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ABSTRACT：In the context of prominent energy crisis, photovoltaic power (PV) generation has 

received increasing attention, then accurate PV generation forecasting is crucial for ensuring the 

smooth operation of power stations. However, existing research is insufficient in comprehensively 

analyzing the impact of PV generation volatility. To fill the gaps and enhance the prediction 

accuracy, this paper proposes a new hybrid forecasting method. We first introduce the Locally 

Weighted Scatterplot Smoothing (LOWESS) method to process the data and enhance the data 

stability, and use Pearson correlation coefficient (PCC) and Random Forests (RF) for feature 

selection to improve the quality of input data. Then we use Attention mechanism and 

Convolutional Neural Network (CNN) layer to optimize Bi-directional Gate Recurrent Unit 

(BiGRU) model and form a new hybrid model. Finally, based on the Bagging algorithm, we use 

ensemble learning to further optimize the hybrid BiGRU model to enhance the depth and 

performance. The proposed method is validated through case analysis results from two different 

locations, Xuhui District in Shanghai, China and the DKASC area in Alice Springs, Australia. The 

results demonstrate that, compared with other models, the developed method exhibits exceptional 

prediction performance and effectively enhances the accuracy of PV generation forecasting. 

Keywords: photovoltaic power generation; Locally Weighted Scatterplot Smoothing; feature 

selection; ensemble learning; Bi-directional Gate Recurrent Unit 

 

Nomenclature 

BiGRU Bi-directional Gate Recurrent Unit MSE Mean Square Error 

BiLSTM Bidirectional Long Short-Term Memory NN Neural Network 

BP Back Propagation PCC Pearson Correlation Coefficient 

CNN Convolutional Neural Network PV Photovoltaic Power 

DKASC Desert Knowledge Australia Solar Centre RF Random Forests 

ELM Extreme Learning Machine RMSE Root Mean Square Error 

GRU Gate Recurrent Unit SVM Support Vector Machine 

LOWESS Locally Weighted Scatterplot Smoothing TCN Temporal Convolutional Network 

LSTM Long Short-Term Memory  VMD Variational Mode Decomposition 

MAE Mean Absolute Error XGBoost eXtreme Gradient Boosting  

MAPE Mean Absolute Percentage Error   
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1. Introduction     

With the swift progress of renewable energy production technology and the growing 

awareness of environmental protection, renewable energy has been developed and utilized by 

more and more countries in recent years. Amongst various generating technologies and methods of 

renewable energy, PV stands out as it directly converts solar energy into electrical energy and 

numerous advantages such as huge energy storage, high flexibility, low developmental cost, and 

long service life, which making it the most widely used renewable energy [1]. Chinese 

government has promulgated specific documents such as “two-carbon policy” to promote the 

development of PV generation for clean and low-carbon transformation [2,3]. Similarly, the 

Australian government has also initiated several initiatives to promote the utilization of PV energy, 

such as Solar School Project, Solar Home and Community Program, and National Renewable 

Energy Target Plan. These initiatives have resulted in over 2 million households installing rooftop 

solar panels, and the number of installations continues to grow each year [4].  

As PV generation is highly dependent on weather conditions, ensuring precise forecasts of 

PV generation is essential for optimizing the operation efficiency of PV stations. Existing studies 

have demonstrated that the precision and applicability of PV generation forecasting are heavily 

determined by the prediction period and used method. Based on the duration of the forecast period, 

various methods of prediction are categorized into ultra-short-term [5], short-term [6], and 

medium to long-term [7]. For ultra-short-term prediction, the accuracy can be within seconds to 

minutes, making it ideal for real-time scheduling of power grids of different scales. This allows for 

timely reservation of reserve capacity for power grid [5]. Short-term forecasting, on the other hand, 

covers a range of one hour to one day. This type of forecasting is crucial in economic dispatch and 

grid decision-making, balancing electricity market transactions, adjusting unit commitments, and 

optimizing power supply plans [6]. In addition, in terms of medium to long-term forecasting, the 

forecasting cycle for power grid planning ranges from daily to weekly, monthly, and yearly, so as 

to provide a long-term plan for equipment maintenance and new energy base station locations [7]. 

Since short-term load prediction is of great importance in economic dispatch and decision-making 

of power grid, the downstream electricity demand of PV generation can be meet in time and 

promote effective communication with the upstream information. Therefore, this paper focuses on 

the short-term forecasting of PV generation to provide accurate power supply information to the 

dispatching center, then enhance the security and efficiency of power grid and maintain balance 

and stability in the PV generation.  

At present, the forecasting methods for PV generation [8] can be categorized as continuous 

methods [9], physical methods [10] and statistical methods. Statistical methods include prediction 

based on time series [11] and artificial intelligence prediction [12]. Due to low computational 

requirements, minimum delay, and reasonable accuracy, the continuous method [9] is usually used 

for ultra-short-term and short-term prediction. However, as the duration increases, it is prone to a 

substantial decline in the prediction precision. 

On the other hand, the physical method [10] is more suitable for long-term predictions, as it 

takes into account factors such as pressure and topography. Although the accuracy of physical 

method is high when the weather variables are relatively stable, it may not be able to cope well 

when the meteorological variables change suddenly. Prediction based on time series [11] can 

effectively predict future variable changes and identify trends and development rules, but this 

method highlights time series without considering external factors, which leads to high prediction 

Jo
urn

al 
Pre-

pro
of



3 
 

error. Artificial intelligence prediction [12] is dominated by machine learning algorithms, with RF 

[13] and Neural Networks (NN) [14] being common examples. Among these, the neural network 

algorithm is well-suited for different prediction cycle ranges, as it can handle massive amounts of 

data, remove outliers and improve model accuracy, so as to effectively solve the problems in 

continuous prediction, physical prediction and statistical prediction [15].  

The complete forecasting procedure for PV generation comprises two components: data 

preprocessing and model forecasting [16], which all affect the prediction accuracy. The core of 

data processing involves transforming the initial data into an understandable or mineable format 

with the aim of enhancing the reliability of the input data. However, when collecting data, some 

problems such as data missing and outliers are often encountered, which will lead to low-quality 

mining results and reduce the precision of the later prediction model. Data processing methods 

such as data decomposition [17], smoothing denoising [18] and feature selection [19] can 

effectively solve the above problems [20]. Due to natural factors such as solar radiation and 

humidity, PV generation data can be highly volatile and intermittent. Therefore, it is crucial to 

smooth out the data in research associated with PV generation forecasting, particularly in 

addressing the problem of significant data fluctuations. Our previous study [13] had found that 

LOWESS has the best smoothing effect on photovoltaic power data, which can effectively 

improve the stability of PV generation and enhance predictive accuracy. Therefore, this paper 

chooses to use LOWESS smoothing method to process data and enhance the precision of PV 

generation forecasting. Though data smoothing technology can decrease data fluctuations and 

improve the precision of subsequent prediction models, but the authenticity of original data may 

be altered to some extent. Therefore, how to enhance the prediction performance under the 

premise of reducing the error between the smoothing and the real data becomes the key to the 

research.  

Feature selection is of great importance in the process of PV generation forecasting. It can 

identify the most relevant and most influential features of PV generation, and reduce data noise 

and processing time, thereby improving prediction accuracy and efficiency. However, different 

feature selection methods and parameter settings may have different effects on prediction results. 

Therefore, the applicability and accuracy of feature selection methods need to be fully considered. 

In order to determine which feature has a significant impact on photovoltaic power generation, we 

need to use some common feature selection algorithms. Among them, PCC is a frequently 

employed method, which can measure the degree of correlation between different features and 

help us evaluate and select the most appropriate feature combination [21]. In addition, RF 

algorithm, as the basic tool of classification or regression accuracy as the criterion function and 

using sequence backward selection for feature selection, is also widely used. For example, [22] 

used RF to assess the significance of each feature category in identifying the topology of 

distribution network, and realized the effect of feature category screening and dimension reduction. 

In the field of wind speed prediction, [23] used RF to analyze the decomposed subsequence data, 

eliminated redundant data, and improved the utilization of data information. In forecasting PV 

generation, it is also essential to screen out the most effective features of PV generation from 

many natural factors and socio-economic factors, so as to realize feature space dimension 

compression, data dimension reduction and simplification. Thus, this paper chooses PCC as an 

index to measure the correlation degree between PV data, and uses RF to further screen data, 

retain effective features, and enhance the precision of PV generation forecasting. 
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After data processing, the subsequent stage involves selecting an appropriate model for 

forecasting. As one of the typical representatives of neural networks, Gate Recurrent Unit (GRU) 

shows good prediction performance in PV generation prediction [24], but it may cause 

information attenuation when transmitted forward. The Bi-directional Gate Recurrent Unit 

(BiGRU) model [25] effectively solves above existing problem of GRU. BiGRU is composed of 

two unidirectional GRUs superimposed together, taking into account the past information and 

future information of prediction point, which further enhances forecasting precision. For instance, 

in [26], a BiGRU ultra-short-term PV prediction method rooted in self-organizing map clustering 

and quadratic decomposition was proposed. The findings indicate that BiGRU outperforms GRU 

in terms of prediction accuracy. A hybrid optimized prediction model for PV generation is 

developed in [27] by leveraging Variational Mode Decomposition (VMD), CNN, and BiGRU. 

CNN is employed to discover the inherent connection between the feature matrix and the target 

variable through analysis. BiGRU network predicted the future values for each sub-mode. 

Ultimately, the predicted sub-mode value is combined to obtain the ultimate forecast for PV. [28] 

also proposed a new hybrid deep learning framework that includes one-dimensional convolutional 

layer, BiGRU, self-attention mechanism and transfer learning. The validity and applicability of 

BiGRU forecasting model in PV generation prediction are proved by the dataset case of California, 

USA.  

Nevertheless, the unpredictability and sporadic nature of PV generation pose challenges for 

making single prediction and hybrid optimized prediction models more prone to randomness and 

instability [29]. Ensemble learning addresses this issue by constructing and combining multiple 

base learners, and effectively enhance the stability and precision of forecasting by combining a 

strong learner with stronger learning effect to. For example, [30] constructed a hybrid forecasting 

model for container throughput using selective deep integration, and verified that the proposed 

ensemble forecasting model suggested better forecasting precision compared to an individual 

forecasting model. The study presented in [31] proposed the AdaBoost-GRU ensemble prediction 

model and compared it with the AdaBoost-LSTM, single LSTM and GRU models. The results 

indicated that the AdaBoost-GRU model had significantly lower prediction errors than the other 

three models and yielded the highest prediction performance. In [32], the Bagging algorithm was 

utilized to integrate the GRU prediction model and develop an ensemble model for stock price 

forecasting. The conclusions illustrated the effectiveness of the ensemble prediction model in 

comparison to single GRU, BP and ELM models. In [33], a BiGRU ensemble prediction model 

based on the Bagging algorithm was proposed for short-term load prediction. The results show 

that the ensemble algorithm outperforms other algorithms such as BP, LSTM, GRU, and BiGRU. 

Another study in [34] proposed a short-term wind power forecasting model that used Attention 

mechanism, GRU and Stacking multi-algorithm fusion to improve the prediction accuracy. It 

follows that, although the ensemble forecasting model based on GRU has been developed for 

price forecasting, load forecasting, and wind power forecasting, it is less applied in the forecasting 

field of PV generation. Therefore, we introduce the ensemble learning to optimize the BiGRU 

model and apply it to photovoltaic power generation prediction.  

In summary, we initially select LOWESS smoothing and Pearson correlation to process the 

data, and utilize RF for data feature selection to comprehensively enhance the quality of input data. 

Then, we use Attention mechanism and CNN layer to optimize BiGRU model to form a hybrid 

BiGRU model. Finally, we further optimize the hybrid BiGRU model by applying the Bagging 
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algorithm and adopting the concept of ensemble learning. The paper primarily focuses on 

leveraging ensemble learning algorithm to construct a strong and stable prediction model. By 

implementing a series of optimization techniques, incorporating Attention mechanism，CNN and 

utilizing ensemble learning, we significantly enhance the overall predictive capability and 

reliability for proposed prediction method. 

The main contributions of the paper can be outlined as follows:  

(1) We use LOWESS smoothing technology to process the data, reduce the variability in PV 

generation data and the predictive mistake.  

(2) We employ the PCC and RF method to extract the attributes of environmental elements 

influencing PV generation, reduce the feature dimension, and enhance the quality of input data.  

(3) We optimize the BiGRU model with Attention mechanism and CNN layer to form a 

hybrid BiGRU model, and stack two BiGRU layers to improve the depth and prediction 

performance. 

(4) We further introduce the ensemble learning to construct a hybrid ensemble optimized 

BiGRU prediction model, alleviate the randomness and instability of the hybrid optimized BiGRU 

model, and enhance the forecasting stability and precision of the model. 

(5) We collect the PV generation data at the Xuhui District in Shanghai, China and the 

DKASC in Alice Springs, Australia, and use our proposed model and other several common single 

prediction models, hybrid optimization prediction models and ensemble optimized prediction 

models to illustrate the efficiency of our method. 

This paper is structured in the following manner: Section 2 presents the basic concepts of 

LOWESS smoothing, PCC, RF procedure and the initial BiGRU model. Section 3 presents the 

structure of hybrid optimized BiGRU model with CNN and Attention mechanism that is further 

optimized by ensemble learning. In Section 4, we present the specific steps for proposed 

prediction method are presented. Section 5 present our case study, encompassing an overview of 

the experimental data, the criteria chosen for evaluation, the configuration of model parameters, 

outcomes of data processing, and an all-encompassing examination of the experimental findings. 

Section 6 provides an overview of the content presented in this paper. 

2. Methodology 

This section outlines the fundamental techniques for data processing and forecasting. The 

data processing techniques employed include LOWESS smoothing for data smoothing, Pearson 

correlation for correlation analysis, and Random Forests for feature extraction. For prediction, we 

utilize BiGRU prediction model as the foundation forecasting model. 

2.1 LOWESS smoothing 

LOWESS smoothing is a non-parametric regression technique that is useful for both 

prediction and smoothing. This method involves selecting a point x, and then fitting a weighted 

linear regression to the data point that lie within a certain distance of x. The weights used in the 

regression are determined by a weight function, W, which is typically a cubic function as shown in 

formula (1). This process is repeated for all n data points, resulting in n weighted regression lines 

[35] so as to make LOWESS adapt to various types of data and exhibits strong capabilities in 

handling missing values and outliers.  
3
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PCC is commonly adopted to measure the degree of linear correlation between variable X and 

Y for correlation analysis. Formula (2) provides the calculation for obtaining the sample 

correlation coefficient r, which can be estimated by first determining the covariance and sample’s 

standard deviation, which r represents the PCC, Xi and Yi are the i-th observed values of variable X 

and Y, X and Y are the mean values of variable X and Y, respectively. PCC often executes 

promptly upon obtaining cleaned and feature-extracted data with fast computing power. It has a 

range of [-1, 1], where values closer to 1 or -1 indicate a stronger relationship. 
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2.3 Random Forests 

RF is an ensemble machine learning approach that leverages both bootstrap resampling and 

random node classification techniques to build numerous independent decision trees. The ultimate 

classification outcomes are determined through a voting mechanism [36]. Variables' significance 

can serve as a valuable tool for selecting features in high-dimensional data, aiding in the 

examination of the significance of factors influencing PV generation. The formula for judging the 

importance of features using RF is (3). Among them, the significance of data is represented by VI. 

Error 1 refers to the inaccuracy of out-of-bag data when constructing an RF model with in-bag 

data, while error 2 pertains to the out-of-bag error resulting from random alterations of certain data 

elements within out-of-bag data samples. N denotes the total count of decision trees in the RF. If 

the random noise is added, the value of error 2 increases, indicating that this feature is important 

and has a great influence on the forecasting results. RF can obtain unbiased estimation of the true 

error and prevent overfitting and achieve higher accuracy compared to many individual 

algorithms.  

( 2 1)VI error error N= −                        (3) 

2.4 BiGRU prediction model  

The hybrid optimized BiGRU model is to add a hidden layer to the unidirectional GRU 

model for optimization and expansion. In fact, it is composed of a forward GRU that receives 

forward input and a backward GRU that learns reverse input. Two hidden layers are used to 

extract historical and forthcoming data, and finally connected to the same output layer. At every 

time step, the input simultaneously supplies two GRUs in opposite directions, while the output is 

determined by two one-way GRUs. This arrangement effectively captures both past and future 

state information, enhancing the predictive model's capacity for generalization and accuracy [26]. 

Formula (4) is the calculation formula of BiGRU, where 
th and 

th respectively denotes the 

outputs of the forward and backward GRU layers at time step “t”. Figure 1 is the structure diagram 

of BiGRU model.  

,t t ty h h =
  

                                     (4) 

 

Jo
urn

al 
Pre-

pro
of



7 
 

GRU2 GRU2 GRU2

GRU1 GRU1 GRU1

- 1ty  ty  1ty +


1tx − tx 1tx −

Backward 

Layer

Forward 

Layer

Hidden 

Layer

Input Layer

Output Layer

 

Fig. 1. Structure diagram of BiGRU model 

2.5 Bagging algorithm 

Bagging algorithm [37], is an ensemble learning method by using a certain combination 

strategy to combine multiple base learners to construct a learner with stronger learning effect, 

which can effectively utilize the characteristics of each base learner and enhance the model's 

learning performance. To obtain final strong learner, the main process involves randomly sampling 

m training data sets from the initial training set and using them to train the base learner [38]. The 

m prediction results generated by the m prediction models are then averaged and weighted [32]. 

The specific process is shown in Figure 2. Since ensemble learning can use multiple weak 

classifiers to form a strong classifier, it effectively enhances the model's ability to generalize and 

improves prediction performance.  

 

Fig. 2. Bagging algorithm Process 

3. The hybrid ensemble optimized BiGRU prediction model  

Above all, we proposed a hybrid optimized BiGRU prediction model, which is performed by 

employing one-dimensional CNN for convolution kernel operation to extract relevant features, 

introducing the Attention mechanism to assign weight coefficients to features, improving the 

attention towards important information, and stacking BiGRU to enhance the model's depth and 

feature extraction ability. However, both GRU model and hybrid optimized BiGRU model belong 

to a single model. During the model's training phase, there is a risk of randomness and instability. 

Therefore, we introduce the Bagging algorithm in the ensemble learning, and uses the hybrid 

optimized BiGRU as the base learner to construct the hybrid ensemble optimized BiGRU 

prediction model, which reduces the variance of prediction results, avoids the over-fitting problem, 

enhances the stability of model training process, and further enhances the prediction precision of 

the hybrid optimized BiGRU. The process of hybrid ensemble optimized BiGRU prediction model 

is depicted in Figure 3. 
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Fig. 3. The hybrid ensemble optimized BiGRU prediction model structure 

The main framework of proposed hybrid ensemble optimized BiGRU prediction model 

includes input layer, bagging sampling layer, hybrid optimized BiGRU layer, bagging integration 

layer and output layer. Firstly, a sample set with m samples is randomly choosen from the initial 

training dataset of input layer. After collecting T times, T training data sets are obtained. Secondly, 

hybrid optimization of BIGRU is performed by employing one-dimensional CNN for convolution 

kernel operation to extract relevant features, introducing the Attention mechanism to assign weight 

coefficients to features, improving the attention towards important information, and stacking 

BiGRU to enhance the model's depth and feature extraction ability. Then, the hybrid optimized 

BiGRU model is used as the base learner under the Bagging algorithm, and the sampled sample 

set is used for training. Finally, T hybrid optimized BiGRU is predicted in parallel to obtain output 

values, and T predicted output values are averaged to acquire the final forecasting results.  

4. The hybrid ensemble optimized BiGRU forecasting method based on 

LOWESS smoothing and feature selection 

The proposed hybrid ensemble optimized BiGRU forecasting method mainly includes four 

key stages: data smoothing, feature selection, model forecasting, and evaluation and comparison 

of prediction results.  

Stage1: Data smoothing. Based on the previous research, we choose the best performance 

LOWESS smoothing to analyze the actual PV generation data, so as to reduce the fluctuation 

range of daily power generation and enhance the data stability.  

Stage2: Feature selection. Based on the previous research, we use the PCC with the highest 

applicability to analyze smoothed PV generation data and the influencing factors, and then use the 

RF to further screen the remaining features after the correlation analysis, streamline the crucial 

attributes and enhance the overall data input quality. 

Stage3: Model forecasting. Based on the BiGRU model, we increase the Attention 

mechanism of assigning weight parameters, use the CNN layer to extract depth features, and 

superimpose BiGRU to enhance the depth of the neural network, which is called the hybrid 

optimized BiGRU model. Then, by introducing the idea of Bagging ensemble learning, a strong 

learner is built based on the hybrid optimized BiGRU model, and the ensemble optimized BiGRU 

Initial training 
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Base learner 1 
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prediction model is constructed to forecast the high-quality dataset after the above data processing 

steps. 

Stage4: Evaluation and comparison of prediction results. MSE, RMSE, MAPE and MAE 

are used to evaluate the prediction results. For the purpose of reflect the advantages of the 

proposed model, the hybrid ensemble optimized BiGRU is compared and analyzed with the 

ensemble optimized BiLSTM, ensemble BiLSTM, ensemble BiGRU and BiLSTM and BiGRU. 

The diagram illustrating the forecasting process is depicted in Figure 4. 

 
Fig. 4. Flow chart of hybrid ensemble optimized BiGRU prediction 

5 Case study 

5.1 The experimental data  

5.1.1 Data sources 

To ensure the representativeness and objectivity of the data, our experiment collects data sets 

from two photovoltaic power stations, i.e., Xuhui District Government [39] in Shanghai, China 

and DKASC [40] in Alice Springs, Australia. In fully analyze the efficacy of proposed method, the 

case selects May, July, November and December of 2021 as the test set. The two cities are chosen 

for their favorable climate and abundance of solar radiation, as well as their similar and 

comparable latitudes. Shanghai is located in the Northern and Eastern Hemispheres, while Alice 

Springs is situated in the Southern and Western Hemispheres. This combination of cities from 

different hemispheres makes them more representative. Figures 5 and 6 provide specific 

information on the locations of photovoltaic data sources, circumstances of photovoltaic plants, 

and the division of training and test sets in detail. The data interval is one day.  

(1) Xuhui District, Shanghai, China (121.43 E, 31.18 N)  
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2.DKASC area, Alice 
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Fig. 5. Photovoltaic in Xuhui District, Shanghai, China. 

(2) DKASC, Alice Springs, Australia (133.52 W, 24.17 S) 

Array 23.4kW

Panel rating 1.96W

Number of panels 4ⅹ30

Panel type Trina TSM-

195DC01A

Array area 4ⅹ38.37m2

Type of tracker DEGERenergie 

5000NT, dual axis

Inverter size/type 4ⅹ6kW, SMA 

SMC 6000A

Installation completed Thu, 8 Jan 2009

Array tilt/azimuth Variable: Dual 

axis tracking

Training

2016.4 2021.4

Testing

2021.5
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2021.62016.4 2021.7
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2021.10
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Fig. 6. Photovoltaic in DKASC, Alice Springs, Australia. 

5.1.2 Influencing factors 

To predict photovoltaic power generation accurately, it is crucial to consider the various 

factors that affect it. Our experiments have identified five main categories of factors: Part A: solar 

fluxes and related; Part B: parameters for solar cooking; Part C: Temperatures; Part D: 

Humidity/Precipitation; and Part E: Wind/Pressure. Table 1 shows a comprehensive array of the 

31 refined influencing factors [41].  

Table 1. Classification and refinement of influencing factors. 

Influencing factors classification Influencing factors refinement 

 

 

 

 

Part A. Solar fluxes and related 

(1) All sky surface shortwave downward irradiance 

(2) Clear sky surface shortwave downward irradiance 
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(7) All sky surface UVA irradiance 

(8) All sky surface UVB irradiance 

(9) All sky surface UV index 

Part B. Parameters for solar cooking (1)  Wind speed at 2 meters 

 

 

 

Part C. Temperatures 

 

(1) Temperature at 2 meters 

(2) Dew/Frost point at 2 meters 

(3) Wet bulb temperature at 2 meters 

(4) Earth skin temperature 

(5) Temperature at 2 meters range 

(6) Temperature at 2 meters maximum 

(7) Temperature at 2 meters minimum 

 

Part D. Humidity/Precipitation 

(1) Specific humidity at 2 meters 

(2) Relative humidity at 2 meters 

(3) Precipitation 

 

 

 

 

 

Part E. Wind/Pressure 

(1) Surface pressure 

(2) Wind speed at 10 meters 

(3) Wind speed at 10 meters maximum 

(4) Wind speed at 10 meters minimum 

(5) Wind speed at 10 meters range 

(6) Wind direction at 10 meters 

(7) Wind speed at 50 meters 

(8) Wind speed at 50 meters maximum 

(9) Wind speed at 50 meters minimum 

(10) Wind speed at 50 meters range 

(11) Wind direction at 50 meters 

5.2 Evaluation metrics 

In this paper, Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square 

Error (RMSE) and Mean Absolute Percentage Error (MAPE) are selected as the criteria for 

evaluating the prediction models. iy  and 
'

iy  in formula (5) ~ (8) symbolize the true value and 

the predicted value, respectively. 

'

1

1 n

i i

i

MAE y y
n =

= −                           (5) 

( )
2

'

1

1
=

n

i i
i

MSE y y
n =

−                           (6) 

( )
2

'

1

1
=

n

i i

i

RMSE y y
n =

−                         (7) 

'

1

1
100%

n
i i

i i

y y
MAPE

n y=

−
=                        (8) 

5.3 Parameter settings of experimental 

(1) RF 

The RF model's precision can be influenced by several parameters such as the quantity and 

maximum depth of decision trees, the settings for randomness, and the minimum number of 
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samples required for leaf nodes. On the basis of reference [36], we determined the values of the 

relevant parameters through a large number of experiments, as shown in Table 2. 

Table 2. Parameter settings of Random Forest. 

Algorithm Parameter Parameter meaning The parameter value 

Random 

Forest 

n_estimators the number of decision trees 200 

max_depth the maximum depth of decision trees 3 

random_state the setting of random numbers 42 

min_samples_leaf the minimum sample number of leaf nodes. 2 

(2) Bagging ensemble learning algorithm 

The accuracy of Bagging ensemble learning algorithm is affected by several parameters such 

as the number of base learners, neurons and unit layers, iteration times, hidden layer width, time 

step, one dimensional convolution, one-dimensional maximum pooling and fully connected. On 

the basis of reference [32], we determined the values of the relevant parameters through a large 

number of experiments, as listed in Table 2. 

Table 3. Parameter setting of Bagging ensemble learning algorithm 

Algorithm Parameter Parameter meaning The parameter value 

Bagging 

Ensemble 

Learning 

n_splits the number of base learners 6 

epochs iteration times 40 

batch_size hidden layer width 128 

time_steps time step 1 

unit the number of neurons 256 

num_layers the number of unit layers 2 

filters 

one dimensional convolution 

16 

kernel_size 1 

activation relu 

pool_size One-dimensional maximum pooling 1 

activation fully connected sigmoid 

(3) BiGRU 

The BiGRU model's precision may be influenced by several parameters such as the number 

of neurons and unit layers, the settings for time step, the width of hidden layer, and the iteration 

times. On the basis of reference [26], we determined the values of the relevant parameters through 

a large number of experiments, as shown in Table 4. 

Table 4. Parameter settings of BiGRU. 

Algorithm Parameter Parameter meaning The parameter value 

BiGRU 

unit the number of neurons 256 

num_layers the number of unit layers 2 

time_step time step 3 

batch_size hidden layer width 256 

epochs iteration times 50 

5.4 Data processing results 

5.4.1 Data smoothing 
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In this experiment, we utilized LOWESS smoothing to process actual PV generation data. We 

mainly collect the data of Xuhui District, Shanghai, China in May 2021 and DKASC, Alice 

Springs, Australia in May 2021 to demonstrate the smoothing effect. Fig. 7 indicate that LOWESS 

smoothing can reduce abnormal data noise, make the processed data smoother, and try to ensure 

the authenticity of actual data.  
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Fig. 7. Demonstration of the smoothing effect. 

5.4.2 Feature selection 

After smoothing the actual data, we use PCC to eliminate uncorrelated and very weakly 

correlated features. For the remaining features, RF are used for further refinement to enhance the 

quality of input data. Tables 5 and 6 display the results of correlation analysis (correlation≥0.2) 

and the final features (importance ranking) after RF filtering. 

Table 5. Pearson correlation analysis results. 

Influencing 

factors 

Pearson 

Xu hui DKASC 

A(1) 0.755 0.307 

A(2) 0.716 0.225 

A(3) 0.509 0.509 

A(4) 0.302 0.302 

A(5) 0.773 0.307 

C(7) 0.473 0.473 

C(6) 0.609 0.209 

C(5) 0.385 0.385 

B(4) 0.544 0.544 

B(3) 0.489 0.489 

B(2) 0.434 0.434 

B(1) 0.541 0.541 

A(6) 0.693 0.220 

D(1) 0.455 0.455 

D(2) -0.296 -0.241 

A(8) 0.761 0.302 

A(7) 0.776 0.307 
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Table 6. Random Forest further feature selection results. 

District 
Pearson+ 

Random Forest 

No correlation analysis+ 

Random Forest 

Xu hui 

RF≥0.03 

A(7): 0.45 

A(2): 0.11 

C(5): 0.08 

A(1): 0.08 

A(5): 0.08 

D(2): 0.03 

C(6): 0.03 

A(1): 0.56 

A(2): 0.10 

C(5): 0.06 

A(6): 0.03 

 

DKASC 

RF≥0.1 

(No correlation analysis： 

RF≥0.05) 

C(6)：0.16 

A(8)：0.15 

D(2)：0.15 

A(6)：0.12 

A(8)：0.08 

A(1)：0.05 

A(5)：0.05 

5.5 Experiment results 

In this study, we utilize high-quality data processed by LOWESS smoothing, Pearson 

correlation coefficient and Random Forest to create a new dataset. This dataset is then used to 

verify the proposed hybrid ensemble optimized BiGRU prediction model. We compared the 

performance of this model with several common single models, hybrid optimized models and 

ensemble optimized models. Among them, the single models include BiLSTM, BiGRU, SVM, 

XGBoost and TCN; the hybrid optimized models include hybrid optimized BiGRU and hybrid 

optimized BiLSTM; the ensemble optimized models include ensemble BiGRU, ensemble 

BiLSTM, hybrid ensemble optimized BiGRU and hybrid ensemble optimized BiLSTM. The study 

is conducted in two locations: Shanghai, China and Alice Springs, Australia. The model prediction 

results of two cases are as follows: 

5.5.1 Xuhui District, Shanghai, China  

(1) The necessity of data smoothing 

The prediction data results and prediction errors show that the smoothed forecast outcomes 

greatly surpass the unsmoothed forecast outcomes in terms of quality. As shown in Figure 8, 

LOWESS smoothing reduces the fluctuation and improves the quality of input data by denoising 

and smoothing the data. The smoothed prediction results have a higher fitting degree with the real 

data and a smaller forecasting error. Among the test months selected for different seasons, the 

prediction errors in May and July are larger than those in November and December, and the 

goodness of fit is not as good as that in November and December. This is because, in terms of 

natural factors, the climate of Shanghai belongs to subtropical monsoon climate, with abundant 

rainfall. 60 % of the rainfall in the whole year is concentrated in the flood season from May to 

September, and the rainfall in the remaining months is moderate. Therefore, the smoothing 

technology can effectively enhance the forecasting precision and reduce the forecasting error, 

which reflects the necessity of introducing LOWESS smoothing in this paper.  
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Fig. 8. Comparison of integrated results among actual data, smoothed, unsmoothed prediction. (Xu hui) 

(2) The applicability of correlation analysis 

As shown in Figure 9, the results of PCC and non-correlation analysis are basically 

consistent with the trend of real data, but the correlation prediction is closer to the real data. The 

forecasting error shows that PCC analysis has the lowest prediction error under most evaluation 

criteria and has a good forecasting effect. From the monthly point of view, the forecasting errors 

in May and July are the largest. This is consistent with the fact that the flood season in Shanghai is 

concentrated in May to September, during which the photovoltaic power supply fluctuates greatly. 

The prediction error in November and December is small, and the rainfall in autumn and winter is 

moderate, then the photovoltaic power supply is relatively gentle. Therefore, selecting the 

appropriate correlation analysis method is necessary to enhance the quality of input data. 
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Fig. 9. Comparison of integrated results between actual data and correlation analysis prediction. (Xu hui) 

(3) The precision of prediction model 

To reflect the effectiveness of proposed forecasting method, we choose the single models 

such as SVM, XGBoost, TCN, BiLSTM, BiGRU and the hybrid optimized prediction models 

including hybrid optimized BiLSTM, hybrid optimized BiGRU, and the ensemble prediction 

models including ensemble BiLSTM, ensemble BiGRU and ensemble optimized BiLSTM for 

comparison. Since it has been demonstrated that the hybrid optimized BiGRU model has better 

forecasting results than a single BiGRU model [27], our experiments are no longer compared with 

single prediction models such as GRU and LSTM. The comparison between the actual data and 

the forecast results of different models are displayed in Figure 10. The specific analysis is as 

follows: 

a. From the fitting degree of prediction results and actual data, the proposed hybrid ensemble 

optimized BiGRU prediction model shows the closest fit to actual data and the best fitting effect, 
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both in overall trend and local amplification area. The prediction results of other models such as 

ensemble optimized BiLSTM, ensemble BiLSTM, ensemble BiGRU, hybrid optimized BiLSTM, 

hybrid optimized BiGRU and TCN models are in good agreement with actual data, but lower than 

the hybrid ensemble optimized BiGRU model. On the other hand, the single BiLSTM, BiGRU, 

XGBoost and SVM models have poor fitting with actual data and their prediction effect is not 

well. 

b. From the perspective of prediction error, although hybrid optimized BiLSTM and hybrid 

optimized BiGRU has the lowest MAE value in May 2021, and BiGRU shows a lower prediction 

error in July 2021, however, it does not affect that the hybrid ensemble optimized BiGRU model 

has the lowest forecasting error in most cases. 

c. From the monthly point of view, compared with November and December, the fluctuation 

range and prediction error of May and July are larger, and the predicted data and the actual data 

are less fitted, which is consistent with the climate characteristics of Shanghai flood season 

concentrated in May-September and less precipitation in winter. 

d. Under the premise of consistent data processing results, the proposed prediction method 

has lower prediction error, the highest fitting degree with actual data, and is more suitable than 

other models for PV generation forecasting.  

Combining the prediction results above, we find that the prediction process with LOWESS 

smoothing, PCC, RF and the hybrid ensemble optimized BiGRU model exhibits superior 

forecasting precision and better performance. To fully reflect the efficacy of proposed forecasting 

method, we choose the forecasting results of DKASC in Alice Springs, Australia as a validation 

below. 
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Fig. 10. Comparison of actual data and prediction results of different models 

(Xuhui District, Shanghai, China) 

5.5.2 DKASC area, Alice Springs, Australia 

(1) The necessity of data smoothing 

As shown in Figure 11, the smoothed prediction results fit the actual data more precisely than 

the unsmoothed results, resulting in lower prediction errors. DKASC in Alice Springs boasts a 

tropical desert climate that is characterized by low rainfall and dry weather throughout a whole 

year, which making it less vulnerable to weather fluctuations. Moreover, its strategic location and 

high exposure to solar radiation make it an ideal site for photovoltaic power generation. The actual 

power generation data for the four months indicates that DKASC, despite its arid climate and 

limited rainfall, is still susceptible to abnormal fluctuations. The smoothed prediction results from 

both markets demonstrate that data smoothing still plays a key role in improving the forecasting 

precision. LOWESS smoothing is a typical method in reducing the magnitude of fluctuations, 

smoothing the data, and enhancing the forecasting accuracy. 
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Fig. 11. Comparison of integrated results among actual data, smoothed, unsmoothed prediction. (DKASC) 

(2) The applicability of correlation analysis 

As shown in Figure 12, the prediction results of non-correlation analysis have a low fitting 

degree with the real data, while Pearson correlation analysis is basically consistent with the real 

data. The prediction error indicates that the forecasting error of Pearson correlation is the lowest in 

MSE, RMSE and MAE, and the prediction effect is good. The experimental results continue the 

results of correlation analysis and prediction comparison of Shanghai photovoltaic power supply, 

and prove the applicability of correlation analysis. 
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Fig. 12. Comparison of integrated results between actual data and correlation analysis prediction. (DKASC) 

(3) The precision of prediction model 

The comparison between the actual data and the forecast results of models is displayed in 

Figure 13. The specific analysis is as follows: 

a. According to the fitting degree between the forecasted data by different models and the real 

data, the hybrid ensemble BiGRU still shows a high fitting degree and the best fitting effect, 

which continues the case analysis results of Shanghai. Among the prediction models, the 

prediction results of SVM, XGBoost, TCN, BiLSTM and BiGRU have a poor prediction 

performance and a low goodness of fit with actual data.  

b. From the perspective of prediction error, compared with the results of Shanghai case 

analysis, the prediction error of Australian data set can better reflect the forecasting performance 

advantage of the hybrid ensemble optimized BiGRU model. Only in July 2021, the hybrid 

optimized BiGRU outperform the proposed model in some evaluation criteria. Nonetheless, 
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overall, the hybrid ensemble optimized BiGRU model exhibits the lowest prediction error in most 

error evaluation criteria. 

c. According to the month, the DKASC area belongs to the tropical desert climate, with 

scarce precipitation and sufficient solar radiation throughout the year. The fluctuation of power 

generation data in May, July and November is small, and the fluctuation in December is large. 

Therefore, among the four months, the prediction error in December is the largest, and the fitting 

degree with the real data is the lowest, which is consistent with the results of Shanghai case 

analysis. 

d. In contrast to other models, the hybrid ensemble optimized BiGRU model exhibits the 

strongest fitting degree with the real data, the lowest prediction error and the best prediction 

performance. Through the comparison of various models, it can be found that the hybrid 

optimized forecasting models has a better forecasting performance than the individual forecasting 

models, but worse than that of ensemble prediction model. In the four ensemble models, the 

forecasting impact of the proposed model is significantly better than the other three. 
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Fig. 13. Comparison of actual data and prediction results of different models 

(DKASC area, Alice Springs, Australia) 
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According to the above conclusions and the analysis results of two groups of cases, it can be 

seen that the proposed model is the closest to the overall trend of actual data, and the fitting effect 

is the best. The predicted results also conforms to the climate change characteristics of two regions. 

Although the prediction error is less different from other model error values, it has the lowest 

value in most months and evaluation criteria. From the fitting degree and prediction error value 

with actual data, the hybrid ensemble optimized BiGRU model has the highest forecasting 

performance, which is helpful to enhance the prediction accuracy of PV generation.  

6 Conclusion 

In order to improve the accuracy and stability of PV generation and reduce the risk of 

instability and volatility in the training process, this paper presents a hybrid ensemble optimized 

BiGRU method based on Bagging algorithm. In terms of model prediction, this paper combines 

the LOWESS data smoothing method in conjunction with the Pearson correlation analysis method, 

which is found to have more strong applicability in a previous study. Additionally, Random Forest 

feature selection is employed to improve the quality of data processing. In terms of model 

prediction, we utilize the hybrid optimized BiGRU with CNN and Attention mechanism as the 

base learner and employ the Bagging algorithm in ensemble learning to construct a strong learner. 

The case analysis results from two different areas demonstrate that the presented forecasting 

method significantly enhance the precision of PV generation prediction, effectively mitigate the 

risk of instability and randomness during the training process, and improve prediction stability and 

prediction performance. The main conclusions are as follows:  

（1）Under the hybrid ensemble optimized BiGRU model, the data processing methods of 

LOWESS smoothing, Pearson correlation analysis and Random Forest feature selection can still 

effectively enhance the quality of input data and the forecasting precision.  

（2）Under the premise of consistent data processing results, in contrast to other models, the 

presented hybrid ensemble optimized BiGRU model has the highest prediction precision from the 

fitting degree and prediction error with actual data. 

（3）Under the same conditions of the case data set, the presented hybrid ensemble 

optimized BiGRU prediction model has significantly lower forecasting error and higher 

forecasting accuracy than other prediction models. The MSE value has the most significant 

decrease, with a maximum decrease of nearly 60.4 %. 

（4）The prediction effect of hybrid optimized model is better than that of individual 

prediction model, and the forecasting effect of the ensemble model is better than that of hybrid 

optimized prediction model.   

（5）Under the unified conditions of ensemble algorithm, the optimized method has better 

forecasting impact than the un-optimized method. 

Although our prediction method improves the accuracy of photovoltaic power generation, 

there are still some questions worth addressing. For instance, is there a more precise prediction 

method to identify fluctuations when actual data encounters abnormal fluctuations? This will be 

the focus of our future research. Futhermore, although collecting PV data by the hour presents 

challenges, there are theoretical similarities between short-term photovoltaic generation 

forecasting and short-term hourly power forecasting. Therefore, we are optimistic about the 

application prospect of the hybrid ensemble optimized BiGRU model in the field of short-term 

hourly power forecasting. 
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Highlights 
 

• LOWESS smoothing technology is used to reduce the variability of PV generation 

data 

• Pearson correlation coefficient and Random Forest are used to for extract feature  

• Attention mechanism and CNN layer are used to optimize BiGRU model 

• Two BiGRU layers are stacked to improve the depth and prediction performance 

• Ensemble learning is introduced to further optimize the hybrid BiGRU model  
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