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Abstract: - As a representative combinatorial optimization problem, the Traveling Salesman Problem (TSP)
has attracted extensive research. In this paper, we develop a new Self-Organizing Map (SOM) network for
the TSP and call it the Integrated SOM (ISOM) network. Its learning rule embodies the effective mechanisms
of three typical learning rules. In its single learning activity, the excited neuron first is dragged close to the
input city, and then is expanded towards the convex-hull of the TSP, and finally, it is drawn close to the
middle point of its two neighbor neurons. The elaborate cooperation among these three learning mechanisms
is evolved by a genetic algorithm. The simulation results show that the finally established ISOM can generate
more promising solutions, with similar computation time, than other neural networks like the SOM network,
the Expanded SOM, and the Convex Elastic Net.
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1 Introduction

The Traveling Salesman Problem (TSP) is one of
the typical combinatorial optimization problems. It
can be stated as a search for the shortest closed tour
that visits each city once and only once. It has many
real-life applications like VLSI routing, hole punch-
ing and wallpaper cutting problems [1,2]. On the
other hand, it falls into a class of the NP-hard or NP-
complete problems. Thus, during the past decades,
the TSP has attracted extensive research and has re-
peatedly been used as the basis of comparison for
different optimization algorithms, like Genetic Algo-
rithms (GA) [3], tabu search [4], automata networks
[5] and neural networks [6–8].

The Self-Organizing Map (SOM) networks, origi-
nally proposed by Kohonen, solve the TSP through
unsupervised learning [6]. By simply inspecting the
input city data for regularities and patterns, and then
adjusting itself to fit the input data through cooper-
ative adaptation of the synaptic weights, such a net-
work creates the localized response to the input data,
and thus reflects the topological ordering of the in-
put cities. This neighborhood preserving map then
results in an expected tour of the TSP under con-
sideration. From each city, the resultant tour tries
to visit its nearest city. The shortest subtour can
intuitively lead to a good tour for the TSP. Such a
property learned by the SOM is referred to as the
local optimality hereafter.

∗This research was partially supported by Hong Kong RGC
CERG Grant CUHK 4161/97E.

Due to their acceptable computation complexity
and promising performance, the SOM-like networks
have attract a great amount of research to explore
and enhance its capability on handling the TSP and
generated some encouraging results [1,7,8]. There are
three main streams to enhance the original SOM net-
work as follows:

1. Using the variable structure network instead of the
static structure [1].

2. Amending the competition criterion [9].

3. Enhancing the learning rule. The learning rule in
the elastic net, proposed by Durbin and Willshaw
[10], is often used to enhance the SOM-like net-
works [7]. Recently, an expanded learning rule is
designed to learn both the local optimality and the
global optimality, the convex-hull property [9] of
the TSP.

These modified learning rules aim to improve the
performance of SOM-like networks from different
viewpoints and demonstrate more or less success in
numerical experiments. In this paper, we integrate
these learning rules together and develop a new SOM
learning rule, termed as the Integrated SOM (ISOM)
learning rule. In a single learning activity, the learn-
ing rule first follows the traditional learning rule in
the SOM to drag the excited neuron close to the input
city. Then the excited neuron is pushed towards the
convex-hull of the TSP at hand. The pushing force
is designed according to certain global features and
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Fig. 1. A schematic SOM-like network for the TSP.

helps the SOM-like network to learn the global opti-
mality. After that, according to the learning mecha-
nism in the elastic net, the excited neuron is drawn
close to the middle point of its two nearest neurons
to keep the total length of the ring of the neurons
as short as possible. We propose the ISOM network
in next section. In section 3, the elaborate coopera-
tion of these three learning mechanisms is evolved by
GAs. The finally evolved ISOM then is tested and
compared with serveral other SOM-like networks to
demonstrate its favorable performance in section 4,
followed by conclusion in section 5.

2 An Integrated SOM algorithm

We firstly give a brief description of SOM-like net-
works for the TSP and also outline several typical
techniques involved. These pave the way for our In-
tegrated SOM (ISOM) network.

Fig.1 shows a schematic view of a SOM-like net-
work for the TSP. A ring of output neurons, de-
noted by 1, 2, · · · ,M , is employed to characterize
the feature map. The input neurons, receiving the
data of the input city (say, coordinate values), are
fully connected to every output neuron. If the state
of input neurons at time t is the vector −→x k(t) =
[xk1(t), xk2(t), · · · , xkp(t)]T ∈ Rp, where p is the
number of input neurons and usually equals 2, then
the synaptic weights between the j-th output neu-
ron and each of the input neurons form the vector−→w j(t) = [wj1(t), wj2(t), · · · , wjp(t)]T ∈ Rp (1 ≤ j ≤
M). Therefore, these output neurons have two topo-
logical domains. One lies on the ring of the output
neurons to reflect a linear order of visiting the cities.
The other one lies in the p-dimensional space where
the coordinate of each output neuron is indicated by
its connection weight vector.

The underlying idea of the SOM-like networks is
to construct a map from the high-dimensional con-
nection weight space onto the one-dimensional ring
space. In order to get a good tour, the map needs
to preserve the neighborhood relations in the sense
that the output neurons close to each other on the
ring space should be located close to each other on
the synaptic weight space. This is accomplished by

executing the SOM unsupervised learning on the city
data circularly. Normally, the city coordinate is fed
to the input layer iteratively in a random fashion.
Then the output neurons compete with one another
according to a discriminant function, say, the Eu-
clidean metric. After that, the excited neurons (the
winning neuron, as well as its neighbors) update their
synaptic weights according to a certain learning rule.
The learning process continues until all cities are fed
into the network with prespecified times.

Now we focus on the learning rules. The commonly
used one is [6]:

−→w j(t + 1) = −→w j(t) + αj(t)(−→x k(t)−−→w j(t)) (1)

where αj(t) is a learning rate, ranging between 0 and
1. Fig. 2(a) illustrates this update mechanism. Usu-
ally, the resultant solution tries to visit its nearest
neighbor as far as possible. These shortest subtours
hopefully leads to an optimal solution. However, such
a local property does not always exist in the optimal
tours of the TSP.

One way to improve its performance is to embody
some global features of the TSP in its learning rule.
Here, the global features refer to properties valid to
all optimal solutions. The Expanded SOM (ESOM)
[9] has taken into account of a global optimality —
the convex-hull property. It says that, for any optimal
tour of the TSP, the cities located on the convex-hull
formed by given cities must be visited in the same
order as that they appear on the convex-hull. Math-
ematically, the expanded learning rule in the ESOM
has a form like:

−→w j(t + 1)=cj(t) [−→w j(t) + αj(t) (−→x k(t)−−→w j(t))]
(2)

where the expanded coefficient cj(t)(≥ 1.0) is de-
signed to reflect the convex-hull property of the TSP
to some degrees. That is, the cities (and its cor-
responding neurons) nearer the convex-hull exercise
more influence on the learning and attract the neuron
more. As a result, the ESOM most likely achieves the
convex-hull property of the TSP, as well as the local
property, then improves its performance dramatically
[9]. The schematic functionality of the expanded co-
efficient is illustrated in Fig. 2(b).

Another renowned learning rule, originally used by
the elastic net [10], updates the connection weight
vector according to

−→w j(t + 1) = −→w j(t) + αj(t) [−→x k(t)−−→w j(t)] (3)

+
βj(t)

2
[−→w j−1(t) +−→w j+1(t)− 2−→w j(t)] .

where βj(t) is another learning rate parameter. It
is worth noting that the last term in the right-hand
side of Eq.(3) just reflects the elastic force constraint
that forces the length of the resulting ring of neurons
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Fig. 2. A schematic view of four different learning
rules (a). for the traditional SOM network; (b). for
the ESOM algorithm; (c). for the elastic net; (d). for
the proposed ISOM, respectively.

to be as short as possible [10]. In addition, this term
may inhibit the intersection in the resultant tour. In
fact, the last term and the first term intuitively at-
tract the excited neuron to the middle point of its
two neighbor neurons on the ring. A schematic view
for the updated mechanism is shown in Fig.2(c).

These learning rules can lead to some good tours,
which have been substantiated by numerous experi-
ments. Furthermore, these underlying ideas empha-
size different aspects. So we can integrate these ideas
together and hold all their strengths, and then lead
to a more effective SOM-like network. We give the
ISOM network as follows.

Algorithm: the ISOM network

1. Map all the given city coordinates (x′i1, x
′
i2)

T (i =
1, · · · , n) into a circle centered at the origin with
radius R (≤ 1), where n is the number of the cities.
The center of the original cities is mapped onto
the origin (the center of the circle). We still use
(xi1, xi2)T to denote the coordinate of −→x i after
transformation.

2. Set t = 0, p = 2, and the initial weight vectors−→w j(t) (j = 1, · · · , n, thus M = n) with random
values within the circle.

3. Select a city at random, say −→x k(t) =
(xk1(t), xk2(t))T , and feed it to the input neurons.

4. Find the winning output neuron, say m(t), nearest
to −→x k(t) according to the Euclidean metric. That
is,

m(t) = arg min
j
‖−→x k(t)−−→w j(t)‖ . (4)

5. Train neuron m(t) and its neighbors up to the ef-
fective width σ(t) with the following formula:

−→w j(t + 1) = cj(t) {−→w j(t) + αj(t) [−→x k(t)−−→w j(t)]}

+
βj(t)

2
[−→w j−1(t) +−→w j+1(t)− 2−→w j(t)] (5)

where j = m(t),m(t)±1, · · · ,m(t)±σ(t), and cj(t)
is the expanded coefficient. Here, αj(t) and βj(t)
are the learning rates, respectively, specified by

αj(t) = η1(t)× hj,m(t), (6)
βj(t) = η2(t)× hj,m(t), and (7)

hj,m(t) =

{
1− dj,m(t)

σ(t)+1 dj,m(t) ≤ σ(t),
0 otherwise,

(8)

where η1(t) and η2(t) are two learning parameters
of the network, hj,m(t) a neighborhood function and
dj,m(t) the distance between the neuron m(t) and
j on the ring.

6. Update the effective width σ(t), η1(t) and η2(t)
with presetted decreasing schemes, say, decreasing
to 0 linearly. And, if the learning loop does not
terminate, go to Step 3 with t := t + 1.

7. Calculate the activity value of each city −→x k ac-
cording to the formula:

a(−→x k) = mk − 3
26
{d(−→x k,−→w mk

)+ (9)

2∑

i=1

2[d(−→x k,−→w mk+i)− d(−→x k,−→w mk−i)]
i + 2

},

where mk is the winning neuron of −→x k.

8. Order the cities by their activity values, and then
form a corresponding tour of the TSP on hand.

Steps 7 and 8 provide a mapping method which
realizes how each city is mapped to a real number
rather than an integer and then get a tour. This
successfully avoids the confusion that several cities
are mapped to the same neuron. Furthermore, the
mapping method not only exploits the information
of the winning neuron but also benefits from those of
its nearest neurons.

The learning rule in Eq.(5) is the key point of the
proposed ISOM network, which also makes it dis-
tinct from all previous SOM-like networks. The ex-
cited neuron first is dragged close to the input city
according to the learning rule as specified by Eq.(1).
Then it is pushed towards the convex-hull of the TSP
under consideration and helps the ISOM to learn the
convex-hull property, and finally, the neuron is drawn
by the elastic force. The last operation helps to avoid
intersection in the tour. Its schematic view is illus-
trated in Fig. 2(d). Apparently, it integrates three
learning mechanisms.
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Step 1 in the ISOM network mainly facilitates the
implementation of the expanded coefficient cj(t) and
makes it possible to reflect the convex-hull property
based only on the input city and the excited neu-
ron. For example, after this linear transformation,
the distance between the city and the origin, namely
the norm of the input vector, is proportional to the
distance between the original city and the center of
all the cities. Thus, the norm of the input vector can
be used to reflect the location of the city. The larger
the norm is, the more possibly the city is located on
the convex-hull. Similarly, the inner product between
the input city and the excited neuron can reflect the
global information too. Thus, using the norm and
the inner product, we can design some reasonable
expanded coefficients to reflect the convex-hull prop-
erty.

To simplify the design of the expanded learning
mechanism, we divide the formula for the expanded
coefficient into several terms with distinct function-
alities:

cj(t) = [1.0 + bj(t)× ej(t)]
a4 . (10)

Here, the constant 1.0 ensures that the expanded co-
efficient is close to 1.0 so as to make the learning rule
incorporate well with the traditional one as in Eq.(1),
and the constant a4 helps to unify it with the learn-
ing rule in the ESOM [9]. The term bj(t), indicating
the relative strength of the expanded force over the
learning rate αj(t), is formulated as:

bj(t) = a1 × αj(t)a2 × (1− αj(t))
a3 (11)

where ai (i = 1, 2, 3) are positive real numbers. The
term ej(t) in Eq.(10) aims to reflect the global opti-
mality only in terms of the input city and the excited
neuron. As mentioned above, the norm of a city or
neuron in the ISOM embodies certain global informa-
tion. So does their inner products. Based on them,
we list some candidate formulae below:

• ej(t) =
2∑

i=1

[αj(t)xti + (1 − αj(t))wji(t)]2 −

|
2∑

i=1

xtiwji(t)|.

• ej(t) =
2∑

i=1

(xti − wji(t))
2 ×

2∑
i=1

x2
ti.

• ej(t) =
2∑

i=1

(wji(t)− xti) wji(t).

3 Evolutionary design of ISOM

A well-defined Integrated SOM (ISOM) actually
depends upon the elaborate cooperation of three
learning mechanisms, choices of realization for the
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Fig. 3. Evolutionary design of the ISOM.

expanded coefficient, and the learning parameter set-
ting as well. It seems impracticable to specify a per-
fect ISOM network by trial-and-error. However, Ge-
netic Algorithms (GAs) provide us alternatives to de-
sign an effective ISOM version [3].

During the past two decades there has been grow-
ing interest in GAs that are based on Darwin’s theory
of evolution (survival of the fittest) [3]. GAs maintain
a population of chromosomes, and manipulate them
by several genetic operators. The most significant
advantages lie in the gain of flexibility and adapt-
ability to the task on hand, in combination with the
robust performance and the global search character-
istics. Thus GAs have been employed to handle these
inherently hard or time-consuming problems.

Intuitively, we give a GA-based neural-
evolutionary system for the proposed ISOM, as
shown in Fig.3. After initialization, the GA is used
to evolve a set of ISOM algorithms with best perfor-
mance. The performance here relates the qualities of
the generated solutions and their variance on some
small-scale TSP problems. The top m different indi-
viduals are recorded as candidates. If the GA reaches
the prespecified number of generations, the recorded
individuals are verified on a validation set of the
target TSPs. These problems can be somewhat large
scale. At the end, the learning scheme with the best
performance on these validation problems is selected
as the finally evolved ISOM.

Our implementation of the GA is derived from the
C++ library of Genetic Algorithms (GAlib) from
http://lancet.mit.edu/ga/. In the implementation of
the GA, an individual (or chromosome) represents a
learning scheme. It encodes the type of formula to
calculate the expanded coefficient, and its parameters
ai (i = 1, · · · , 4). It also includes other learning pa-
rameters in the ISOM network like the radius R, the
total training loop L, the initial values and the de-
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Alleles in chromosomes Domains eISOM

Formula for ej(t) {1,2,...,20} 1
Parameters for ej(t):
a1, a2 and a3 {0,0.25,...,5} 1,3,0.25

a4 {0.2,0.4,...,5} 1.0
Radius R (0.001,1.0) 0.61
Training loop L {50,65,...,200} 160
Learning parameter η1(0) (0.001,1.0) 0.95
Learning parameter η2(0) (0.001,1.0) 0.12
η2(t) decreasing mode (be p1: (0,100) 48
0 after p1 percent iterations)

The effective width a {1,2, ...,14} 10
σ(0) = a + b · n b [0.001,0.6] 0.01

σ(t) decreasing mode (be p2: (0,100) 62
1 after p2 percent iterations)

Table 1: Alleles of a chromosome in the neural-
evolutionary system, their domains and the param-
eter setting in the finally evolved ISOM (eISOM).
The learning parameters η1(t), η2(t) and σ(t) are
decreased linearly for each learning iteration. η1(t)
reaches zero at the last iteration.

creasing scheme of the effective learning width σ(t),
and the learning parameters η1(t) and η2(t). So, ac-
cording to the proposed ISOM network given in Sec-
tion 2, an individual actually determines a concrete
ISOM network. In the chromosome, one argument
is coded by one allele. In order to search for the
parameter space efficiently, these alleles are limited
to certain reasonable domains. The alleles and their
domains are listed in Table 1 (Columns 1 and 2).

The fitness function is defined as 3 minus the mean
of the solution quality of the solutions generated by
an ISOM network and their average variance on tar-
get TSPs. The solution quality refers to the rela-
tive difference of the average tour length over the
theoretic lower bound for the random TSPs, i.e.,
0.765×√n [9].

The finally evolved ISOM2 consists of the param-
eter setting or choices, as listed in the last column of
Table 1. The expanded coefficient is specified by:

cj(t) = 1 + αj(t)3 (1− αj(t))
0.25 {

2∑

i=1

[αj(t)xki(t)

+(1− αj(t))wji(t)]2 − |
2∑

i=1

xki(t)wji(t)|}.

4 Performance of the evolved ISOM

Using the parameter setting in the previous sec-
tion, the computation complexity of the evolved
ISOM is O(n2). It similar with ESOM [9] and the

2The finally evolved ISOM algorithm, as well as all
random TSPs used below, can be downloaded from
http://www.cse.cuhk.edu.hk/∼hdjin/som/.
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Fig. 4. (a) Comparison of the average solution qual-
ity yielded by the evolved ISOM, the ESOM and the
Budinich’s SOM network on 18 random TSPs; (b)
The average execution time comparison between the
ESOM and the evolved ISOM.

SOM developed by Budinich [8]. It is worth not-
ing that almost all non-neural network methods, like
[3,4], have higher order complexity in order to get so-
lutions comparable with the SOM-like networks. The
established ISOM is examined on two sets of TSPs.
The simulation results are based on 10 independently
runs for each TSP on a Sun Ultra 5/270 workstation.

The first set of experiments conducted are based
on a set of 18 TSPs ranging from 50 to 2400 cities.
These TSPs are all generated randomly within the
unit square. Fig.4(a) shows the comparison results in
terms of the relative differences of the average tour
lengths obtained by the networks from the theoreti-
cal lower bounds 0.765×√n. It is seen from the fig-
ure that, for the 18 TSPs, the tours obtained by the
evolved ISOM are shorter than the ones by the ESOM
except for the TSP with 400 cities. We find that, av-
eragely, the relative differences from the theoretical
lower bounds are 6.67%, 3.76%, and 2.63% for the
Budinich’s SOM, the ESOM, and the evolved ISOM,
respectively. That is, the evolved ISOM has made
around 1.13% improvement over the ESOM, around
4.04% over the Budinich’s SOM. From Fig.4(b), it
is easily observed that the two SOM-like networks
almost take the same amount of execution time for
the 18 TSPs. Similar comparison conclusions can be
drawn from the other set of experiments below. Thus
we may say that the evolved ISOM generates better
tours than the ESOM and the Budinich’s SOM with
similar execution time.

Our second set of experiments are designed to
compare the evolved ISOM with the Convex Elas-
tic Net (CEN) of Al-Malhem and Al-Maghrabi
[7], the ESOM [9] and their enhanced versions.
Here, an enhanced version of a SOM-like net-
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TSP Solution quality of Solution quality of

name plain SOMs (%) enhanced SOMs (%)

ESOM eISOM CEN ESOM eISOM

GR96 1.0 0.8 4.4 0.5 0.5
KROA100 1.0 0.6 1.6 0.8 0.5
GR137 4.3 3.2 3.2 2.5 2.2
Lin318 4.1 2.1 4.7 2.9 2.0
Average 2.60 1.68 3.48 1.68 1.30

Table 2: Comparisons among the enhanced CEN, the
ESOM and the evolved ISOM (eISOM) when applied
to 4 TSP benchmarks.

work means that the network has incorporated
with the heuristics NII trick presented by Al-
Mulhem and Al-Maghrabi in [7]. Since the sim-
ulation results of the CEN reported in [7] have
been enhanced by the local heuristics NII, the
other SOM-like networks have also been enhanced
to make the comparison fair. All the tested TSPs
are taken from http://www.iwr.uni-heidelberg.de
/iwr/comopt/software/TSPLIB95/tsp/. Table 2
lists the simulation and comparison results of the
plain and enhanced SOM-like networks. The results
are the relative differences of the best tour lengths ob-
tained by the networks from the optimal tour length.
The simulation results of the enhanced CEN are all
quoted directly from [7]. Observing from Table 2,
for both plain and enhanced versions, the evolved
ISOM always yields higher quality solutions of TSPs
than the Budinich’s SOM, the ESOM, and the en-
hanced CEN do. Note that the CEN takes O(n2)
computation time in its training process too. We
therefore conclude that the evolved ISOM network
outperforms the CEN.

Based on the complexity analysis and the compar-
ison results, we can conclude that the evolved ISOM
has better performance than ESOM, the Budinich’s
SOM, the CEN in terms of both accuracy and speed.

5 Conclusion

In this paper, we have developed the Integrated
Self-Organizing Map (ISOM) network, a new Self-
Organizing Map (SOM) network for the TSP. Its
learning rule has integrated three effective mecha-
nisms of several learning rules in the SOM-like net-
work literature. That is, during the learning, it
takes account of the local optimality of the tradi-
tional SOM network, the global optimality extracted
by the Expanded SOM (ESOM) and the elastic force
constraint in the elastic net simultaneously. We also
have given several possible realizations for the ex-
panded coefficient in its learning rule to reflect the
global optimality of the TSP to some degrees. The
elaborate synthesis of these three mechanisms, as well
as the parameter setting involved are determined by a

genetic algorithm automatically. The finally evolved
ISOM algorithm has been examined on a wide spec-
trum of TSPs. Its performance is better, in terms
of accuracy and speed, than other neural networks
including the SOM developed by Budinich [8], the
ESOM [9], and the Convex Elastic Net (CEN) [7].
The idea, combining the strengths of several meth-
ods on learning, could hopefully be used to handle
other problems efficiently, too.
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