
Learning Nonlinear Multiregression Networks Based on
Evolutionary Computation

Kwong-Sak Leung
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin

Hong Kong

Man-Leung Wong
Department of Computing and Decision Sciences

Lingnan University
Hong Kong

Wai Lam
Department of Systems Engineering and Engineering Management

The Chinese University of Hong Kong
Shatin

Hong Kong

Zhenyuan Wang
Department of Mathematics

University of Nebraska at Omaha,
Omaha, NE 68182,

U.S.A.

Kebin Xu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin

Hong Kong

Abstract

This paper describes a novel knowledge discovery and data mining framework

dealing with nonlinear interactions among domain attributes. Our network-based

model provides an effective and efficient reasoning procedure to perform prediction

and decision making. Unlike many existing paradigms based on linear models, the

attribute relationship in our framework is represented by nonlinear nonnegative mul-

tiregressions based on the Choquet integral. This kind of multiregression is able to

model a rich set of nonlinear interactions directly. Our framework involves two layers.

The outer layer is a network structure consisting of network elements as its compo-

nents, while the inner layer is concerned with a particular network element modeled

by Choquet integrals. We develop a Fast Double Optimization Algorithm (FDOA) for

learning the multiregression coefficients of a single network element. Using this local

learning component and Multiregression-Residual-Cost Evolutionary Programming

(MRCEP), we propose a global learning algorithm, called MRCEP-FDOA for discov-

ering the network structures and their elements from databases. We have conducted

a series of experiments to assess the effectiveness of our algorithm and investigate the

performance under different parameter combinations as well as sizes of the training

data sets. The empirical results demonstrate that our framework can successfully

discover the target network structure and the regression coefficients.

1 Introduction

Knowledge discovery and data mining have received increasing attention due to its poten-

tial applications in a wide range of different areas [6]. One objective of knowledge discovery

and data mining is to discover useful patterns or knowledge from data. Such knowledge can

be used for performing intelligent tasks such as reasoning and problem solving. This paper

describes a novel knowledge discovery and data mining framework dealing with interac-

tions among domain attributes. Our network-based model provides an effective reasoning

procedure to perform prediction and decision making. Unlike many existing paradigms

based on linear models, the attribute relationship in our framework is represented by a

network structure consisting of a number of network elements. Each network element is

formed by a nonlinear nonnegative multiregression based on the Choquet integral. This

kind of multiregression is able to model a rich set of attribute interaction directly. We

develop a Fast Double Optimization Algorithm (FDOA) for learning the multiregression

coefficients of a single network element. Using this local learning component, we propose

a global learning algorithm, called MRCEP-FDOA, for discovering the network structure

as well as the values of multiregression coefficients in all network elements from a given

data set, where MRCEP (Multiregression-Residual-Cost Evolutionary Programming) em-

ploys Evolutionary Programming [7, 8, 10] to learn the network structure. It integrates a

Multiregression-Residual-Cost (MRC) metric and several genetic operators including three

structure-guided and a knowledge-guided operators.

A single nonlinear multiregression based on nonlinear integrals has been used to es-

tablish the relationship between an objective attribute and several predictive attributes

[39, 41]. Such a single model is not powerful enough to represent intricate relations among

attributes in a medium or large scale database. Employing a network structure can pro-

vide a richer representation of the problem space resulting in a more accurate model. For

a network element, the multiregression may be modeled by some existing techniques, such

as projection pursuit multiregression [12, 26]. In the projection pursuit multiregression, a

3

linear combination (it is the Lebesgue-like integral) with unknown coefficients is first ap-

plied to project the multi-dimensional data into one-dimensional line R. Then a nonlinear

transformation from R to R is adopted. Finally, the sum of such a kind of transformations

with respective to linear combination is used to fit the data. The one-dimensional non-

linear transformations may be approximated by natural splines. All unknown coefficients

and parameters are optimally determined by training a neural network from given data.

Thus, the nonlinearity of the projection pursuit multiregression is just embodied in the

one-dimensional nonlinear transformations. Therefore, the effect of describing a nonlinear

relation with inherent interaction among attributes is limited.

Wang proposed the interaction concept based on an nonadditive “importance measure”

and a fuzzy integral [35]. Murofushi and Sugeno also proposed a definition for the notion

of interaction based on the use of Choquet integral [29]. Later this notion was extended by

Grabisch [15] and axiomatized by Grabisch and Roubens [16]. By using a nonadditive set

function, our nonlinear multiregression based on the Choquet integral can directly represent

the inherent interaction among predictive attributes to the objective attribute.

Another knowledge representation model known as Bayesian networks has been devel-

oped [19, 31, 24]. Unfortunately, most of them mainly cater for discrete attributes. Some

Bayesian networks attempt to deal with continuous attributes [11], but, they mainly rely on

the assumption of parametric or semi-parametric families such as Gaussian distributions.

Our proposed network structure of nonlinear integrals can directly represent the nonlinear

relationship of a set of continuous attributes. The network structure and the relevant learn-

ing framework are different from the hierarchical structure proposed in Kwon and Sugeno

[20]. In our structure, any attribute could be objective attribute and any attribute could be

predictive attribute. They are discovered by the learning algorithm. In contrast, in Kwon

and Sugeno’s hierarchical structure, the objective attribute is pre-defined.

We have conducted a series of experiments to demonstrate the effectiveness of our

algorithm and investigate the performance under different parameter combinations as well

as sizes of training data sets. The empirical results demonstrate that our framework can

4

successfully discover the target network structure and the regression coefficients. Moreover,

our framework does not require a complete attribute ordering as input. If such an ordering

is given, it is easy to incorporate such ordering information for mining.

This paper is organized as follows. Section 2 presents the knowledge representation we

adopt in our framework. Section 3 covers the details of the basic nonlinear multiregression

network element and a fast algorithm for learning the regression coefficients. Our EP-based

network structure learning algorithm is given in Section 4. Section 5 describes the empirical

results and the evaluation of our framework. We present the conclusions in Section 6.

2 Nonlinear Multiregression Networks

A nonlinear multiregression network attempts to represent the inter-dependencies among

the attributes in a domain. Such a network consists of a set of nodes and directed edges.

To be convenient for prediction, we require that there is no cycle in the network. Each node

represents an attribute or a variable in the problem domain. Each attribute can take on a

continuous value. There are directed edges connecting attributes forming a directed acyclic

graph (DAG). Figure 1 shows an example of a nonlinear multiregression network with 5

attributes. The set of incoming edges of an attribute represents an association between the

parent attributes and the current attribute. For example, N1 and N2 in Figure 1 are parent

attributes of N3. N2, N3, and N4 are parent attributes of N5. Figure 2 shows a practical

example of a simple nonlinear multiregression network in the health care area.

A network element is defined as a basic subnetwork comprising a child attribute and

the set of its parent attributes. For instance, the subnetwork concerned with N1, N2, and

N3 in Figure 1 forms a network element. One unique characteristic of a network element

is that the association between the parent attributes and the child attribute is a nonlinear

multiregression; it is not necessarily linear. Unlike traditional correlation models, our

nonlinear multiregression is based on the Choquet integral with respect to a nonadditive

set function. A novel feature of this nonlinear integral is that it can model a rich set of

5

N

N

N

N

N

 1 2

 3
 4

 5

Figure 1: An example of a nonlinear multiregression network

WeightHeight

Body Mass

Blood

Pressure

Daily

Calories

Age

Index

Figure 2: A practical example of a nonlinear multiregression network

6

inherent interactions directly among attributes. More details with illustrative examples are

described in Section 3.1.

Once this network is constructed, it can be used for conducting inference and prediction

in the problem domain. The inference process follows the direction of the edges in the

network, i.e., from parents to child. Generally, an attribute can be a child for a network

element and it can also be a parent for another network element. For example, consider

the network concerned with the health care area depicted in Figure 2. Attribute “Body

Mass Index” can be predicted from attributes “Age”, “Height”, and “Weight”. Attribute

“Body Mass Index” together with attribute “Age” can also help predict attribute “Blood

Pressure”. Indirect inference can be done via the network. For instance, if we have the

observations for attributes “Age”, “Height”, and “Weight”, we can predict attribute “Body

Mass Index” which in turn can be used for the prediction of attributes “Blood Pressure”

and “Daily Calories”.

In principle, such nonlinear multiregression networks can be constructed by joint effort

of domain experts and knowledge engineers. However it typically requires a lot of time

and human resources due to the knowledge engineering bottleneck. A promising way to

solve this problem is to automatically discover the network structure from raw data. Let

N1, . . . , Nn be the n attributes in the domain. The form of the raw data is given as follows:

N1 N2 · · · Nn

d11 d12 · · · d1n

d21 d22 · · · d2n

:

:

dL1 dL2 · · · dLn

where L is the number of records in the database. Each record corresponds to a case

or a scenario observed in the real world. The goal is to automatically discover the best

underlying nonlinear multiregression network that captures the inherent associations among

the attributes. In addition to the structure, the learning method should also estimate the

7

corresponding coefficients associated with the structure.

We propose a learning framework, called MRCEP-FDOA. This framework consists of

two layers. The inner layer is concerned with a basic network element modeled by a

multiregression nonlinear integral. We develop a fast algorithm for learning the multi-

regression coefficients of a network element called Fast Double Optimization Algorithm

(FDOA). The outer layer of our MRCEP-FDOA framework is concerned with the topo-

logical structure of a network. To discover the structure, we develop a learning algorithm

called Multiregression-Residual-Cost Evolutionary Programming (MRCEP). In the follow-

ing discussion, we first describe the form of association among attributes in a parent-child

network element and FDOA. Then we give a detailed description of MRCEP.

3 Network Elements

3.1 Nonlinear Multiregression Based on the Choquet Integral

Figure 3 depicts a network element. Let X = {x1, x2, . . . , xm} be the set of parent attributes

and y be the child attribute. Parents x1, x2, . . . , xm are called predictive attributes and the

child y is called the objective attribute. All attributes can take on real numbers.

parents

X1 X X2 m
.....

child

y

Figure 3: A network element

A traditional tool to describe how the objective attribute depends on the predictive

8

attributes is the linear multiregression that has the following model:

Y =
m∑

i=1

aif(xi) + N(a0, σ
2), (1)

where Y is the value of y; f(xi) is the value of xi; a0, a1, a2, . . . , am are unknown regression

coefficients; and N(a0, σ
2) is a random noise that has a normal distribution with mean a0

and variance σ2. It is a linear model. Without any loss of generality, we can assume that all

regression coefficients are nonnegative (otherwise, we can switch the sign of corresponding

data). Then, the above model can be expressed by the classical Lebesgue-like integral. In

fact, if we define a set function µ, which indicates the importance of each xi to the objective

attribute y, on the class of all singletons {xi} by µ({xi}) = ai/q, i = 1, 2, . . . , m, where

q = a1 + a2 + . . . + am, then µ can be uniquely extended to be an additive measure onto

the power set of X, P(X), which is the class of all subsets of X [17]. Thus, the Lebesgue-

like integral
∫

fdµ can be used as a comprehensive numerical assessment to the objective

attribute, where the integrand f is a function defined on X whose value at attribute xi

is f(xi), i = 1, 2, . . . ,m. Hence, the above mentioned linear multiregression model can be

expressed as:

Y = q
∫

fdµ + N(a0, σ
2), (2)

where the integral is the Lebesgue-like integral of f with respect to µ.

The Lebesgue-like integral is a linear functional. Using such a linear model needs a

basic assumption that, to the objective attribute, there is no interaction among predic-

tive attributes. This means that the influences to the objective attribute from predictive

attributes are independent such that the global contribution of the set of all predictive at-

tributes to the objective attribute is just the simple sum of their respective contributions.

However, in many real-world problems, the interaction among predictive attributes to the

objective attribute cannot be ignored [35, 38]. In this case, we should use a set function

µ defined on P(X) to represent the importance of each individual predictive attribute as

well as the joint importance for every possible combination of predictive attributes. Math-

ematically, set function µ can be expressed as µ : P(X) → [0, 1] satisfying µ(∅) = 0 and

9

µ(X) = 1, where ∅ is the empty set. Here, condition µ(X) = 1 is called the regularity of µ.

Usually, set function µ is not additive, even not monotone. The nonadditivity of µ portrays

the inherent interaction among predictive attributes to the objective attribute [38]. This

kind of interaction is totally different from the concept of correlation in statistics. The

latter describes the relation between the observations of attributes and it is an external

relation among attributes.

Since X is finite, the continuity requirement on µ is insignificant. Therefore, when µ

is monotone, that is, A ⊂ B ⇒ µ(A) ≤ µ(B) for any sets A and B in P(X), such a set

function is also called a fuzzy measure [29, 35].

When the nonadditive set function is used to replace the additive measure, the clas-

sical Lebesgue-like integral fails. The Choquet integral, one type of nonlinear integrals,

is available for our purpose in this situation. The Choquet integral is defined as follows

[29, 36]: ∫
fdµ =

∫ ∞

0
µ(Fα)dα (3)

where f is a function on X with range [0,∞), and Fα = {x|f(x) ≥ α, x ∈ X}, α ∈ [0,∞),

is the α-cut set of f . It is a generalization of the Lebesgue-like integral, that is, when µ is

additive, the Choquet integral coincides with the Lebesgue-like integral. In fact, Equation 3

itself is one of the equivalent expressions of the Lebesgue-like integral of a nonnegative

measurable function f with respect to a classical measure µ. In general, the Choquet

integral is not linear. However, it possesses most good properties of the Lebesgue-like

integral.

To calculate the value of the Choquet integral of a given function f , the values of f ,

{f(x1), f(x2), . . . , f(xm)}, should be first rearranged into a nondecreasing order, that is,

f(x∗1) ≤ f(x∗2) ≤ . . . f(x∗m), (4)

where (x∗1, x
∗
2, . . . , x

∗
m) is a permutation of (x1, x2, . . . , xm). Then, the value of the Choquet

integral can be obtained by computing expression
∫

fdµ =
m∑

i=1

[f(x∗i)− f(x∗i−1)]µ({x∗i , x∗i+1, . . . , x
∗
m}), (5)

10

where f(x∗0) = 0.

The following is an example of using the Choquet integral as an aggregation tool [38].

The linear combination, a traditional aggregation tool, is just a special case of the Cho-

quet integral where the set function is additive. The example also shows a very intuitive

explanation to the Choquet integral. A similar example can also be found in [28].

Example 1. There are three workers x1, x2, and x3 working for f(x1) = 10, f(x2) = 15,

and f(x3) = 7 days respectively to manufacture some kind of products. Their efficiencies

of working alone are 5, 6, and 8 products per day respectively. If they worked separately,

that is, there was no interaction among them, then the number of total products for such a

working period would be a simple linear combination of the numbers of their working days:

10× 5 + 15× 6 + 7× 8 = 196.

However, they work together actually. Suppose that they begin to work from the same

day. Their joint efficiencies are not the simple sum of the corresponding efficiencies given

above, but are listed in the following:

{x1, x2} 14

{x1, x3} 7

{x2, x3} 16

{x1, x2, x3} 25

These efficiencies can be regarded as a regular nonadditive set function (not necessar-

ily monotone), µ, defined on the power set of X = {x1, x2, x3} with µ(∅) = 0 (the

meaning is that there is no product if no worker) multiplied by a constant q = 25.

For example, µ({x1}) = 5/25 = 0.2 and µ({x1, x2}) = 14/25 = 0.56. Here inequality

µ({x1, x2}) > µ({x1}) + µ({x2}) means that x1 and x2 have a good cooperation, while

inequality µ({x1, x3}) < µ({x1}) + µ({x3}), and even µ({x1, x3}) < µ({x3}), means that

x1 and x3 have a very bad relationship and they are not suitable for working together. Set

11

function µ is not necessarily monotone and is called an efficiency measure. The nonaddi-

tivity of µ represents the interaction among three workers to the total products. In such a

manner, during the first 7 days, all workers work together with efficiency q ·µ({x1, x2, x3}),
and the number of products is f(x3) · q · µ({x1, x2, x3}) = 7 × 25 = 175; during the next

f(x1) − f(x3) days, workers x1 and x2 work together with efficiency q · µ({x1, x2}), and

the number of products is [f(x1) − f(x3)] · q · µ({x1, x2}) = 3 × 14 = 42; during the last

f(x2)− f(x1) days, only x2 works with efficiency q · µ({x2}), and the number of products

is [f(x2)− f(x1)] · q · µ({x2}) = 5× 6 = 30. Thus, value

q
∫

fdµ = 175 + 42 + 30 = 247

is just the total number of products manufactured by these workers during the period

mentioned above.

If there was no interaction among these workers, then their joint efficiencies should be

qµ({x1, x2}) = q(µ({x1}) + µ({x2})) = 11,

qµ({x1, x3}) = q(µ({x1}) + µ({x3})) = 13,

qµ({x2, x3}) = q(µ({x2}) + µ({x3})) = 14,

qµ({x1, x2, x3}) = q(µ({x1}) + µ({x2}) + µ({x3})) = 19.

Thus, the corresponding value of the Choquet integral would be

q

∫
fdµ = qf(x3)µ({x1, x2, x3}) + q[f(x1)− f(x3)]µ({x1, x2}) + q[f(x2)− f(x1)]µ({x2})

= f(x3)qµ({x1, x2, x3}) + [f(x1)− f(x3)]qµ({x1, x2}) + [f(x2)− f(x1)]qµ({x2})

= 7× 19 + 3× 11 + 5× 6

= 196.

This coincides with the resulting number of products when the linear combination is used.

Here, the fact that the linear combination (essentially, it is the Lebesque-like integral) is a

special case of the Choquet integral is verified. 2

12

Thus, a new nonlinear multiregression based on the Choquet integral can be established

as follows [38, 39]:

Y = q
∫

fdµ + N(c, σ2), (6)

where Y is the value of y, f is a function on X with f(xi) as its value at xi, i = 1, 2, ..., m, µ

is a nonnegative set function satisfying µ(∅) = 0 and µ(X) = 1, q is a proportional divisor,

and N(c, σ2) is a normally distributed random variable with mean c and variance σ2. In

such a model, c, q, and the value of µ at each set (except ∅ and X in P(X)) are regarded

as unknown regression coefficients. This nonlinear model is a generalization of the classical

multiregression and is supported by a natural mechanism mentioned above. Given observed

data of x1, x2, . . . , xm, and y, to estimate the values of regression coefficient is just the

inverse problem of calculating the value of the Choquet integral. This is illustrated in the

next example.

Example 2. Three workers x1, x2, and x3 are hired for manufacturing some kind of

products. Table 1 is a record of the numbers of their working days and the corresponding

number of total products in each month during the last year. By using the data given in

Table 1, we want to estimate their respective efficiency (the number of products per day) as

well as their joint efficiencies. Suppose that they worked together in a similar manner shown

in Example 1: they begin to work on the same day together and each worker continues

to work until the last day of their respective working period without any break in each

month. For instance, in January, all of them worked together for 10 days, then x2 and x3

worked together for 6 days and, finally, x2 worked alone for 4 days. In such a manner, the

Choquet integral based nonlinear multiregression can be used to solve this problem. Let Y

be the monthly total number of products, f be the function defined on set {x1, x2, x3} to

denote the numbers of working days for these workers, and q · µ be the efficiency measure

as mentioned in Example 1. Here, q is a proportional constant and such that µ(X) = 1

13

Month x1 x2 x3 Total products

1 10 20 16 300

2 15 10 12 229

3 20 20 24 420

4 18 12 15 279

5 22 16 20 366

6 13 18 20 340

7 17 19 19 368

8 24 14 10 278

9 10 21 18 324

10 19 25 13 356

11 18 16 16 326

12 10 10 12 210

Table 1: The data of the numbers of working days for three workers

14

Set value of µ

∅ 0

{x1} 0.15

{x2} 0.20

{x1, x2} 0.60

{x3} 0.25

{x1, x3} 0.50

{x2, x3} 0.70

{x1, x2, x3} 1

Table 2: The values of µ obtained in Example 2

which is required in our algorithm. Then

Y = q
∫

fdµ + N(c, σ2). (7)

By using an adaptive genetic algorithm described in [38], or a fast algorithm developed

in this paper (Section 3.2), the value of c, q and the values of µ can be determined, and

the value of σ2 can also be estimated. In fact, this multiregression problem has a unique

precise solution (with σ2 = 0) : c = 0, q = 20, and the values of µ listed in Table 2.

Since the efficiency function is q · µ, we know that the efficiency of x1 is 3 products per

day, the efficiency of x2 is 4 products per day, the efficiency of x3 is 5 products per day,

the joint efficiency of x1 and x2 is 12 products per day, the joint efficiency of x1 and x3

is 10 products per day, the joint efficiency of x2 and x3 is 14 products per day, and the

joint efficiency of all three workers is 20 products per day. Here, we can see that the joint

efficiency of x1 and x2 is much larger than the sum of the efficiency of x1 and the efficiency

of x2. This indicates that there is a strong inherent interaction between x1 and x2 to the

number of products. Such an interaction is totally different from the statistical concept of

15

correlation between variables x1 and x2. The latter can be estimated from the data given

in the second and the third columns of Table 1. In fact, the correlation of x1 and x2 in this

example is 0.0041, that is, x1 and x2 are almost independent statistically. 2

For the data given in Table 1, by using the projection pursuit multiregression, even if

it is not impossible to get an approximation of the nonlinear relation between the total

products and the numbers of the working days, the complexity will be very high, that is,

a large number of nodes in the expressions of natural splines and a large number of terms

in the sum mentioned above are needed. Moreover, our model can be used to replace

the linear combination in the projection pursuit multiregression to reduce its complexity

and has a good fitness in many real-world problems where the inherent interaction among

predictive attributes exist significantly.

Now, we return to discuss how to optimally determine the unknown regression coeffi-

cients from data. Suppose that the data concerning the attributes of the parents and the

child are available in the following form:

f11 f12 · · · f1m Y1

f21 f22 · · · f2m Y2

:

fL1 fL2 · · · fLm YL

Then, the estimated values of these unknown regression coefficients c∗, q∗ and the set

function µ∗ can be determined by minimizing regression residual.

e =

√√√√√ 1

L

L∑

j=1

(Yj − Y ∗
j)2 (8)

in which Y ∗
j = q∗

∫
fjdµ∗ + c∗, j = 1, 2, . . . , L, where fj is a function on X with fj(xi) =

fji, i = 1, 2, . . . , m.

The estimation of these coefficients in each network element is an optimization problem.

In our previous works [38, 41], an adaptive genetic algorithm was adopted to solve such an

16

optimization problem for a single nonlinear multiregression based on the Choquet integral

and the Wang integral successfully. However, the adaptive genetic algorithm demands a

large amount of computational resources. Fortunately, the calculation of the Choquet in-

tegral for a given function fj concerns only the values of set function at a few sets which fj

involve. Murofushi and Grabisch [14] made use of this property to identify the set function

µ used in the Choquet integral. Mori and Murofushi [27] proposed the idea of using the

gradient on a chain. Inspired by these techniques, we develop a Fast Double Optimization

Algorithm (FDOA) to estimate the regression coefficients (including the values of set func-

tion µ, proportional divisor q and mean c) for each network element. Here we use the word

“fast” to make contrast to the adaptive genetic algorithm in our previous works.

3.2 Learning Nonlinear Multiregression Coefficients

To easily illustrate the algorithm determining the unknown coefficients in the nonlinear

multiregression, we introduce a concept of complete nest in the power set P(X) as follows.

Definition. A subclass N of P(X) is called a nest if there exists a relation either

A ⊂ B, or B ⊂ A for any A, B ∈ N . A nest N is said to be complete if it consists of m+1

different sets where m is the cardinality of X.

It is easy to see that there exists a permutation of N , denoted as A0, A1, . . . , Am,

satisfying conditions that ∅ = A0 ⊂ A1 ⊂ · · ·Am = X and Ai − Ai−1 is a singleton,

i = 1, 2, . . . ,m, if N is a complete nest. If µ is a fuzzy measure mentioned above, then

0 = µ(A0) ≤ µ(A1) ≤ · · · ≤ µ(Am) = 1. These m + 1 values are simply denoted by

u(0), u(1), . . . , u(m).

For a given function f as mentioned above, first we rearrange its values into a nonde-

creasing order:

f(x∗1) ≤ f(x∗2) ≤ . . . ≤ f(x∗m) (9)

17

where (x∗1, x
∗
2, . . . , x

∗
m) is a permutation of (x1, x2, . . . , xm). This permutation corresponds

to a complete nest Nf : A0 = ∅, Ai = {x∗m−i+1, x
∗
m−i+2, . . . , x

∗
m}, i = 1, 2, . . . , m, and the

values of µ at sets in the nest, u(0), u(1), . . . , u(m). Thus,

∫
fdµ =

m∑

i=1

[f(x∗i)− f(x∗i−1)] · u(m− i + 1) (10)

Equation 10 indicates that the calculation of the value of the Choquet integral for a

given function concerns only the values of µ at sets in nest Nf . Hence, a Local-Revising

Strategy (LRS) can be adopted in a fast iterative algorithm to find an approximate solution

of the nonlinear multiregression when suitable data are available. In the algorithm, a double

optimization technique is adopted. To be more precise, a local-revising on the values of µ

is used to reduce errors first, then c∗ and q∗ are determined by the Least Square Method

(LSM). We call such a new algorithm the Fast Double Optimization algorithm (FDOA).

The algorithm is detailed as follows.

1. Input m; // m is the number of predictive attributes

2. Input L; // L is the number of records in the database

3. Input stop e; // stop e is a chosen small positive number

// that is used for the stopping condition.

4. For j = 1 to L step 1

input (fji) and (Yj); // input the training examples

5. For each set A ∈ P(X)

µ∗(A) := |A|/m; // initialize the values of µ∗

6. For i = 0 to m step 1

u∗(i) := i/m; // initialize the values of u∗

7. Num := 1;

8. Calculate the residual e

18

i. Ȳ := 1
L

∑L
j=1 Yj;

ii. Ī := 1
L

∑L
j=1

∫
fjdµ∗;

iii. q∗ :=

∑L

j=1
(
∫

fjdµ∗−Ī)(Yj−Ȳ)∑L

j=1
(
∫

fjdµ∗−Ī)2
;

iv. c∗ := Ȳ − q∗Ī;

v. e :=
√

1
L

∑L
j=1(Yj − q∗

∫
fjdµ∗ − c∗)2;

9. While e >= stop e

i. For j = 1 to L step 1

// for each datum (fji, Yj), j = 1, 2, . . . , L, in the given data,

// do the following steps

a. ej := q∗ · ∫ fjdµ∗ + c∗ − Yj; // calculate error ej

b. For i = 1 to m-1 step 1

w(i) := u∗(i)− α · ej(fj(x
∗
m−i+1)− fj(x

∗
m−i));

// α ∈ [0, 1] is a given constant.

// Note that we have u∗(0) = 0 and u∗(m) = 1 at all time.

c. If ej > 0 then

for i = 1 to m-1 step 1

i. // For each u∗(i), corresponding to µ∗(Ai), find max{µ∗(B)}
Find max{µ∗(B) | B ⊂ Ai, µ

∗(B) has already been modified, B ∈ P(X)};
ii. // Modify u∗(i) with a new value

If max{µ∗(B)} < w(i) then

u∗(i) := w(i);

Else

u∗(i) = max{µ∗(B)};
Else // ej <= 0

for i = m-1 to 1 step -1

19

i. // For each u∗(i), corresponding to µ∗(Ai), find min{µ∗(B)}
Find min{µ∗(B) | B ⊃ Ai, µ

∗(B) has already been modified};
ii. // Modify u∗(i) with a new value

If min{µ∗(B)} > w(i) then

u∗(i) := w(i);

Else

u∗(i) = min{µ∗(B)};

ii. Num := Num + 1;

iii. Calculate the residual e

a. Ȳ := 1
L

∑L
j=1 Yj;

b. Ī := 1
L

∑L
j=1

∫
fjdµ∗;

c. q∗ :=

∑L

j=1
(
∫

fjdµ∗−Ī)(Yj−Ȳ)∑L

j=1
(
∫

fjdµ∗−Ī)2
;

d. c∗ := Ȳ − q∗Ī;

e. e :=
√

1
L

∑L
j=1(Yj − q∗

∫
fjdµ∗ − c∗)2;

10. For each set A

If µ∗(A) has not been modified in step 9

i. Find min{µ∗(B) | A ⊂ B, µ∗(B) has already been modified, B ∈ P(X)};

ii. Find max{µ∗(C) | C ⊂ A, µ∗(C) has already been modified, C ∈ P(X)};

iii. µ∗(A) := (max{µ∗(C)}+ min{µ∗(B)})/2;

// modify µ∗(A) with a new value

11. Output Num and the estimated regression coefficients c∗, q∗, and µ∗;

20

4 The Network Structure Learning Algorithm

4.1 Evolutionary Algorithms

Evolutionary algorithms are weak search techniques based on the principle of natural se-

lection and evolution to achieve the goals of function optimization and machine learning

[1, 2]. A potential solution to the problem is encoded as an individual. An evolutionary

algorithm maintains a group of individuals, called the population, to explore the search

space. A fitness function evaluates the performance of each individual to measure how

close it is to the solution. The search space is explored by using genetic operators to evolve

new individuals. The evolution is based on the Darwinian principle of evolution through

natural selection: the fitter individual has a higher chance of survival, and tends to pass

on its favorable traits to its offspring. Existing evolutionary algorithms include Genetic

Algorithms [13, 18], Genetic Programming [21, 22, 23], Evolution Strategies [34, 4, 3], and

Evolutionary Programming [7, 8, 10]. The various kinds of evolutionary algorithms differ

mainly in the evolution models assumed, the evolutionary operators employed, the selection

methods, and the fitness functions used [8].

Genetic Algorithms (GAs) use a fixed-length binary bit string as an individual. Three

genetic operators are used to search for better individuals. Reproduction operator copies

the unchanged individual to the next generation. Crossover operator exchanges bits be-

tween two parents. Mutation operator randomly changes individual bits. Genetic Pro-

gramming (GP) extends GAs by using a tree structure as an individual. GAs and GP

model evolution at genetic level. They emphasize on the acquisition of genetic structures

at the symbolic level and regularities of the solutions.

Evolutionary Programming (EP) uses the highest level of abstraction by emphasizing

on the adaptation of behavioral properties of various species. On the other hand, the idea

of optimization is used in Evolution Strategies (ES) and the structures being optimized

are the individuals of the population. Various behavioral properties of the individuals are

parameterized and their values evolved as an optimization process.

21

Wong, Lam, and Leung [40] performed a series of experiments to compare their approach

for learning Bayesian network structures using EP with the classical GA approach described

in [25]. They observe that the EP approach is superior both in terms of quality of solutions

and computational time in most data sets they tested. Thus, we apply EP to solve the

problem of learning structures of nonlinear multiregression networks.

EP is a stochastic optimization and learning strategy that emphasizes the behavioral

linkage between parents and their offspring rather than seeking to emulate specific genetic

operators as observed in nature [7, 8, 10]. EP models the reproductive relationship between

species behavior in successive generations. Consequently, EP only applies mutations to

preserve behavioral similarity between offspring and their parents [7, 8, 10].

There are three important differences between EP and the classical GA. Firstly, there

is no constraint on the representation. The classical GA involves encoding the problem

solutions as fixed-length binary strings [13, 18]. In EP, the representation follows from

the problem. For example, a Bayesian network can be represented in the same manner

as it is implemented. Thus the mutation operation does not demand and assume any

particular encoding method. Secondly, the mutation operators simply change aspects of

the parent according to a statistical distribution. Minor modifications in the behavior

of the offspring occur more frequently than substantial variations in the behavior of the

offspring. Furthermore, the severity of mutations is often reduced as the global optimum is

approached. Thirdly, EP employs mutation operators only while the classical GA applies

mutation, crossover, and other genetic operators [3, 9, 32].

In the following subsections, we describe our approach to network structure learning

based on EP. The fitness function which is derived from the residual, called Multiregression-

Residual-Cost (MRC) metric, is also presented.

4.2 The Multiregression-Residual-Cost Metric

The network structure learning algorithm makes use of a cost measure, called Multiregression-

Residual-Cost (MRC) metric, that can measure the fitness of a candidate network structure

22

to the data set. One characteristic of this metric is that it gives a lower value for a network

element that is close to the true association among the parent set and the child attributes.

This cost metric can be decomposed into each individual attribute. Let C(B) be the cost

metric of a network structure B; ΠNi
be the parent set of Ni. With overloading of the

notation C(), it can be expressed as:

C(B) =
∑

Ni∈N

C(Ni, ΠNi
) (11)

As Ni and ΠNi
form a network element such as the network shown in Figure 3, we can

apply the method described in Section 3.2 to estimate the unknown regression coefficients

and the corresponding minimum error. Consequently, we define:

C(Ni, ΠNi
) = e2 (12)

where e is given in Equation 8. The rationale is that the network capturing appropriate

dependency relationships among the attributes would allow prediction of an attribute with

low error.

Ideally we would like to find a network structure that has the lowest C. We call such a

network an optimal network. In situations where an optimal solution cannot be obtained

due to limited computing resources, we wish to find a network with C as low as possible.

4.3 The EP-based Learning Algorithm

Our approach, called MRCEP-FDOA, adopts the MRC cost metric and Evolutionary Pro-

gramming (EP) [7, 8, 10] to learn nonlinear multiregression network structures. This learn-

ing problem is difficult because the number of network structures increases exponentially

with the number of attributes. The size of the search space is given by the formula [33]:

f(n) =
n∑

i=1

(−1)i+1

n

i

 2i(n−i)f(n− i), f(0) = 1, f(1) = 1 (13)

The size of the search space for different numbers of attributes is given in Table 3.

Our MRCEP-FDOA algorithm starts with an initial population of directed acyclic graphs

23

Number of attributes Size of the search space

1 1

2 3

3 25

4 543

5 29281

6 3781503

7 1.139e9

8 7.837e11

9 1.213e15

10 4.175e18

11 3.160e22

12 5.219e26

13 1.868e31

14 1.439e36

15 2.377e41

20 2.344e72

25 2.659e111

30 2.714e158

Table 3: The size of the search space

(DAGs) called parental network structures. Each parental network structure is evaluated

by using the cost metric described above. Next, each parental network structure creates

an offspring by performing a series of mutations to the parental network structure. The

probabilities of executing 1, 2, 3, 4, 5, or 6 instances of mutation are 0.2, 0.2, 0.2, 0.2, 0.1,

and 0.1, respectively. If mutations generate an invalid offspring that is cyclic, the algorithm

deletes the edges of the offspring that invalidate the DAG conditions. It can detect cycles

and delete the related edges in O(|N | + |E|) time, where |N | is the number of nodes and

|E| is the number of edges in the graph [5]. The new offspring are then evaluated by using

the cost metric. The next generation of parental network structures are selected from the

current generation of parental network structures and offspring. The algorithm performs

this selection by requiring each DAG to compete against p randomly chosen DAGs. If the

cost metric of the former is lower than or equal to the chosen opponent in each competition,

the former receives one score. The algorithm retains the groups of DAGs with the highest

scores as parental network structures of the next generation. It then repeats this process

24

until the maximum number of generations G is reached. The algorithm is summarized as

follows:

1. Set t to 0.

2. Create an initial population, Pop(t), of PS random DAGs. The initial population

size is PS.

3. Each DAG in the population Pop(t) is evaluated using the cost metric.

4. While t is smaller than the maximum number of generations G

i. Each DAG in Pop(t) produces one offspring by performing a number of mutation

operations. If the offspring has cycles, delete the edges of the offspring that

violate the DAG condition.

ii. The DAGs in Pop(t) and all new offspring are stored in the intermediate popu-

lation Pop′(t). Thus, the size of Pop′(t) is 2 ∗ PS.

iii. Conduct a number of pairwise competitions over all DAGs in Pop′(t). Let Bi

be the DAG being conditioned upon, p opponents are selected randomly from

Pop′(t) with equal probability, where p < |Pop′(t)|. Let Bij, 1 ≤ j ≤ p, be

the randomly selected opponent DAGs. The Bi gets one more score if C(Bi) ≤
C(Bij), 1 ≤ j ≤ p, where C(Bi) is the cost metric function of a DAG Bi. Thus,

the maximum score of a DAG is p.

iv. Select PS DAGs with the highest scores from Pop′(t) and store them in the new

population Pop(t + 1).

v. Increase t by 1.

5. Return the DAG with lowest cost metric found in any generation of a run as the

result of the algorithm.

25

The learning algorithm uses a variety of structure-guided mutation operators and a

knowledge-guided mutation operator to produce new offspring from existing DAGs. For-

mally, let B be an existing DAG to be mutated, N = {N1, N2, . . . , Nn} be the set of at-

tributes in a domain, and E be the set of edges in B. The operators generate a new

offspring by modifying E. These operators are detailed in the following discussions.

4.4 Structure-Guided Mutation Operators

Simple Mutation:

This operator randomly adds an edge eij from attributes Nj to Ni, where i 6= j, if

the edge does not already exist. Otherwise, it deletes the edge from E. For example, the

network structure in Figure 4 is obtained from the network structure in Figure 2 by adding

an edge from attribute “Weight” to attribute “Daily Calories”. The network structure in

Figure 5 is obtained from the network structure in Figure 2 by deleting the edge from

attribute “Age” to attribute “Blood Pressure”.

Reversion:

This operator randomly selects an edge, says eij, from E, and modifies the direction of

the edge. In other words, the set of edges, E ′, of the offspring is:

E ′ = (E − {eij}) ∪ {eji} (14)

For example, the network structure in Figure 6 is obtained from the network structure

in Figure 2 by reversing the edge from attribute “Body Mass Index” to attribute “Daily

Calories”.

Move:

This operator modifies the parent set of an attribute, says Ni, if ΠNi
is not empty.

Specifically, it deletes an attribute Nk where Nk ∈ ΠNi
, from the parent set of Ni randomly,

26

and adds a new attribute Nj to ΠNi
, if Nj 6∈ (ΠNi

∪Ni). For example, the network structure

in Figure 7 is obtained from the network structure in Figure 2 by deleting the edge from

attribute “Body Mass Index” to attribute “Daily Calories” and then adding an edge from

attribute “Weight” to attribute “Daily Calories”.

Height Weight

Blood

Pressure

Daily

Calories

Age

Body Mass

Index

Figure 4: An example of using simple mutation to add an edge to a network structure.

It is obtained from the network structure in Figure 2 by adding an edge from attribute

“Weight” to attribute “Daily Calories”

WeightHeight

Body Mass

Index

Pressure

Daily

Calories

Age

Blood

Figure 5: An example of using simple mutation to delete an edge from a network structure.

It is obtained from the network structure in Figure 2 by deleting the edge from attribute

“Age” to attribute “Blood Pressure”

27

WeightHeight

Body Mass

Blood

Pressure

Daily

Calories

Age

Index

Figure 6: An example of using reversion mutation to modify the direction of an edge in a

network structure. It is obtained from the network structure in Figure 2 by reversing the

edge from attribute “Body Mass Index” to attribute “Daily Calories”

WeightHeight

Body Mass

Blood

Pressure

Daily

Calories

Age

Index

Figure 7: An example of using move mutation to move an edge in a network structure.

It is obtained from the network structure in Figure 2 by deleting the edge from attribute

“Body Mass Index” to attribute “Daily Calories” and then adding an edge from attribute

“Weight” to attribute “Daily Calories”

28

4.5 Knowledge-Guided Mutation

This operator is similar to the simple mutation operator. It removes an existing edge

from a nonlinear multiregression network or adds an edge if there is no edge between

the corresponding attributes. The main difference between these two operators is that

knowledge-guided mutation considers the cost metrics of all possible edges and determines

which edge should be removed or inserted. The cost metric of an edge from Nj to Ni, where

i 6= j, is computed by using C(Ni, {Nj}). Before the learning algorithm is executed, the cost

metrics of all possible edges is computed and stored. When the knowledge-guided mutation

operator determines that an existing edge of the parental network structure B should be

removed, it retrieves the stored cost metrics of all edges in E and those edges with higher

cost metrics are deleted with higher probabilities. On the other hand, if the knowledge-

guided mutation operator decides to add an edge to the parental network structure, it gets

the stored cost metrics of the edges not in E, and the edges with lower cost metrics will

have higher probabilities of being added.

5 Empirical Evaluation

We have conducted a number of experiments to evaluate the performance of our approach.

Synthetic data sets are used in the experiments since we can validate the quality of the

results under different conditions of complexity levels. The method for the construction of

the data set will be described in detail in the following subsection. In each experiment,

our learning framework (MRCEP-FDOA) attempts to discover a network structure and

the corresponding nonlinear multiregression coefficients from data. The learning algorithm

takes the data set only as input and does not know the original networks that generate the

data set in any way during the learning process. MRCEP-FDOA is employed to search the

optimal network structure, while the algorithm FDOA described in Section 3.2 is employed

to learn the multiregression coefficients for every network element. The goodness of the

network structure is evaluated by the MRC cost metric C. The lower the value, the better

29

the network. Various combinations of different parameters as well as the size of training data

are investigated to test the effectiveness and efficiency of our approach. The experiments

are conducted on Sun Ultra 1/170 workstations.

5.1 Data Set Construction

To generate a data set, we start with a given network structure. The network topology

is first determined. Then we set the values of coefficients such as µ, c, and q for each

network element. Next, we generate the data records. To be more precise, consider a

nonlinear multiregression network, N = {N1, N2, . . . , Nn}. We use a connection matrix M

to represent the network structure. M is an n by n matrix with its element eij. Each eij

is a Boolean variable valued in {0,1}. The expression eij = 1 means that there is an edge

from Nj to Ni, while eij = 0 means there is no edge from Nj to Ni. M is an anti-symmetric

matrix. Before going into the details of the data construction procedure, we introduce the

term level to describe the role of an attribute in the network structure.

The root level, denoted by V0 , is defined as

V0 = {i|eij = 0,∀j = 1, . . . , n.} (15)

Usually, we call the attributes belonging to V0 as source nodes. The first level, V1, is defined

as

V1 = {i|{j|eij = 1} ⊂ V0; i 6∈ V0.} (16)

Generally, the kth level, Vk, is iteratively defined as

Vk = {i|{j|eij = 1} ⊂
k−1⋃

p=0

Vp; i 6∈
k−1⋃

p=0

Vp} (17)

for k > 0 until k = K for which the constraint
⋃K

p=0 Vp = {1, · · · , n} is satisfied. For each

Ni, i ∈ ⋃k
p=1 Vp, there is a corresponding network element NEi with child Ni and parent set

ΠNi
= {Nj|eij = 1}. The data construction procedure is detailed as follows:

30

1. Select a network structure represented by a connection matrix M . Determine the

number of records L.

2. Use a random number generator to create the data for source nodes independently.

Each of them is uniformly distributed on [0,1].

3. Set p = 1.

4. While p is not greater than K, for each NEi whose Ni ∈ Vp, do the followings:

i. Let Ni be the objective attribute y, and ΠNi
be the predictive attributes X =

{x1, · · · , xm}, where m is the cardinality of ΠNi
.

ii. Assign the values of µ on P(X) and the respective regression coefficients c and

q.

iii. Calculate the values of the objective attribute y, Yj, j = 1, 2, . . . , L, according

to the expression of the nonlinear multiregression in Equation (6).

iv. Let Yj be the value of attribute Ni in the data set.

v. Add 1 to p.

5.2 Experimental Results

The data set used in the first experiment is derived from a nonlinear multiregression network

with 8 attributes, N = {N1, N2, . . . , N8}. The network structure is shown in Figure 8 and

its corresponding connection matrix is

M =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0

31

It is composed of 3 network elements and 8 edges. 50 records are generated according to

the data construction procedure described above. Then we employ our learning method to

discover the network structure as well as estimate 20 coefficients of all network elements.

The parameters in the MRCEP-FDOA algorithm are set as follows: the population size

PS = 50, the terminating number of generations G = 200, and the parameter p = 7. The

probabilities of applying simple mutation, reversion, move, and knowledge-guided mutation

are 0.25 each. Ten trials are performed with different seeds for the data set.

 N

 N N

 N N N

 N 4 N 1

 2 7

3 6 5

8

Figure 8: A nonlinear multiregression network with 8 attributes and 8 edges

The experiment results show that all ten trials are able to discover the original network

structure. The cost metric of the learned structure is 3.178. Figure 9 depicts the lowest

cost metric in each generation during the learning process. It shows that the quality of

the learned network increases as the algorithm progresses. When the algorithm terminates,

the estimated multiregression coefficients of the three network elements are also obtained.

Table 4 depicts the actual coefficients and the estimated solutions. We can see that the

estimated values are very close to the actual ones. Moreover, as the population size is

50 and the terminating number of generations is 200, at most 10050 different network

structures are generated. Compare this number with the size of the search space which

is 7.837e11, it can be concluded that the solution can be found by only exploring a small

portion of the search space (10050/7.837e11 = 1.2824e-8).

The second set of experiments is concerned with a more complex nonlinear multire-

32

3

3.5

4

4.5

5

5.5

6

0 20 40 60 80 100 120 140 160 180 200

co
st

m
et

ric

generations

C

Figure 9: The lowest cost metric versus generations during the learning process for the

8-attribute network

NE4 NE6 NE8

preset estimated preset estimated preset estimated

c 0.075439 0.075446 c 0.440912 0.440909 c 0.762085 0.764012

q 0.569946 0.569949 q 0.348480 0.348483 q 0.950012 0.952366

Set µ µ∗ Set µ µ∗ Set µ µ∗

{φ} 0.0 0.0 {φ} 0.0 0.0 {φ} 0.0 0.0

{N1} 0.4589843 0.458946 {N3} 0.104492 0.104505 {N4} 0.381836 0.350345

{N2} 0.894531 0.894493 {N5} 0.151367 0.151378 {N6} 0.321289 0.310680

{N1, N2} 0.961914 0.961894 {N3, N5} 1.0 1.0 {N4, N6} 0.941406 0.935823

{N3} 0.667969 0.667941 {N7} 0.470703 0.467758

{N1, N3} 0.843750 0.843721 {N4, N7} 0.752930 0.677577

{N2, N3} 0.934570 0.934544 {N6, N7} 0.877930 0.860434

{N1, N2, N3} 1.0 1.0 {N4, N6, N7} 1.0 1.0

Table 4: The actual and estimated values of the regression coefficients for the 8-attribute

network (NE: Network Element)

33

gression network with 14 attributes, 6 network elements and 19 edges. Figure 10 shows

the original network structure. The number of data records L is 500. Setting PS = 500,

G = 500, and other parameters similar to the first experiment, we employ our learning

algorithm to discover the network structure and the regression coefficients. Ten trials are

tested.

The experimental results show that most trials are able to discover the original network

structure. The cost metric is 4.22. The lowest cost metric versus generation in the learning

process is depicted in Figure 11. The actual and the estimated coefficients for each network

element are listed in Table 5. From this table, we can see that even for such a complex

network containing 60 coefficients, the estimated coefficients are very close to the actual

ones. Furthermore, as the population size is 500 and the terminating number of generations

is 500, at most 250500 different network structures are generated. Compare this number

with the size of the search space which is 1.439e36, it can be observed that the solution can

be discovered by only examining a very small fraction of the search space (250500/1.439e36

= 1.7408e-31). It indicates that our learning algorithm is very effective for discovering

the network structure and the FDOA algorithm is very effective to estimate the nonlinear

multiregression coefficients based on the Choquet integral.

Once the network structure and the multiregression coefficients of network elements are

learned, we can conduct inference and prediction. The inference direction basically follows

the direction of the edges, i.e., from parents to child. In each network element, a child

attribute can be inferred from its parent set. Generally, an attribute may be a child for a

network element, while it can also be a parent for one or several other network elements

at the same time. For any network element NEi, if the data of all predictive attributes

are available in a new observation, we can predict the value of the objective attribute Ni

directly by its predictive attributes. For example, N12 is the objective attribute in network

element NE12. From Figure 10, N12 can be predicted by N2, N4, N9, and N10 directly. If

the values of N2, N4, N9, and N10 are available in a new observation, we can estimated the

value of N12 by calculating the nonlinear multiregression with the estimated multiregression

34

 N N N N N

 N N N N

 N N N2

1 4 5 9 7 13

 8

1012

 6113

 N

 N14

Figure 10: A nonlinear multiregression network with 14 attributes and 19 edges

4

5

6

7

8

9

0 50 100 150 200 250 300 350 400 450 500

co
st

m
et

ric

generations

C

Figure 11: The lowest cost metric versus generations during the learning process for the

14-attribute network

35

NE2 NE4 NE11

preset estimated preset estimated preset estimated

c 0.3 0.300001 c 0.4 0.399996 c 2 2.000000

q 0.6 0.600001 q 0.7 0.700003 q 1.3 1.300000

Set µ µ∗ Set µ µ∗ Set µ µ∗

{φ} 0.0 0.0 {φ} 0.0 0.0 {φ} 0.0 0.0

{N10} 0.5 0.499995 {N1} 0.1 0.100008 {N3} 0.3 0.299997

{N14} 0.8 0.799994 {N2} 0.2 0.200011 {N5} 0.5 0.499996

{N10, N14} 1.0 1.04 {N1, N2} 0.5 0.500006 {N3, N5} 0.5 0.499997

{N3} 0.3 0.300007 {N6} 0.7 0.699997

{N1, N3} 0.6 0.600009 {N3, N6} 0.8 0.799997

{N2, N3} 0.8 0.800005 {N5, N6} 0.9 0.899997

{N1, N2, N3} 1.0 1.0 {N3, N5, N6} 1.0 1.0

NE13 NE9 NE12

preset estimated preset estimated preset estimated

c 0.8 0.800001 c 0.1 0.0856692 c 5.0 4.985990

q 3.0 0.300000 q 0.8 0.796283 q 2.0 2.020000

Set µ µ∗ Set µ µ∗ Set µ µ∗

{φ} 0.0 0.0 {φ} 0.0 0.0 {φ} 0.0 0.0

{N7} 0.6 0.599999 {N5} 0.5 0.532208 {N2} 0.4 0.404843

{N8} 0.6 0.599999 {N6} 0.2 0.219235 {N4} 0.25 0.262294

{N7, N8} 0.8 0.799999 {N5, N6} 0.6 0.63295 {N2, N4} 0.5 0.487397

{N10} 0.1 0.099992 {N7} 0.1 0.116373 {N9} 0.5 0.531700

{N7, N10} 0.8 0.799999 {N5, N7} 0.7 0.737091 {N2, N9} 0.5 0.531676

{N8, N10} 0.9 0.899998 {N6, N7} 0.5 0.530009 {N4, N9} 0.6 0.622438

{N7, N8, N10} 1.0 1.0 {N5, N6, N7} 0.8 0.818365 {N2, N4, N9} 0.6 0.622274

{N8} 0.3 0.332515 {N10} 0.6 0.59513

{N5, N8} 0.6 0.632677 {N2, N10} 0.7 0.697006

{N6, N8} 0.6 0.64156 {N4, N10} 0.6 0.594931

{N5, N6, N8} 0.7 0.729668 {N2, N4, N10} 0.8 0.801305

{N7, N8} 0.6 0.633673 {N9, N10} 0.6 0.601174

{N5, N7, N8} 0.9 0.935828 {N2, N9, N10} 0.9 0.869875

{N6, N7, N8} 0.8 0.815284 {N4, N9, N10} 0.8 0.823851

{N5, N6, N7, N8} 1.0 1.0 {N2, N4, N9, N10} 1.0 1.0

Table 5: The actual and estimated values of the regression coefficients for the 14-attribute

network (NE: Network Element)

36

coefficients of the network element listed in the right bottom part of Table 5. This is an

example of a direct prediction.

In some applications, not all parents observation are available for a child. For instance,

in network element NE12, in case the values of N4 and N2 are not available, the prediction

for attribute N12 can be done via the observations of N1, N3, and N14 if they are available

instead. From the network structure, the value of N2 can be estimated by N10 and N14 first

according to the estimated multiregression coefficients in the left top part of Table 5. N4

can be estimated by N1, N2, and N3 according to the estimated multiregression coefficients

in center top part of Table 5. Then N12 can be predicted by the observation values of

N9 and N10 and the estimated values of N2 and N4. This is an example of an indirect

prediction.

5.3 Study on Parameters

We have also conducted an extensive investigation on the performance of our learning

algorithm by using different number of training records and varying the parameters in the

algorithm. To study the effect of our learning framework on different sizes of data sets, we

generate two more data sets of 100 and 300 records from the same 14-attribute network

structure with similar multiregression coefficients. We then apply our algorithm on these

three data sets of 100, 300, and 500 records respectively. Furthermore, we also vary the

population sizes, PS (200 and 500), of MRCEP-FDOA and the number of generations,

G (200, 500, and 1000). For each combination of L, PS, and G, 5 trials with different

seeds are conducted. To study the performance, we collected the average cost metric AC,

the averaged structure difference ASD, and the average running time (in seconds) AT ,

for each combination. Here the structure difference, SD, is defined as
∑n

i=1 δi, where δi

is the cardinality of the symmetric difference of parent sets in the discovered network and

the original network for attribute Ni. The experiment results are summarized in Table 6.

From the table, we can make the following observations:

37

data set size, L

PS G 100 300 500

AC 4.69503 4.52189 4.73370

200 ASD 9 8.6 9.8

AT 1954 5766 9600

AC 4.21382 4.28310 4.23535

200 500 ASD 1.2 1.2 0.6

AT 2689 8615 14533

AC 4.17312 426319 4.22072

1000 ASD 0 0 0

AT 3432 11213 18706

AC 4.596212 4.55986 4.56675

200 ASD 8 7.8 6.2

AT 3770 12094 18690

AC 4.18419 4.21823 4.22677

500 500 ASD 1 0.4 0.2

AT 4739 14478 22350

AC 4.1732 4.17312 4.22072

1000 ASD 0 0 0

AT 5489 17027 25565

Table 6: Learning Performance from the data set with 100, 300, and 500 records under

different combination of parameters

1. ASD generally decreases with the size of data sets. It implies that the quality of

learning improves if the size of data set increases.

2. The running time is approximately proportional to the size of the training data.

3. Generally speaking, the algorithm can obtain the best result (SD=0) when the num-

ber of generations G is set to be 1000.

6 Conclusions

A novel multiregression network model to represent nonlinear relationships among con-

tinuous attributes has been proposed. Our network-based structure provides an effective

38

reasoning procedure to perform prediction and decision making. Unlike many existing

paradigms based on linear models, the attribute relationship in our framework is repre-

sented by nonlinear nonnegative multiregressions based on the Choquet integral. This kind

of multiregression is able to model a rich set of nonlinear attribute interactions directly.

We have developed a Fast Double Optimization Algorithm (FDOA) for learning the mul-

tiregression coefficients of a single network element. Using this local learning component,

we propose a global learning algorithm, called MRCEP-FDOA for discovering the network

structures from databases. Several effective genetic operators have been designed for this

learning task. We have conducted a series of experiments to assess the effectiveness of our

algorithm and investigate the performance under different parameter combinations as well

as the sizes of the training data sets. The empirical results demonstrate that our framework

can successfully discover the target network structures and the regression coefficients.

Appendix

The data set used in the first experiment

39

N1 N2 N3 N4 N5 N6 N7 N8

0.002 0.967 0.787 0.586 0.668 0.678 0.871 1.482
0.876 0.629 0.254 0.490 0.935 0.565 0.872 1.428
0.374 0.485 0.893 0.503 0.963 0.756 0.951 1.538
0.746 0.350 0.640 0.442 0.844 0.675 0.177 1.238
0.844 0.080 0.558 0.426 0.459 0.604 0.471 1.245
0.959 0.540 0.375 0.489 0.895 0.599 0.087 1.238
0.730 0.826 0.582 0.537 0.075 0.486 0.016 1.216
0.539 0.610 0.383 0.416 0.570 0.584 0.604 1.306
0.838 0.916 0.011 0.575 0.964 0.495 0.104 1.240
0.996 0.767 0.636 0.570 0.696 0.666 0.151 1.309
0.156 0.180 0.935 0.464 0.610 0.665 0.841 1.449
0.864 0.737 0.914 0.576 0.473 0.622 0.348 1.310
0.413 0.099 0.673 0.382 0.766 0.680 0.379 1.216
0.533 0.147 0.835 0.460 0.658 0.677 0.273 1.255
0.013 0.401 0.942 0.496 0.919 0.762 0.196 1.298
0.131 0.568 0.601 0.395 0.063 0.482 0.428 1.182
0.365 0.409 0.906 0.496 0.134 0.516 0.786 1.371
0.614 0.964 0.981 0.618 0.075 0.500 0.871 1.435
0.371 0.256 0.784 0.434 0.316 0.568 0.664 1.329
0.038 0.432 0.791 0.444 0.318 0.569 0.075 1.201
0.382 0.467 0.521 0.359 0.878 0.641 0.175 1.179
0.335 0.019 0.591 0.336 0.780 0.657 0.261 1.175
0.952 0.853 0.561 0.581 1.000 0.660 0.205 1.317
0.861 0.988 0.727 0.628 0.037 0.479 0.189 1.255
0.792 0.856 0.646 0.556 0.916 0.680 0.022 1.299
0.728 0.396 0.206 0.384 0.578 0.532 0.976 1.449
0.133 0.954 0.371 0.575 0.393 0.571 0.825 1.419
0.582 0.404 0.454 0.363 0.945 0.625 0.432 1.224
0.822 0.198 0.638 0.448 0.580 0.645 0.776 1.411
0.096 0.344 0.786 0.430 0.436 0.606 0.862 1.432
0.533 0.960 0.749 0.602 0.183 0.525 0.912 1.454
0.243 0.541 0.616 0.401 0.709 0.660 0.374 1.221
0.151 0.232 0.312 0.235 0.207 0.517 0.053 1.061
0.492 0.176 0.138 0.257 0.860 0.527 0.616 1.271
0.221 0.833 0.012 0.509 0.832 0.488 0.238 1.219
0.446 0.296 0.553 0.357 0.510 0.620 0.584 1.302
0.034 0.416 0.280 0.295 0.024 0.458 0.963 1.404
0.473 0.593 0.032 0.397 0.336 0.468 0.927 1.404
0.079 0.757 0.532 0.476 0.860 0.644 0.186 1.249
0.404 0.753 0.601 0.488 0.348 0.571 0.099 1.229
0.775 0.079 0.671 0.432 0.881 0.686 0.361 1.246
0.794 0.338 0.163 0.384 0.276 0.504 0.852 1.383
0.334 0.802 0.474 0.508 0.652 0.615 0.211 1.261
0.445 0.315 0.008 0.282 0.711 0.481 0.144 1.083
0.840 0.673 0.018 0.488 0.851 0.491 0.286 1.216
0.199 0.582 0.618 0.407 0.336 0.568 0.621 1.307
0.820 0.383 0.029 0.400 0.107 0.455 0.086 1.142
0.379 0.455 0.359 0.330 0.790 0.589 0.537 1.264
0.386 0.133 0.591 0.351 0.226 0.533 0.388 1.171
0.965 0.958 0.996 0.636 0.555 0.650 0.487 1.363

40

Acknowledgment

The work described in this paper was partially supported by grants from the Research Grant

Council of the Hong Kong Special Administrative Region. Projects: CUHK 4212/01E,

CUHK 4187/01E, and LU 3012/01E. It was also partially supported by the Direct Grant

Project No. 2050179 of the Engineering Faculty in the Chinese University of Hong Kong.

References

[1] P. Angeline. Evolutionary Algorithms and Emergent Intelligence. Ph.D. Thesis, The

Ohio State University, 1993.

[2] P. Angeline. Genetic programming and emergent intelligent. In Advances in Genetic

Programming, editor K. E. Kinnear, Jr., Cambridge MA: MIT Press, pp. 75-97, 1994.

[3] T. Bäck. Evolutionary Algorithms in Theory and Practice : Evolution strategies, Evo-

lutionary Programming, Genetic algorithms. New York NY: Oxford University Press,

1996.

[4] T. Bäck, F. Hoffmeister and H. P. Schwefel. Evolutionary Computation: Comments

on the History and Current State. IEEE Transactions on Evolutionary Computation,

1(1), pp. 3-17, 1997.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. Cam-

bridge MA: MIT Press, 1990.

[6] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Advances

in Knowledge Discovery and Data Mining. Menlo Park CA: AAAI Press, 1996.

[7] D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intel-

ligence, second edition. New York, NY: IEEE Press, 2000.

41

[8] D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE Transac-

tions on Neural Networks, 5, pp. 3-14, 1994.

[9] D. B. Fogel and K. Chellapilla. Revisiting Evolutionary Programming. Proc.

AeroSense’98: Aerospace/Defense Sensing and Controls, Orlando, 1998.

[10] L. Fogel, A. Owens, and M. Walsh. Artificial Intelligence through Simulated Evolution.

New York: John Wiley and Sons, 1966.

[11] N. Friedman and I. Nachman, Gaussian process networks. In Proceedings of the Six-

teenth Conference on Uncertainty in Artificial Intelligence, pp. 211-219, 2000.

[12] J. H. Friedman and W. Stuetzle, Projection pursuit regression, Ann. Statist., 76, pp.

817-823, 1981.

[13] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.

Reading MA: Addison-Wesley, 1989.

[14] M. Grabisch. A new algorithm for identifying fuzzy measures and its application to

pattern recognition. Proc. FUZZY-IEEE/IFES’95, Yokohama, pp.145-150, 1995.

[15] M. Grabisch. K-older-additive discrete fuzzy measures and their representation. Fuzzy

Sets and Systems, 92, pp. 167-189, 1997.

[16] M. Grabisch and M. Roubens. An axiomatic approach to the concept of interaction

among players in co-operative games. International Journal of Game Theory, 28, pp.

547-565, 1999.

[17] P. R. Halmos. Measure Theory. New York: Van Nostrand, 1967.

[18] J. Holland. Adaptation in Natural and Artificial Systems. Cambridge MA: MIT Press,

1992.

[19] F. V. Jensen, An Introduction to Bayesian Networks. University College London Press,

1996.

42

[20] S. H. Kwon and M. Sugeno. A hierarchical subjective evaluation model using non-

monotonic measures and the Choquet integral. In Fuzzy Measures and Integrals: The-

ory and Applications, editors M. Grabisch, T. Murofushi, and M. Sugeno, Springer

Verlag, pp. 375-391, 2000.

[21] J. R. Koza. Genetic Programming: on the Programming of Computers by Means of

Natural Selection. Cambridge MA: MIT Press, 1992.

[22] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. Cam-

bridge MA: MIT Press, 1994.

[23] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane. Genetic Programming

III: Darwinian Invention and Problem Solving. San Francisco CA: Morgan Kaufmann,

1999.

[24] W. Lam. Bayesian network refinement via machine learning approach. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 20(3), pp. 240-251, 1998.

[25] P. Larrañaga, M. Poza, Y. Yurramendi, R. Murga, and C. Kuijpers. Structure Learn-

ing of Bayesian Network by Genetic Algorithms: A Performance Analysis of Control

Parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9),

pp. 912-926, 1996.

[26] O. C. Lingjarde and K. Liestol, Generalized projection pursuit regression, SIAM J.

Sci. Comput, 20(3), pp. 844-857, 1998.

[27] Mori and T. Murofushi. An analysis of evaluation model using fuzzy measure and the

Choquet integral. 5th Fuzzy System Symposium, Kobe, Japan, (in Japanese), June

1989.

[28] T. Murofushi, M. Sugeno and M. Machida. Non-monotonic fuzzy measures and the

Choquet integral. Fuzzy Sets and Systems, 64, pp. 73-86, 1994.

43

[29] T. Murofushi and M. Sugeno. A theory of fuzzy measures: representations, the Cho-

quet integral, and null sets. Journal of Mathematical Analysis and applications, 159,

pp. 532-549, 1991.

[30] T. Murofushi and M. Sugeno. Fuzzy measures and integrals. In Fuzzy measures and

integrals - Theory and Applications, M. Grabisch, T. Murofushi, and M. Sugeno (eds.),

Physical Verlag, 2000.

[31] J. Pearl, Probabilistic Reasoning in Intelligent Systems : Networks of Plausible Infer-

ence. Morgan Kaufmann, 1988.

[32] V. W. Porto. Evolutionary Programming. In Evolutionary Computation 1: Basic Al-

gorithms and Operators, editors T. Bäck, D. B. Fogel, and Z. Michalwicz, Institute of

Physics Publishing, pp. 89-102, 2000.

[33] R. W. Robinson. Counting Unlabeled Acyclic Digraphs. In C. H. C. Little, ed., Lectures

Notes in Mathematics 622: Combinatorial Mathematics V, pp. 28-43, New York NY:

Springer-Verlag, 1977.

[34] H. P. Schewefel. Numerical Optimization of Computer Models. New York: John Wiley

and sons, 1981.

[35] Z. Wang and G. J. Klir. Fuzzy Measure Theory. New York: Plenum, 1992.

[36] Z. Wang and G. J. Klir. Choquet integrals and natural extensions of lower probabilities.

International Journal of Approximate Reasoning, 16, pp. 137-147, 1997.

[37] Z. Wang, K.S. Leung and J. Wang. A genetic algorithms for determining nonadditive

set functions in information fusion. Fuzzy Sets and Systems, 102, pp. 463-469, 1999.

[38] Z. Wang, K.S. Leung, M.L. Wong, J. Fang, and K. Xu. Nonlinear nonnegative multi-

regressions based on Choquet integrals. International Journal of Approximate Reason-

ing, 25, pp. 71-87, 2000.

44

[39] Z. Wang, K.S. Leung, and K. Xu. A new nonlinear regression model used for

multisource-multisensor data fusion: an application of nonlinear integrals and genetic

algorithms. FUSION ’98, pp. 299-306, 1998.

[40] M.L. Wong, W. Lam, and K.S. Leung. Using evolutionary programming and minimum

description length principle for data mining of Bayesian networks. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 21(2), pp.174-178, 1999

[41] K. Xu, Z. Wang, K.S. Leung. Using a new type of nonlinear integral for multiregres-

sion: an application of evolutionary algorithms in data mining. Proc. of 1998 IEEE

International Conference on System, Man and Cybernetics, pp. 2326-2331, 1998.

45

