
Genetic-guided Model-based Clustering Algorithms∗

Hui-Dong Jin Kwong-Sak Leung
Department of Computer Sci. & Eng.
The Chinese University of Hong Kong

Shatin, Hong Kong

Man-Leung Wong
Department of Computing and Decision Sciences

Lingnan University
Tuen Mun, Hong Kong

Abstract Clustering, or the unsupervised classifi-
cation of data items into clusters, can reveal some
intrinsic structures among data. The intrinsic struc-
tures, like the number of clusters, are one of the
key issues in data mining and other exploratory data
analyses. In this paper, we propose genetic-guided
model-based clustering techniques to determine the
optimal number of clusters and the characteristics of
these clusters automatically. The model-based clus-
tering techniques are used to describe the clusters
and tune their descriptions locally, while genetic algo-
rithms lead the search to some promising solutions.
Several clustering-specific genetic operators are de-
veloped successfully to enhance the search procedure,
as confirmed by the simulation results. The simula-
tion results, both on synthetic and real-life data sets,
demonstrate the better performance of the proposed
clustering techniques over two widely-used model-
based clustering algorithms.

Keywords: Genetic algorithm, mixture model, ex-
pectation maximization algorithm, clustering analy-
sis, number of clusters

1 Introduction

Clustering is the unsupervised classification of
data items (observations or feature vectors) into
meaningful groups (clusters) based on similarity.
It can reveal some intrinsic structures, like the
number of clusters and “natural” clusters among
the data set, when no prior information is avail-
able other than the observed values. Clustering
analysis is very useful in data mining [2, 4] and
Web mining [12]. This appeals to researchers
from many disciplines [10]. They have produced

∗The work was partially supported by RGC Grant
CUHK 4161/97E of Hong Kong.

a rich assortment of clustering methods, like
graph-based [11], model-based [2, 3] , genetic-
guided [9], distance-based approaches [7].

Genetic Algorithms (GAs), motivated by nat-
ural evolution, maintain a population of solu-
tions and make use of genetic operators to ob-
tain the globally optimal solution [8]. This pow-
erful optimization technique has been success-
fully combined with other clustering approaches
to conduct exploratory data analysis. For ex-
ample, the hybridization with K-means [7] or
Fuzzy logic [9] has led to some successful results.
However, it weakens their attraction greatly that
users have to predefine the number of clusters in
advance.

In theory, model-based clustering approaches
are able to determine the optimal number of
clusters automatically. They describe the data
set with a mixture model, and a lot of theoret-
ical results from the statistics field can be uti-
lized to measure the match between the mix-
ture model and the data set [1, 2, 6, 13]. The
common procedure to select the optimal number
of clusters is based on the enumeration strategy
[1, 6, 13]. Given the number of clusters, it uses
a local search algorithm, say, the Expectation
Maximization (EM) algorithm, to find a good
description for the data set, then these resulting
models with different numbers of clusters com-
pete with one another based on certain criterion.
It is referred to as the enumeration model-based
clustering algorithm (EnumEM) hereafter. The
strategy wastes much computation time on the
mixture models with an inappropriate number
of clusters. As an alternative, some promising
numbers of clusters may be driven from the clus-
tering results during the running before invoking
the EM algorithm [2]. Both of them suffer the

local search property of the EM algorithm.
By introducing a global search mechanism

into model-based clustering techniques, we can
improve the effectiveness to determine the num-
ber of clusters. The global search mechanism,
say, GAs, can be used to both explore the natu-
ral clusters among data and determine the opti-
mal number of clusters automatically. This dis-
tinguishes the genetic-guided model-based clus-
tering approaches from most of the previous re-
search work on GA-guided clustering algorithms
[7, 9].

The remaining paper is organized as follows.
In section 2, we outline some model-based clus-
tering techniques involved. The genetic-guided
model-based clustering approaches are proposed
in section 3, followed by several specific genetic
operators. Simulation results are given in section
4, and compared with EnumEM and AutoClass
[2]. In section 5, we conclude the paper.

2 Model-based Clustering
Analysis

Given a data set x = (x1, x2, ..., xN), the model-
based clustering techniques assume that each
data item xi is drawn from a mixture model Φ
with the density:

P (xi|Φ) =
K∑

k=1

pkφ(xi|θk). (1)

Here K is the number of clusters, pk is the mix-
ing proportion (or, mixture weight) for the kth

cluster (0 < pk < 1 for all k=1, ..., K and
K∑

k=1

pk = 1), φ(xi|θk) is the corresponding den-

sity for cluster k and θk denotes the parameters
involved.

This paper concentrates on the case where
φ(xi|θk) is the multivariate normal (Gaussian)
distribution, a model that has been used with
considerable success [2, 5]. In this instance, the
parameter θk consists of a mean vector µk and
a covariance matrix Σk. The density is of the
form

φ(xi|θk) =
exp

{−1
2(xi − µk)T Σ−1

k (xi − µk)
}

(2π)
D
2 |Σk|

1
2

(2)
where D is the dimensionality of the data items.

Given a mixture model Φ, we can get the
membership probability tik = pkφ(xi|θk)

P (xi|Φ) for the

data item xi. Then, we can get crisp classifi-
cation by assigning the data items xi to cluster
k if k = arg max

j
{tij}. Thus, a mixture model

Φ can be viewed as a solution for the clustering
analysis. We outline some techniques to find a
good mixture model below.

2.1 The EM Algorithm

The commonly used maximum log-likelihood
measures the description accuracy of a mixture
model on the data set, defined as follows:

LM (Φ) =
N∑

i=1

[log P (xi|Φ)] (3)

The Expectation Maximization (EM) algorithm
is one of the most famous model-based clustering
algorithms [2, 3, 6, 13], given as follows.
The EM algorithm

1. Fixing the number of clusters K, initialize
the parameters in the mixture model: pj

k, µ
j
k

and Σj
k (k = 1, ..., K), and set the current

iteration j = 0.

2. E-Step: Given the mixture model parame-
ters, compute tjik:

tjik =
pj

kφ(xi|uj
k, Σ

j
k)

K∑
l=1

pj
l φ(xi|uj

l , Σ
j
l)

(4)

3. M-step: Given tjik, update the mixture
model parameters for k = 1, ..., K:

pj+1
k =

1
N

N∑

i=1

tjik (5)

µj+1
k =

N∑
i=1

tjikxi

N · pj+1
k

(6)

Σj+1
k =

N∑
i=1

tjik(xi − µj
k)(xi − µj

k)
T

N · pj+1
k

(7)

4. If
∣∣LM (Φj+1)− LM (Φj)

∣∣ ≥ ε, set j = j + 1
and go to step 2. Here ε is a small positive
number.

As a greedy algorithm, EM increases the max-
imum log-likelihood LM (Φ), and converges to a
near optimal solution with high log-likelihood

2

value, but there is no guarantee to find the op-
timal one. Furthermore, the convergence rate
may be very slow if the clusters are not well sep-
arated or the number of clusters is not properly
predefined [5].

2.2 Hierarchical Agglomerative Clus-
tering

Hierarchical Agglomerative Clustering (HAC)
is an iterative procedure in which “optimal”
pairs of clusters are successively merged. In the
model-based HAC algorithm, a pair of clusters
with the least loss of the maximum classification
log-likelihood is chosen to agglomerate at each
stage [5]. The classification log-likelihood is cal-
culated according to:

LC(Φ) =
K∑

k=1

∑

xi∈Ck

φ(xi|θk) (8)

where Ck indicates the kth cluster.
The time and the memory complexities of

hierarchical agglomerative clustering algorithms
depend quadratically on the number of compo-
nents in the initial partition, which is usually a
set of singleton clusters. Thus, it is impractical
to process large data sets [5].

2.3 Model Selection

By balancing the model accuracy and the com-
plexity, various criteria have been proposed to
measure a model’s suitability [1, 2, 13]. A classic
criterion is the Bayesian Information Criterion
(BIC). It is defined by:

BIC(Φ) = −2 · LM (Φ) + υ(Φ) log N (9)

where υ(Φ) is the number of free parameters in
the mixture model Φ. Some simulation results
have shown its good performance in practice [1,
2].

Based on this criterion, the widely used ap-
proach, EnumEM, works as follows. Given
the number of clusters, the best maximum log-
likelihood is estimated by invoking the EM algo-
rithm several times with random initialization.
Then, the BIC values for all possible K compete
with one another. The model with the minimal
BIC value is chosen to determine the number
of clusters in the data set [1, 13]. Due to the
local search property of the EM algorithm and

little communication during running, the Enu-
mEM algorithm does not work well, especially
on complicated data sets.

AutoClass selects models using an “Occam
Factor”, which implying that Bayesian param-
eter priori can somehow prevent the over fitting
[2]. During the running, a new promising num-
ber of cluster may be specified heuristically be-
fore invoking the EM algorithm. However, this
strategy also suffers the local search property of
the EM algorithm.

3 Genetic-guided Model-based
Clustering Analysis

For the last decade there has been a grow-
ing interest in evolutionary algorithms that are
based on Darwin’s theory of evolution (Survival
of the fittest). One of the implementations is
Genetic Algorithms (GAs) [8]. GAs maintain
a population of solutions and manipulate them
with several genetic operators including muta-
tion, crossover, and selection. These operators
model some natural phenomena: genetic inheri-
tance and Darwinian strife for survive. The most
significant advantages of GAs are the flexibility
and adaptability to the task on hand, the robust
and global search characteristics. Thus they are
often employed to handle inherently hard prob-
lems. GAs have been widely used in clustering
analysis [7, 9]. These hybridization algorithms
have to specify the number of clusters in ad-
vance, which greatly impacts their utility in real
world problems.

By combining GAs with several model-based
clustering techniques, we propose the genetic-
guided model-based clustering analysis tech-
niques. The global search capability of GAs
guides the algorithms to focus on the promising
mixture models and avoid the search for mod-
els with an inappropriate number of clusters as
early as possible. The algorithms are outlined in
Fig. 1 in which four different genetic operators
are developed to enhance the performance. Dif-
ferent combinations of these operators can lead
to different clustering algorithms. For conve-
nience, we call the one with all the genetic op-
erators GAXEM, and the one without the HAC
crossover operator GAEM. These genetic opera-
tors are described below in details.

3

Figure 1: The flow chart of genetic-guided
model-based clustering algorithms.

3.1 Representation and Fitness Cal-
culation

In GAs, each mixture model is directly coded as
a chromosome to represent a clustering solution:
the first gene is the number of clusters, followed
by genes representing the parameters for the first
cluster, the second cluster, and so on. The pa-
rameters for a single cluster include the mixing
proportion, the mean vector and the covariance
matrix for the first cluster. So, the length of
the chromosome is varying and depends on the
number of clusters in the model.

The calculation of the fitness is based on an n-
iteration EM algorithm. Starting from the model
represented by a chromosome, EM runs the E-
step and the M-step for n iterations. The up-
dated model will replace the old one, and its
maximum log-likelihood is used to calculate the
BIC value according to Eq. (9). We use a se-
lection operator for minimization. The less the
BIC is, the more probable the chromosome is
choosen. In our implementation, the number of
iterations n increases linearly with the genera-
tion number.

3.2 Crossover Operators

There are two crossover operators as shown in
Fig. 1. The first one, often used in GAs, is the
two-point crossover operator. It exchanges the
parameter values for some clusters between the
two random crossover points.

The other one, a HAC crossover operator,
is derived from the model-based Hierarchical
Agglomerative Clustering (HAC) algorithm [5].
Two parent mixture models firstly merge into
one new mixture model by appending one model
behind the other followed by adjusting the num-
ber of clusters and the mixture proportions.
Starting from this initial partition we can allevi-
ate the significant overhead associated with the
HAC algorithm. Then a pair of clusters with
the least loss of the maximum log-likelihood will
be chosen and agglomerated into a new cluster
iteratively. The procedure stops when the BIC
value reaches the miminum, which can lead to
an optimal number of clusters.

Because the accurate calculation of the loss
of the maximum log-likelihood is rather time-
consuming, we just approximate it based on
the assumption that pkφ(xk|θk) >> psφ(xk|θs)
(s 6= k) as xk belongs to the kth cluster Ck. That
is, the maximum classification log-likelihood ap-
proximates the maximum log-likelihood. Then
we has

LM (Φ) ≈
K∑

k=1

∑

xi∈Ck

log (pkφ(xi|θk)) (10)

= N

K∑

k=1

pk log pk − 1
2
N

K∑

k=1

pk log |Σk|

−ND

2
log(2π)− 1

2
ND

During the deduction, we use

Σk ≈
∑

xi∈Ck

{
(xi − µk)(xi − µk)T

}

Npk

and
∑

xi∈Ck

{
(xi − µk)T Σ−1

k (xi − µk)
}

= NpkD.

If clusters l and j merge into cluster r, we have

∆LM (K) = LM (ΦK)− LM (ΦK−1) (11)
≈ N (pl log pl + pj log pj − pr log pr)

−N

2
(pl log |Σl|+ pj log |Σj | − pr log |Σr|) .

4

As the number of free parameters for every clus-
ter is fixed, say, F , we can reformulate BIC(ΦK)
and get

∆BIC(K) = BIC(ΦK)−BIC(Φk−1)
≈ −2∆LM (K) + F log N.

In order to minimize BIC within the HAC
agglomeration procedure, we should keep
∆BIC(K) ≥ 0. That is

∆LM (K) ≤ F

2
log N. (12)

Thus, we have a simple termination criterion for
the HAC crossover operator to end with a good
number of clusters.

Now let us derive the update formulae for the
model parameters during the agglomeration pro-
cedure. We assume that, if cluster r agglomer-
ates from clusters j and l, all their membership
probabilities are agglomerated. So

ur =
N∑

i=1

(tij + til)xi

N(pj + pl)
=

pjµj + plµl

pj + pl
(13)

and

Σr =
pjΣj + plΣl

pj + pl
+

pjpl

(pj + pl)2
(µj−µl)(µj−µl)T

(14)
It is worth noting that the HAC crossover oper-
ator does not need to access the data set again.
Thus, the operator is suitable for large scale data
sets.

3.3 Mutation Operators

The proposed GAXEM and GAEM have two
mutation operators to introduce certain diver-
sity into the population of chromosomes.

One is the mutation operator which just acts
on the parameters of the model. It randomly
selects a cluster, say k, and a data item, say
xi. Then the mean vector µk is moved to xi

with a small step. The covariance matrix Σk is
adjusted by the covariance between µk and xi.
It is formulated as follows:

µ′k = (1− α)µk + αxi (15)
Σ′k = (1− β)Σk + β(xi − µk)(xi − µk)T

Here α and β are two small positive numbers.
The other mutation operator can mutate the

number of clusters K. It first generates a new
number K ′ around K. If K ′ < K, then the

−0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

(a). dataSetA

x

y

0 1 2

−0.5

0

0.5

1

1.5

(b). dataSetB

x

y

0 1 2 3
−1

−0.5

0

0.5

1

1.5

(c). dataSetC

x

y

−1 0 1 2
−1

0

1

2

(d). dataSetD

x

y

0 1 2

−0.5

0

0.5

1

1.5

2

2.5

(e). dataSetE

x

y

0 1 2

−0.5

0

0.5

1

1.5

2

2.5

(f). dataSetF

x

y

−1 0 1 2 3

−0.5

0

0.5

1

1.5

2

2.5

(g). dataSetG

x

y

0 1 2 3
−1

0

1

2

(h). dataSetH

x

y

0 2 4
−1

0

1

2

(i). dataSetI

x

y

Figure 2: The 9 synthetic data sets and their
original mixture models. The data items are in-
dicated by dots. The center ‘+’ and its corre-
sponding solid ellipse indicate the mean and the
contour of a component distribution.

operator randomly selects K ′ clusters to form
a new chromosome. Otherwise, it selects some
data vectors as the mean vectors and the iden-
tity matrices as the covariance matrices to form
some additional clusters. This mutation oper-
ator enables jumping from one mixture model
to another, and favors the global convergence of
GAXEM and GAEM.

4 Simulation Results

We illustrate the performance of the proposed
GAXEM and GAEM algorithms on various
data sets and compare them with EnumEM
and AutoClass. We also make a compar-
ison between GAXEM and GAEM to clar-
ify the significance of the HAC crossover op-
erator. All algorithms were implemented
with MATLAB except that AutoClass was
used its C version (http://ic-www.arc.nasa.gov
/ic/projects/bayes-group), and executed on Sun
Ultra 5/270. GAXEM and GAEM employed
the elitism strategy. If the best fitness did not
change for 5 generations, they were terminated.

5

0 1 2 3 4
−1

0

1

2

x

y

(a). Solution of dataSetI by EnumEM

BIC=15144.03

0 1 2 3 4
−1

0

1

2

x

y

(b). Solution of dataSetI by AutoClass

BIC=15118.35

0 1 2 3 4
−1

0

1

2

x

y

(c). Solution on dataSetI by GAEM

0 1 2 3 4
−1

0

1

2

x

y

(e). Solution on dataSetI by GAXEM

0 10 20 30 40 50
1.5

1.55

1.6

1.65

1.7
x 10

4

Generation

F
it
tn

e
s
s
 (

B
IC

)

(d). GAEM on dataSetI

 BIC=15120.45
 Best number of cluster=11
 CPU time= 33232.9 seconds

0 5 10 15 20 25
1.5

1.55

1.6

1.65

1.7
x 10

4 (f). GAXEM on dataSetI

Generation

F
it
tn

e
s
s
 (

B
IC

)

 BIC=15116.84
 Best number of clusters=12
 CPU time= 19088.6 seconds

Figure 3: Typical results for dataSetI obtained
by EnumEM, AutoClass, GAEM and GAXEM.
In (a), (b), (c) and (e), the center ‘+’ and its cor-
responding solid ellipse indicate the center and
the contour of a component distribution gener-
ated. The dotted lines and the solid ones in (d)
and (f) shows the mean and the minimal BIC
values of the algorithms respectively.

To make it fair to compare with EnumEM and
AutoClass, the population size was set as 5×N

1
3 .

Here the number N
1
3 was the upper bound for

the numbers of clusters, and the EM algorithm
was invoked 5 times for every mixture model
with a given number of clusters in EnumEM
[6, 13]. Based on some preliminary experiments,
the crossover and the mutation probability, re-
spectively, were set to 0.99 and 0.05. These two
mutation and two crossover operators were in-
voked randomly.

The first set of simulations has been con-
ducted on 9 synthetic data sets. These 9 data
sets are depicted in Fig. 2. Their center of
the component distribution is located on the 2-
dimensional grid and the covariance matrices are
generated randomly around 0.1 ∗ I2, where I2 is
the 2 by 2 identity matrix. We sample about 200
data items from each cluster for the first 7 data
sets and 250 for the last two data sets.

The simulation results are summarized in Ta-
ble 1 based on 10 independent runs. GAXEM
can determine the optimal number of clus-
ters more frequently than the others except for
dataSetF. For example, EnumEM, AutoClass

Table 1: The simulation results on 9 synthetic
data sets of EnumEM, AutoClass, GAEM and
GAXEM. ‘K’ indicates the optimal number of
clusters in the data set, ‘Accu’ the average accu-
racy value (%) and ‘Suc’ the successful trials on
finding the optimal number of clusters within 10
runs. The unit for the average execution time
‘Time’ is second.

EnumEM
 AutoClass
 GAEM
 GAXEM

Data set
 K
 N
 Accu(%)
Suc
 Time
 Accu(%)
 Suc
 Time
 Accu(%)
Suc
 Time
 Accu(%)
 Suc
 Time

dataSetA
 4
 800
 56.8
 8
 1799
 63.5
 10
 435
 58.4
 8
 1079
 63.5
 10
 1374

dataSetB
 5
 1000
 51.4
 4
 2581
 53.7
 10
 785
 52.8
 7
 2096
 53.4
 9
 3450

dataSetC
 6
 1200
 42.6
 5
 2184
 46.4
 7
 1031
 47.9
 8
 3115
 48.3
 9
 4385

dataSetD
 7
 1400
 42.8
 2
 3135
 58.6
 8
 1252
 59.5
 8
 4803
 63.7
 10
 4585

dataSetE
 8
 1600
 62.0
 4
 3224
 63.7
 8
 1543
 64.2
 7
 4262
 64.7
 9
 7380

dataSetF
 9
 1800
 53.9
 3
 3318
 60.2
 9
 1691
 58.8
 7
 7399
 58.6
 7
 7992

dataSetG
 10
 2000
 54.0
 3
 4369
 55.2
 4
 2158
 56.9
 5
 9806
 59.2
 8
 12921

dataSetH
 11
 2750
 45.2
 3
 8570
 47.1
 4
 2975
 44.7
 3
 21871
 52.9
 6
 26732

dataSetI
 12
 3000
 37.5
 2
 9149
 43.6
 4
 3763
 50.3
 3
 29487
 51.4
 7
 30296

49.6
 3.8
 4259
 54.7
 7.1
 1737
 54.8
 6.2
 9324
 57.6
 8.3
 12757
Average

and GAEM succeed 2, 4 and 3 times, respec-
tively, to detect 12 clusters among dataSetI
within 10 runs, while GAXEM does 7 times.
On average, EnumEM, AutoClass, GAEM and
GAXEM respectively succeed 3.8, 7.1, 6.3 and
8.3 times within 10 runs. Similar situation hap-
pens on the other measurement: accuracy. It is
defined to measure the match between two clas-
sifications C and C ′ by

Accuracy(C,C ′) = 1−WeiEn(C, C ′) + WeiEn(C ′, C)
2

and WeiEn(C, C ′) =
K∑

k=1

pk

[
−

K′∑
i=1

qki′ log qki′

]
,

where qki′ is the ratio of data items in cluster k of
classification C assigned to cluster i′ of classifi-
cation C ′. The accuracy value reaches the max-
imum 1 as two classifications are identical. Due
to the ill-separated data sets, the accuracy values
in Table 1 with respect to the original classifica-
tion are hard to approach 1. GAXEM generates
better classification with higher accuracy value
than EnumEM, AutoClass and GAEM for all
tested data sets except dataSetF. GAEM does
better than EnumEM for all data sets except
dataSetH. Fig. 3 gives some typical results and
the running behaviors of GAEM and GAXEM.
In Fig. 3(e), we can see that GAXEM gen-
erates a mixture model similar to the original
one as shown in Fig. 2(i). As shown in Fig.
3(b), AutoClass is apt to generate more clus-
ters than the optimal. In summary, the so-
lutions obtained by GAXEM are better than
those by the others. GAXEM performs better

6

than GAEM, which confirms the significant role
of the proposed HAC crossover operator. On
the other hand, although GAXEM and GAEM
need longer computation time, their computa-
tion time grows in a similar way as that of Enu-
mEM. And, their computation time is within
10 times of that of AutoClass. AutoClass runs
faster partially because it is coded in C program-
ming language [2].

Our second set of simu-
lations has been conducted on several real-life
data sets from the UCI machine learning repos-
itory (www.sgi.com/Technology/mlc/db). The
simulation results are summarized in Table 2.
GAXEM can determine the optimal number of
clusters in most simulations. On average, Enu-
mEM, AutoClass and GAXEM respectively suc-
ceed 6.4, 4.4 and 8.6 times within 10 runs. Nor-
mally, GAXEM generates better solutions with
lower BIC values than EnumEM and AutoClass
for all 5 data sets. Here the BIC value for Au-
toClass is calculated based on the mixture mod-
els generated. Similar to the first set of experi-
ments, AutoClass is apt to generate more clus-
ters than the optimal. Especially, it failed to
detect the five clusters for the data set ‘sleep’
within 10 runs, for which both EnumEM and
GAXEM can often determine the five clusters
correctly. This probably is because the “Occam
Factor” in AutoClass [2] works on data sets dif-
ferent from the BIC in GAXEM. On the other
hand, the execution time of GAXEM is longer
than that of the other algorithms, but it is not
significantly different from that.

In summary, GAXEM can determine the op-
timal number of clusters more frequently than
EnumEM, AutoClass and GAEM with slightly
longer execution time. GAEM, similar to Auto-
Class, performs better than EnumEM. GAXEM
outperforms GAEM which shows the significant
role of the proposed genetic operator.

5 Conclusion

In this paper, we have proposed the new
genetic-guided model-based clustering algo-
rithms, GAXEM and GAEM. Besides finding
the good clustering among data sets, they can
determine the optimal number of clusters au-
tomatically. Based on the model-based cluster-
ing techniques, we have established several novel
genetic operators to integrate the evolutionary
mechanism with problem-specific techniques to

Table 2: The simulation results on 5 real world
data sets generated by EnumEM, AutoClass and
GAXEM. ‘K’ indicates the optimal number of
clusters in the data set, ‘N’ is the total number of
data items, ‘Attributes’ indicates the attributes
used in the simulation. ‘Accu’ the average accu-
racy value (%) and ‘Suc’ the successful trials on
finding the optimal number of clusters within 10
runs. The unit for the average execution time
‘Time’ is second.

name
 K
 N
 Attributes
 BIC
 Accu(%)
Time
 Suc
 BIC
 Accu(%)
 Time
Suc
 BIC
 Accu(%)
 Time
 Suc

diabetes
 3
 145
 1,2,3
 4762
 60.4
 81
 9
 4766
 60.2
 68
 9
 4770
 60.7
 113
 10

thyroid
 3
 215
 1,2,3,4,5
 4948
 74.0
 104
 6
 4921
 79.7
 108
 7
 4810
 83.0
 203
 8

iris
 3
 150
 1,3,4
 514
 90.6
 88
 7
 573
 62.1
 87
 2
 510
 91.2
 124
 9

liver
 2
 345
 1,2,3,4
 1059
 38.5
 485
 6
 1223
 36.9
 264
 4
 1009
 40.8
 570
 9

sleep
 5
 2500
 5,7,8,10
 38932
 45.7
 3045
 4
 42233
 38.4
 3481
 0
 37994
 50.2
 8793
 7

10043
 61.8
 761
 6.4
 10743
 55.5
 802
 4.4
 9819
 65.2
 1961
 8.6

GAXEM
AutoClass

Average

data set
 EnumEM

improve its performance. The simulations both
on synthetic and real-life data sets have illus-
trated that the proposed algorithms could deter-
mine the optimal number of cluster. Moreover,
GAXEM and GAEM perform better than the
widely used model-based clustering algorithm
EnumEM, and GAXEM performs better than
AutoClass in the preliminary experiments. Sim-
ulation results have also substantiated the signif-
icance of these proposed genetic operators. In
the further, we will extend the proposed algo-
rithms to handle the data sets with different
kinds of attributes like AutoClass. The scala-
bility of the proposed algorithms for large scale
data sets is subject to our another research di-
rection.

References

[1] C. Biernachi, G. Celeux, and G. Govaert.
An improvement of the NEC criterion for
assessing the number of clusters in a mix-
ture model. Pattern Recognition Letters,
20:267–272, 1999.

[2] P. Cheeseman and J. Stutz. Bayesian clas-
sification (AutoClass): Theory and results.
In Fayyad et al. [4], pages 153–180.

[3] A. P. Dempster, N. M. Laird, and D. B. Ru-
bin. Maximum-likelihood from incomplete
data via the EM algorithm. Journal of the
Royal Statistical Society Series B, 1977.

7

[4] U. M. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy, editors. Ad-
vances in Knowledge Discovery and Data
Mining. AAAI/MIT Press, 1996.

[5] C. Fraley. Algo-
rithms for model-based Gaussian hierarchi-
cal clustering. SIAM Journal on Scientific
Computing, 20(1):270–281, Jan. 1999.

[6] C. Fraley and A. E. Raftery. How many
clusters? Which clustering method? An-
swers via model-based cluster analysis.
Computer Journal, 41:578–588, 1998.

[7] P. Franti. Genetic algorithm with determin-
istic crossover for vector quantization. Pat-
tern Recognition Letters, 21(1):61–68, 2000.

[8] D. E. Goldberg. Genetic Algorithms in
Search, Optimization and Machine Learn-
ing. Addison-Wesley Pub. Co., 1989.

[9] L. O. Hall, I. B. Özyurt, and J. C. Bezdek.
Clustering with a genetically optimized ap-
proach. IEEE Transactions on Evolution-
ary Computation, 3(2):103–112, 1999.

[10] A. K. Jain, M. N. Murty, and P. J. Flynn.
Data clustering: A review. ACM Com-
puting Surveys, 31(3):264–323, September
1999.

[11] George Karypis, Eui-Hong (Sam) Han, and
Vipin Kumar. Chameleon: Hierarchical
clustering using dynamic modeling. Com-
puter, 32(8):68–75, August 1999.

[12] Olfa Nasraoui, Raghu Krishnapuram, and
Anupam Joshi. Relational clustering based
on a new robust estimator with application
to web mining. In 18th International Con-
ference of the North American Fuzzy Infor-
mation, 1999, pages 705–709, 1999.

[13] L. Xu. Bayesian Ying-Yang machine, clus-
tering and number of clusters. Pattern
Recognition Letters, pages 1167–1178, Nov.
1997.

8

