleolus may be

better than the nucleolus solution; but, we note that the calculation for the per capita nucleolus

could be even more complicated than that for the nucleolus. For other publications concerning the

applications of the nucleolus, see, e.g., Du et al. [4], Gow and Thomas [7], and Leng and Parlar

[10].

An n-player game in characteristic-function form (as originally formulated by von Neumann

and Morgenstern [21, Ch. VI]) is defined by the set N = {1, 2, . . . , n} and a function v(·) which, for
any subset (i.e., coalition) S ⊆ N gives a number v(S) called the value of S (see, also, Straffi n [20,

Ch. 23]). The characteristic value of the coalition S, denoted by v(S), is the payoff that all players

in the coalition S can jointly obtain. For a characteristic function game (N, v), let xi represent

an imputation (i.e., a payoff) for player i = 1, 2, . . . , n. The nucleolus solution is defined as an n-

tuple imputation x = (x1, x2, . . . , xn) such that the excess (“unhappiness”) eS(x) = v(S)−
∑
i∈S xi

of any possible coalition S cannot be lowered without increasing any other greater excess; see,

Schmeidler [17]. With this definition, we find that the nucleolus of a cooperative game is a solution

concept that makes the largest unhappiness of the coalitions as small as possible, or, equivalently,

minimizes the worst inequity. In the sequential LP method that is based on lexicographic ordering

(Maschler et al. [11]), to find the nucleolus solution we first reduce the largest excess max{eS(x),
for all S ⊆ N} as much as possible, then decrease the second largest excess as much as possible,
and continue this process until the n-tuple imputation x is determined.

Existing solution methods for the nucleolus either solve a series of linear programming (LP)

problems or a single, but very large LP; see, Table 1. The description of the methods to find the

nucleolus as summarized in Table 1 shows that most LP-based methods are iterative in nature and

when they are not iterative, the resulting LP can be quite large (as in Kohlberg [9] and Owen

[13]). For further discussions regarding these LP methods, see the online Appendix B, in which we

2



Year Author(s) Brief Description of Major Algorithms in the LP Method

1972 Kohlberg [9]

When the set of payoff vectors is a polytope, the nucleolus can be

obtained as the solution of a single LP problem with n variables and

(2n)! constraints.

1974 Owen [13]

When the set of payoff vectors is a polytope, the nucleolus can be

obtained as the solution of a single LP problem with 2n+1 + n variables

and 4n + 1 constraints.

1979
Maschler, Peleg

and Shapley [11]

The nucleolus was characterized as the lexicographic center of a

cooperative game, and it can be found by solving a series of O(4n)

minimization LP problems with constraint coeffi cients of either − 1, 0 or 1.

1981 Behringer [2]

Simplex based algorithm developed for general lexicographically extended

linear maxmin problems to find the nucleolus by solving a sequence of

O(2n) LP problems.

1981 Dragan [3]
Using the concept of coalition array, linear programs with only O(n) rows

and O(2n) columns are used to find the nucleolus solution.

1991 Sankaran [16]
Algorithm to find the nucleolus solution by solving a sequence of O(2n) LP

problems. However, this method needs more constraints than in Behringer [2].

1994
Solymosi and

Raghavan [19]

Algorithm to determine the nucleolus of an assignment game. In an

(m,n)-person assignment game, the nucleolus is found in at most m(m+ 3)/2

steps, each one requiring at most O(mn) elementary operations.

1996
Potters, Reijnierse

and Ansing [15]

The nucleolus solution can be found by solving at most n− 1 linear programs
with at most 2n − 1 rows and 2n + n− 1 columns.

1997 Fromen [5]
By utilizing Behringer’s algorithm [2], the number of LP problems

to find the nucleolus is reduced to O(n).

Table 1: A brief review of important algorithms to compute the nucleolus using the LP method.

compare the LP methods listed in Table 1.

In this paper we focus on three-player cooperative games in characteristic-function form, and

present an algebraic method that determines the nucleolus analytically (i.e., using closed-form

expressions) without the need for iterative algorithms. Furthermore, we limit our discussion to the

case of superadditive and essential games. [In a superadditive game, v(S∪T ) ≥ v(S)+v(T ) for any
two disjoint coalitions S and T ; and in an essential game, v(123) > v(1) + v(2) + v(3); see, Straffi n

[20].] This is a reasonable limitation because if a game is not superadditive and/or essential, then

the grand coalition will not be stable since the players would be better off by leaving this coalition.

Thus, when a game is not superadditive and/or essential, it is unnecessary to examine the problem

of fairly allocating the system-wide profit (that is, the characteristic value of grand coalition) among

all players. An example of a 3-player game that is not essential is given by Maschler et al. [11]

as [v(∅) | v(1), v(2), v(3) | v(12), v(13), v(23) | v(123)] = [0 | 0, 0, 0 | 0, 0, 10 | 6]. Here, the grand
coalition {1, 2, 3} is not stable since coalition {2, 3} can gain more if they do not join the grand
coalition because v(23) = 10 > v(123) = 6.

Without loss of generality, and as justified in Straffi n [20, Ch. 23, pp. 152—153], in our three-

player superadditive and essential game the characteristic values of the empty and one-player coali-

tions are assumed zero, i.e., v(∅) = v(1) = v(2) = v(3) = 0; the characteristic values of two-player
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coalitions are non-negative, i.e., v(ij) ≥ 0, for i, j = 1, 2, 3, i 6= j; and the characteristic value

of the grand coalition {123} is positive, i.e., v(123) > 0. If this is not the case, then, as discussed
in Maschler et al. [11] and demonstrated in Straffi n [20, Ch. 23, pp. 153], we can transform any

superadditive, and essential three-player game to a “0-normalized”game with zero characteristic

values of all one-player coalitions. For an example, see the online Appendix A.

The remainder of the paper is organized as follows. In Section 2, we first derive a closed-

form algebraic formula to compute the nucleolus solution for three-player characteristic-function

cooperative games with empty core. Then, we investigate the computation of the nucleolus when

the core of a cooperative game is non-empty, and present five closed-form formulas each arising

from the relationship among the value functions of different coalitions. We use two examples to

illustrate our algebraic method. In Section 3, we summarize the paper and provide some suggestions

for future research.

2 Algebraic Method for Computing the Nucleolus Solution Ana-

lytically

In this section, we develop an algebraic method to compute the nucleolus of a three-player coop-

erative game analytically without the need for linear programming. That is, we derive explicit

formulas to compute the nucleolus. We first present our analysis for the relatively simpler case

of a cooperative game with empty core. This is followed by the more complicated analysis of the

nucleolus computation for cooperative games with non-empty core.

Since we shall minimize the excesses of all possible coalitions to find the nucleolus solution, we

first compute these excesses at an imputation x as follows:

ei(x) = v(i)− xi = −xi, for i = 1, 2, 3, (1)

eij(x) = v(ij)− xi − xj = v(ij)− v(123) + xk, for i, j, k = 1, 2, 3 and i 6= j 6= k, (2)

e123(x) = v(123)− x1 − x2 − x3 = 0. (3)

Note that due to the collective rationality assumption we have e123(x) = 0 in (3); that is, the payoff

v(123) of the grand coalition {123} is divided to determine three players’payoffs x1, x2 and x3.
The collective rationality assumption is then used to find the equalities in (2).

2.1 Algebraic Method for Empty-Core Cooperative Games

We now consider a superadditive and essential cooperative game with empty core, and derive a

formula for computing the nucleolus solution.

Theorem 1 If the core of a three-player cooperative game in characteristic function form is empty,
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then the nucleolus solution y = (y1,y2, y3) is computed as

yi =
v(123) + v(ij) + v(ik)− 2v(jk)

3
, for i, j, k = 1, 2, 3 and i 6= j 6= k. (4)

Proof. See the online Appendix C.
We use the formula in Theorem 1 to compute the nucleolus solution for the following cooperative

game.

Example 1 Consider the following three-player superadditive and essential cooperative game in
characteristic function form: v(∅) = 0; v(i) = 0, for i = 1, 2, 3; v(12) = 5, v(13) = 6, v(23) = 8;

v(123) = 9. It is easy to show that for this game the core is empty1. Using Theorem 1, we compute

the nucleolus solution as y1 = 1
3(5 + 6 + 9 − 2 · 8) =

4
3 , y2 =

1
3(5 + 8 + 9 − 2 · 6) =

10
3 and

y3 =
1
3(6 + 8 + 9− 2 · 5) =

13
3 . J

2.2 Algebraic Method for Nonempty-Core Cooperative Games

We now derive the formulas that are used to compute the nucleolus solution for a three-player

cooperative game with a non-empty core. Since the core is not empty, the nucleolus solution must

be in the core (see, for example, Straffi n [20, Ch. 23]), and thus, the excesses in (1) and (2) in terms

of the nucleolus are non-positive, i.e., ej(y) ≤ 0, for j = {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. In order
to determine the nucleolus solution, we must first reduce the largest excesses to minimum and then

decrease the second largest excess and other excesses. To that end, we first find the necessary and

suffi cient conditions under which the largest excesses are reduced to the minimum.

Lemma 1 For a three-player cooperative game with a non-empty core, the largest excesses are
reduced to minimum if and only if at least one of the following conditions is satisfied:

1. With imputation x = (x1, x2, x3) =
(
1
3v(123),

1
3v(123),

1
3v(123)

)
, and, v(123) ≥ max(3v(12),

3v(13), 3v(23)).

2. With imputation

x = (x1, x2, x3) =

(
v(123) + v(12)

2
− x2, x2,

v(123)− v(12)
2

)
, (5)

and,

max

{
v(23),

v(123)− v(12)
2

}
≤ x2 ≤ min

{
v(12),

v(123) + v(12)

2
− v(13)

}
. (6)

1A simpler method for testing whether the core is empty or not is to solve the following linear program: min x1
subject to x1 + x2 ≥ v(12), x1 + x3 ≥ v(13), x2 + x3 ≥ v(23), x1 + x2 + x3 = v(123), xi ≥ 0, i = 1, 2, 3. If the LP has
no feasible solution, then the core is empty; otherwise the core is non-empty.
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3. With imputation

x = (x1, x2, x3) =

(
x1,

v(123)− v(13)
2

,
v(123) + v(13)

2
− x1

)
, (7)

and,

max

{
v(12),

v(123)− v(13)
2

}
≤ x1 ≤ min

{
v(13),

v(123) + v(13)

2
− v(23)

}
. (8)

4. With imputation

x = (x1, x2, x3) =

(
v(123)− v(23)

2
,
v(123) + v(23)

2
− x3, x3

)
, (9)

and,

max

{
v(13),

v(123)− v(23)
2

}
≤ x1 ≤ min

{
v(23),

v(123) + v(23)

2
− v(12)

}
. (10)

5. With imputation

xi =
v(123) + v(ij) + v(ik)− 2v(jk)

3
, for i, j, k = 1, 2, 3 and i 6= j 6= k, (11)

and,

v(123) + v(jk) ≤ 2[v(ij) + v(ik)], for i, j, k = 1, 2, 3 and i 6= j 6= k. (12)

Proof. See the online Appendix D.
In Lemma 1 we have derived the necessary and suffi cient conditions under which the largest

excesses are minimized. In order to find the nucleolus solution, we need to reduce the second largest

excess and the subsequent excesses to minimum.

Theorem 2 For a three-player, nonempty-core cooperative game in characteristic function form,
the nucleolus solution y = (y1, y2, y3) can be computed as follows:

1. If v(123) ≥ 3v(ij), for i, j = 1, 2, 3 and i 6= j, then y1 = y2 = y3 = 1
3v(123).

2. If v(123) ≥ v(ij) + 2v(ik), v(123) ≥ v(ij) + 2v(jk) and v(123) ≤ 3v(ij), for i, j, k = 1, 2, 3

and i 6= j 6= k, then yi = yj = 1
4 [v(123) + v(ij)] and yk =

1
2 [v(123)− v(ij)].

3. If v(123) ≤ v(ij) + 2v(ik), v(123) ≥ v(ij) + 2v(jk) and v(ij) ≥ v(ik), for i, j, k = 1, 2, 3 and
i 6= j 6= k, then yi = 1

2 [v(ij) + v(ik)], yj =
1
2 [v(123)− v(ik)], and yk =

1
2 [v(123)− v(ij)].

4. If v(123) + v(ij) ≥ 2[v(ik) + v(jk)], v(123) ≤ v(ij) + 2v(ik) and v(123) ≤ v(ij) + 2v(jk), for
i, j, k = 1, 2, 3 and i 6= j 6= k, then

yi =
1

4
{v(123) + v(ij) + 2[v(ik)− v(jk)]}, yj =

1

4
{v(123) + v(ij) + 2[v(jk)− v(ik)]},

yk =
1

2
[v(123)− v(ij)].
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5. If v(123) + v(ij) ≤ 2[v(ik) + v(jk)], for i, j, k = 1, 2, 3 and i 6= j 6= k, then

yi =
1

3
{v(123) + v(ij) + v(ik)− 2v(jk)}, yj =

1

3
{v(123) + v(ij) + v(jk)− 2v(ik)},

yk =
1

3
{v(123) + v(ik) + v(jk)− 2v(ij)}.

Proof. See the online Appendix E.
We observe from Theorem 2 that, as the characteristic value of the grand coalition v(123)

increases, the allocation to one or two players may be decreased. For example, we now consider

the second case (in Theorem 2), in which v(123) ≥ v(ij) + 2v(ik), v(123) ≥ v(ij) + 2v(jk) and
v(123) ≤ 3v(ij), for i, j, k = 1, 2, 3 and i 6= j 6= k. For this case, the allocation scheme suggested
by the nucleolus solution is given as follow: yi = yj = 1

4 [v(123) + v(ij)] and yk =
1
2 [v(123)− v(ij)].

Since v(ij) < v(123) for the superadditive and essential game, we find that yi = yj 6= yk. If we

increase v(123) to a suffi ciently large value v′(123) so that the first case in Theorem 2 applies, then

we find that the allocation scheme is changed to the following: y1 = y2 = y3 = 1
3v
′(123). Comparing

the new allocation scheme and that obtained before we increase v(123) to v′(123), we find that one

or two players may be worse off when the characteristic value of the grand coalition is increased.

More specifically, if v(ij) < 2
3v
′(123) − v(123), then yk = 1

2 [v(123) − v(ij)] >
1
3v
′(123). Because

yi+ yj + yk = v(123) < v
′(123), we find that yi = yj = 1

4 [v(123)+ v(ij)] <
1
3v
′(123). It thus follows

that, after the characteristic value of the grand coalition is increased from v(123) to v′(123), player

k is worse off and players i and j are better off. We also note that, if v(ij) > 4
3v
′(123) − v(123),

then yi = yj = 1
4 [v(123) + v(ij)] >

1
3v
′(123) and yk = 1

2 [v(123) − v(ij)] <
1
3v
′(123), which means

that player k is better off but players i and j are worse off. This discussion demonstrates that the

nucleolus is not always monotonic, as proved by Megiddo [12].

Next, we provide an example to illustrate our analytic results in the above theorem.

Example 2 We now use our algebraic method given in Theorem 2 to solve the following three-

player cooperative game: v(∅) = 0; v(i) = 0, for i = 1, 2, 3; v(12) = 1, v(13) = 4, v(23) = 3;

v(123) = 6. Since the core of this game is non-empty, we use one of the formulas in Theorem 2 to find

the nucleolus solution. Since v(123) = 6 ≤ v(13) + 2v(23) = 10, v(123) = 6 ≥ v(13) + 2v(12) = 6,
v(13) = 4 ≥ v(23) = 3, the third case (with i = 3, j = 1 and k = 2) in Theorem 2 is eligible to

calculate the nucleolus y = (y1, y2, y3) as y1 = [v(123)−v(23)]/2 = 1.5, y2 = [v(123)−v(13)]/2 = 1
and y3 = [v(13) + v(23)]/2 = 3.5. J

We have written Maple worksheets which test the emptiness of the core (CoreTest.mws), and

calculate the nucleolus solution when the core is empty (Nucleolus-EmptyCore.mws) and when it

is nonempty (Nucleolus-NonEmptyCore.mws). These files work with Maple 10, 11 and 12, and

they can be downloaded from the authors’web site at http://www.business.mcmaster.ca/OM/

parlar/files/nucleolus/.
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3 Summary and Concluding Remarks

Linear programming plays a prevalent role in computing the nucleolus solution of a cooperative

game in the characteristic function form. However, this method requires the solution of a sequence

of linear problems, thus making it inconvenient to use. To simplify the computations in calculating

the nucleolus, we propose an algebraic method that gives the nucleolus analytically. This paper

focuses on a three-player cooperative game. As discussed in Section 2.1, only a single formula is

needed for computing the nucleolus solution when the core of a three-player game is empty. In

Section 2.2, we derive some formulas each used under three specific conditions. Two examples are

presented to illustrate our algebraic method.
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Appendix A Transformation of a Superadditive and Essential Game

to a “Zero-Normalized”Game

We provide an example to show how to transform a superadditive, and essential three-player game

to a “0-normalized”game with zero characteristic values of all one-player coalitions. Consider the

game (N, v) with [v(∅) | v(1), v(2), v(3) | v(12), v(13), v(23) | v(123)] = [0 | 1, 2, 3 | 8, 10, 13 | 15].
We can transform (N, v) to the following strategically equivalent game (N, v′) by subtracting a

suitable constant ci from player i’s payoff and (from the value of any coalition containing player i).

This gives,
v′(∅) = 0 v′(12) = v(12)− v(1)− v(2) = 5

v′(1) = v(1)− 1 = 0 v′(13) = v(13)− v(1)− v(3) = 6
v′(2) = v(2)− 2 = 0 v′(23) = v(23)− v(2)− v(3) = 8
v′(3) = v(3)− 3 = 0 v′(123) = v(123)− v(1)− v(2)− v(3) = 9.

Using the analytic formula in Section 2.1, the nucleolus solution for this (empty core) game (N, v′)

is obtained as y′ = (y′1, y
′
2, y

′
3) = (

4
3 ,
10
3 ,

13
3 ). The nucleolus solution for the original problem is then

computed as y = (y1, y2, y3) = (43 + 1,
10
3 + 2,

13
3 + 3) = (73 ,

16
3 ,

22
3 ) which satisfies the collective

rationality condition y1 + y2 + y3 = v(123) = 15.

Appendix B Sequential LP Method for Computing the Nucleolus

Solution

Our brief review presented in Table 1 indicates that, as an early publication on the sequential LP

method, Maschler et al. [11] used the concept of lexicographic centre to develop an LP procedure

involving O(4n) LP minimization problems. This LP approach has been adopted by some textbooks

(e.g., Wang [22]) as a “typical”method to calculate the nucleolus solution. However, because the LP

method in [11] requires solving a large number of linear problems, later researchers have investigated

methods to find more effi cient LP approach for the calculation of the nucleolus solution.

We see in Table 1 that, immediately after Maschler et al. [11], Behringer [2] reduced the number

of LP problems that are needed to find the nucleolus. We also find from Table 1 that, following

Behringer [2], others (i.e., Dragan [3], Sankaran [16], and Solymosi and Raghavan [19]) attempted

to further improve the LP method; but, they didn’t find any method better than Behringer [2].

More specifically, in [3] Dragan’s LP approach may need more than O(2n) linear problems even

though this author claimed that only n − 1 linear programs can be used to find the nucleolus. In
addition, the solution found by the LP approach in [3] is actually the prenucleolus rather than the

nucleolus solution, as discussed by Potters et al. [15].

1
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Sankaran [16] developed an LP approach which may require the same number of linear problems

as in Behringer [2] but needs more constraints. Solymosi and Raghavan’s approach in [19] is only

applied to a special type of cooperative games (i.e., assignment games). Potters et al. [15] suggested

an LP approach that may reduce the number of linear problems; but, this approach increases the

size of each linear problem. From Table 1, we also find that Fromen [5] improved Behringer’s

algorithm [2] to reduce the number of linear problems without increasing each LP problem’s size.

Similar to Section 2, we have written Maple worksheets to illustrate the LP method in calculating

the nucleolus solutions for the cooperative games in Examples 1 and 2. Note from our above

discussion that Maschler et al.’s method [11] is an early one and has been widely used by relevant

textbooks (e.g., Owen [14] and Wang [22]) to solve numerical examples. Thus, we considered

Maschler et al.’s method to develop the Maple worksheet Empty-Simplex-1.mws for the empty-

core case and the Maple worksheet Non-Empty-Simplex-2.mws for the nonempty-core case. These

files can be downloaded from the authors’web site at http://www.business.mcmaster.ca/OM/

parlar/files/nucleolus/.

Appendix C Proof of Theorem 1

For a three-player empty-core cooperative game in characteristic form, we find from (1) that ei(x) ≤
0, for i = 1, 2, 3. However, since the core of the game is empty, at least one of e12(x), e13(x) and

e23(x) must be positive. Otherwise, if e12(x), e13(x) and e23(x) are all equal to or less than zero,

then using (2) we have v(12) ≤ x1 + x2, v(13) ≤ x1 + x3 and v(23) ≤ x2 + x3, which implies that
the core is not empty.

Therefore, the maximal excess must be one of e12(x), e13(x) and e23(x). Accordingly, in order

to minimize the maximal excess to find the nucleolus solution, we should change the imputation

x = (x1, x2, x3) to minimize the maximum of e12(x), e13(x) and e23(x). If e12(x) is the maximum,

then we reduce the value of x3 and increase the values of x1 and x2; but, this raises the excesses

e13(x) and e23(x). As a result, e12(x) must be equal to the maximum of e13(x) and e23(x). For

example, if e12(x) = e13(x) > e23(x), we can then reduce the values of x3 and x2 but increase the

value of x1, in order to make both e12(x) and e13(x) smaller; but this increases the excess e23(x).

Thus, the process terminates only when e12(x), e13(x) and e23(x) are equal. A similar argument

applies to the case in which e13(x) or e23(x) is the maximum.

In conclusion, after we minimize the maximal excess, the excesses e12(x), e13(x) and e23(x)

must be equal and also, they must be nonnegative, i.e., e12(x) = e13(x) = e23(x) ≥ 0. We can then
solve the following equations,

v(12)− x1 − x2 = v(13)− x1 − x3,
v(12)− x1 − x2 = v(23)− x2 − x3,
v(123) = x1 + x2 + x3,

and find the values of xi, for i = 1, 2, 3. Because the payoffs of all three players have been chosen

2
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to minimize the maximal excess, we cannot make any change on the imputation x = (x1, x2, x3)

to reduce the other excesses ei(x) (i = 1, 2, 3). Otherwise, the maximal excess will be increased.

Thus, the nucleolus y = (y1, y2, y3) is found as (4). �

Appendix D Proof of Lemma 1

We show the suffi ciency and necessity of these conditions.

Suffi ciency. In this part, if one of five conditions is satisfied, then the largest excesses are reduced
to the minimum. We begin by showing the first suffi cient condition. Since x1 = x2 = x3 = 1

3v(123);

v(123) ≥ 3v(12), v(123) ≥ 3v(13) and v(123) ≥ 3v(23), we use (1) and (2) to find that

e1(x) = e2(x) = e3(x) = −
1

3
v(123),

e12(x) = v(12)− v(123) + x3 = v(12)−
2

3
v(123) ≤ −1

3
v(123),

e13(x) = v(13)− v(123) + x2 = v(13)−
2

3
v(123) ≤ −1

3
v(123),

e23(x) = v(23)− v(123) + x1 = v(23)−
2

3
v(123) ≤ −1

3
v(123),

which implies that at least one of the excesses ei(x) (i = 1, 2, 3) is the largest. Next we prove

that the largest excesses arrive to the minimum when x1 = x2 = x3 = v(123)/3, that is, e1(x) =

e2(x) = e3(x). Suppose that e1(x) is the largest excess and e2(x) and e3(x) are both less than

e1(x). In order to decrease e1(x) = −x1, we should increase the value of x1. However, since
x1 + x2 + x3 = v(123), we must reduce the value of x2 and/or the value of x3, thereby increasing

the excess e2(x) = −x2 and/or e3(x) = −x3. This continues until e1(x) = e2(x) = e3(x). When

either e2(x) or e3(x) is the largest, we can obtain the same result. Thus, we can conclude that if

e1(x) = e2(x) = e3(x), v(123) ≥ 3v(12), v(123) ≥ 3v(13) and v(123) ≥ 3v(23), then the largest
excesses arrive to the minimum; thus we reach the first suffi cient condition.

We then discuss the second suffi cient condition. From (5) we have e3(x) = e12(x). Recalling

from (2) that e3(x) = −x3 and e12(x) = v(12) − v(123) + x3, we find that in order to reduce
the excess e3(x), we should increase the value of x3. However, this increases the value of e12(x).

Therefore, we cannot change the imputation x = (x1, x2, x3) to reduce both e3(x) and e12(x)

simultaneously. Next, we show that e3(x) and e12(x) are two largest excesses; that is, we should

prove that e3(x)− e1(x) ≥ 0, e3(x)− e2(x) ≥ 0, e3(x)− e13(x) ≥ 0 and e3(x)− e23(x) ≥ 0.
1. From (1) we find that e3(x)− e1(x) = −x3 + x1. Using (5) we compute

e3(x)− e1(x) =
v(123) + v(12)

2
− x2 −

v(123)− v(12)
2

= v(12)− x2,

and we find that e3(x)− e1(x) ≥ 0, which results from (6).

3
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2. From (1) we find that e3(x)− e2(x) = −x3 + x2. Using (5) we compute

e3(x)− e2(x) = x2 −
v(123)− v(12)

2
,

and we find that e3(x)− e2(x) ≥ 0 according to (6).
3. From (1) and (2) we find that e3(x) − e13(x) = −v(13) + v(123) − x3 − x2 = −v(13) + x1.
Using (5) we compute

e3(x)− e13(x) = −v(13) + x1 =
v(123) + v(12)

2
− v(13)− x2,

and we find that e3(x)− e13(x) ≥ 0 according to (6).
4. From (1) and (2) we also find that e3(x)− e23(x) = −v(23)+ v(123)−x1−x3 = −v(23)+x2.
Using (5) we compute e3(x)−e23(x) = −v(23)+x2 and, using (6), we find that e3(x)−e23(x) ≥
0.

Similarly, we can show the suffi cient conditions 3 and 4. Next we discuss the last suffi cient

condition. Using (11) we have e12(x) = e13(x) = e23(x) = [v(12) + v(13) + v(23) − 2v(123)]/3.
Next, we show that these three excesses are the largest, i.e., e12(x) ≥ ei(x), i = 1, 2, 3. From

(1) and (2) we find that e12(x) − e1(x) = v(12) − v(123) + x3 + x1 = v(12) − x2. According
to (11) we have x2 = [v(123) + v(12) + v(23) − 2v(13)]/3, and thus compute e12(x) − e1(x) =
[2v(12)+2v(13)− v(123)− v(23)]/3. From (12) we find that e12(x)− e1(x) ≥ 0, or, e12(x) ≥ e1(x).
We can analogously show the e12(x) ≥ e2(x) and e12(x) ≥ e3(x). Hence, we conclude that if the
conditions (11) and (12) are satisfied, then the largest excesses are reduced to the minimum.

Necessity. In this part, if the largest excesses are reduced to the minimum, then at least one of
five conditions must be satisfied. Note that each of the six excesses e1(x), e2(x), e3(x), e12(x),

e13(x) and e23(x) could be largest. Next, assuming that each of these excesses is the largest, we

change the imputation x = (x1, x2, x3) under the constraint x1+x2+x3 = v(123) until it is reduced

to the minimum.

1. If e1(x) is the largest excess, then according to (1) we can increase the value of x1 to re-

duce this excess. However, from (2) we find that increasing x1 shall raise the excess e23(x).

Furthermore, because x1 + x2 + x3 = v(123), we should decrease x2 and x3, so increasing

e2(x) and e3(x) in (1). Note that the excesses e12(x) and/or e13(x) in (2) decrease when we

decrease x2 and/or x3 to reduce the largest excess e1(x). Thus, the largest excess reaches the

minimum when e1(x) = e23(x) or e1(x) = e2(x) = e3(x).

Consider the case that e1(x) = e23(x) and they are the largest excesses. Using (1) and (2) we

have the equation −x1 = v(23)− v(123) + x1 and solve it to obtain x1 = [v(123)− v(23)]/2.
Since x1 + x2 + x3 = v(123), we reach (9). In addition, since e1(x) is the largest excess, we

4



Analytic Solution for the Nucleolus of a Three-Player Cooperative Game Online Appendices

have 
e1(x)− e2(x) ≥ 0,
e1(x)− e3(x) ≥ 0,
e1(x)− e12(x) ≥ 0,
e1(x)− e13(x) ≥ 0,

or


−x1 + x2 ≥ 0,
−x1 + x3 ≥ 0,
x2 ≥ v(12),
x3 ≥ v(13),

which is equivalent to (10). Thus, the fourth condition including (9) and (10) corresponds to

this case.

Next, we discuss the case that e1(x) = e2(x) = e3(x) and they are the largest excesses.

According to (1), we find −x1 = −x2 = −x3 and use x1 + x2 + x3 = v(123) to attain the

imputation x = (x1, x2, x3) = (v(123)/3, v(123)/3, v(123)/3). Because e1(x) is the largest

excess, we have 
e1(x)− e12(x) ≥ 0,
e1(x)− e13(x) ≥ 0,
e1(x)− e23(x) ≥ 0,

or


x2 ≥ v(12),
x3 ≥ v(13),
x1 ≥ v(23).

Replacing xi (for i = 1, 2, 3) with their solutions and simplifying the above inequalities give

v(123) ≥ max(3v(12), 3v(13), 3v(23)). Thus, we reach the first necessary condition.
2. Similarly, if e2(x) is the largest excess, then it reaches the minimum when e2(x) = e13(x)

or e1(x) = e2(x) = e3(x). We can also analogously show that the third necessary condition

including (7) and (8) corresponds to the case that e2(x) = e13(x).

3. Similarly, if e3(x) is the largest excess, then it arrives to the minimum when e3(x) = e12(x)

or e1(x) = e2(x) = e3(x). We can also show that the second necessary condition including

(5) and (6) corresponds to the case that e3(x) = e12(x).

4. If e12(x) is the largest excess, then according to (2) we can decrease the value of x3 to

reduce this excess. However, from (2) we find that decreasing x3 shall raise the excess e3(x).

Furthermore, since x1 + x2 + x3 = v(123), we should increase x1 and x2, so increasing e23(x)

and e13(x) in (2). Note that the excesses e1(x) and/or e2(x) in (1) decrease when we increase

x2 and/or x3 to reduce the largest excess e12(x). Thus, the largest excess reaches the minimum

when e12(x) = e3(x) or e12(x) = e13(x) = e23(x).

We have shown that the second necessary condition corresponds to the case that e3(x) =

e12(x). Next we use (2) to solve e12(x) = e13(x) = e23(x), and obtain (11). Since e12(x) is

the largest excess, we have e12(x) − ei(x) ≥ 0, for i = 1, 2, 3; and we use (11) to simplify

these three inequalities and reach (12). Hence, the fifth necessary condition including (11)

and (12) corresponds to the case that e12(x) = e13(x) = e23(x).

5. Similarly, if e13(x) is the largest excess, then it reaches the minimum when e13(x) = e2(x)

or e12(x) = e13(x) = e23(x); the former corresponds to the third necessary condition and the

latter corresponds to the fifth necessary condition.

6. Similarly, if e23(x) is the largest excess, then it reaches the minimum when e23(x) = e1(x) or

e12(x) = e13(x) = e23(x); the former corresponds to the fourth necessary condition and the

latter corresponds to the fifth necessary condition.

5
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This proves the lemma. �

Appendix E Proof of Theorem 2

We can easily find from Lemma 1 that if v(123) ≥ max(3v(12), 3v(13), 3v(23)), the excesses

ei(x) (for i = 1, 2, 3) are the largest and thus the imputation x = (x1, x2, x3) = (v(123)/3,

v(123)/3, v(123)/3) when the largest excesses are reduced to the minimum. Since we have ob-

tained the values of xi, for i = 1, 2, 3, we cannot decrease any other excess. Hence, we arrive to

Case 1 in Theorem 2.

Next, we consider the situation in which the largest excess is minimized because the second

condition in Lemma 1 is satisfied. Under the condition, e3(x) = e12(x), x3 = [v(123)− v(12)]�2
and the value of x2 is determined under the constraint (6). By using (6), we consider the following

four cases in which we minimize the second largest excesses.

1. If v(123) ≥ v(12) + 2v(23), v(123) ≥ v(12) + 2v(13) and v(123) ≤ 3v(12), then {[v(123) +
v(12)]/2 − v(13)} ≥ v(12) ≥ [v(123) − v(12)]/2 ≥ v(23), and we can reduce (6) to [v(123) −
v(12)]/2 ≤ x2 ≤ v(12) and we can easily show that

max {v(23), v(13)} ≤ [v(123)− v(12)]/2 ≤ v(12). (13)

Next, we choose an appropriate value of x2 to minimize the second largest excesses subject to

[v(123) − v(12)]/2 ≤ x2 ≤ v(12). Except for the largest excesses e3(x) and e12(x), the other
excesses are computed as

e1(x) = −x1 = x2 −
v(123) + v(12)

2
, (14)

e2(x) = −x2, (15)

e13(x) = x2 − v(123) + v(13),

e23(x) = v(23)− v(123) + x1 = v(23)−
v(123)− v(12)

2
− x2.

Using (13) we have e1(x) ≥ e13(x) and e2(x) ≥ e23(x), which implies that e1(x) and/or

e2(x) could be the second largest excess. From (14) and (15) we find that the second largest

excesses are reduced to the minimum as e1(x) = e2(x), or, x2 = [v(123) + v(12)]/4, which

satisfies the constraint [v(123) − v(12)]/2 ≤ x2 ≤ v(12). Since x1 + x2 + x3 = v(123), we

compute x1 = x2 = [v(123) + v(12)]/4. We notice that the other excesses (i.e., e13(x) and

e23(x)) cannot be reduced because the imputation x has been determined; thus, the nucleolus

solution is y1 = y2 = [v(123) + v(12)]/4 and y3 = [v(123) − v(12)]/2, which corresponds to
the second case (with i, j = 1, 2 and i 6= j, and k = 3) in Theorem 2.

2. If v(123) ≥ v(12)+2v(23), v(123) ≤ v(12)+2v(13) and v(12) ≥ v(13), then v(12) ≥ {[v(123)+
v(12)]/2−v(13)} ≥ [v(123)−v(12)]/2 ≥ v(23), and we can reduce (6) to [v(123)−v(12)]/2 ≤
x2 ≤ {[v(123) + v(12)]/2 − v(13)}. Similar to the last case, we can show that under this

6
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condition the nucleolus solution is computed as y = (y1, y2, y3) = ([v(12)+v(13)]/2, [v(123)−
v(13)]/2, [v(123) − v(12)]/2), which corresponds to the third case (with i = 1, j = 2 and

k = 3) in Theorem 2.

3. If v(123) ≤ v(12) + 2v(23), v(123) ≥ v(12) + 2v(13) and v(12) ≥ v(23), then we find the

formula of computing nucleolus solution for the third case (with i = 2, j = 1 and k = 3) in

Theorem 2.

4. If v(123) ≤ v(12) + 2v(23), v(123) ≤ v(12) + 2v(13) and v(123) + v(12) ≥ 2[v(13) + v(23)],
then we find the formula of computing nucleolus solution for the fourth case (with i, j = 1, 2

and i 6= j, and k = 3) in Theorem 2.

Similar to our above analysis, we can analyze the third and fourth conditions in Lemma 1, and

reach the corresponding results in Theorem 2.

From Lemma 1 we find that under the condition (12), the excesses e12(x), e13(x) and e23(x)

are the largest and the triple imputation x is obtained as (11). Thus, we cannot decrease any other

excess. Hence, we arrive to fifth case in Theorem 2. �
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